
Learning Models in Self-Optimizing Systems

Karan Singh Vincent Weaver
Cornell University

{karan,vince}@csl.cornell.edu

Abstract
Library generators like ATLAS generate high-performance BLAS
by performing a global, empirical search over the space of param-
eter values. ATLAS generates programs based on the parameter
values it finds, and evaluates the best one based on actual hard-
ware performance. Yotov et al [8] replace the global search with
an analytical model and get comparable performance. As such, the
model-driven approach requires considerably less work to generate
the BLAS. The tradeoff is that hand-built models require a deep
understanding of both computer architectures and the algorithm in-
volved, and can take years to conceive. We propose replacing the
ATLAS search engine with a machine learning model. The advan-
tages of this approach being: (1) unlike ATLAS, the machine learn-
ing model requires minimal domain knowledge, (2) for one of our
approaches, we obtain a model based on the parameter space in-
stead of an optimal string of parameter values similar to Yotov et
al [8]. Our approach can be extended to other library generators
(e.g., FFTW) as well as new problems, with minimal effort.

1. Introduction
Library generators like ATLAS [7] generate high-performance
BLAS by performing a global, empirical search over the space
of parameter values. ATLAS generates test programs that evaluate
the performance of various linear algebra routines by varying a set
on input parameters. In this paper we focus on the matrix-matrix
multiply case, which has the parameters given in Table 1. ATLAS
runs these tests on actual hardware, and builds a library around the
best performing set of inputs.

Yotov et al [8] replace ATLAS’s global search with an analytical
model and obtain comparable performance. As such, the model-
driven approach requires considerably less work to generate the
BLAS. The tradeoff is that hand-built models require a deep un-
derstanding of both the computer architectures and the algorithms
involved, and can take years to develop.

We propose replacing the ATLAS search engine with a machine
learning model. We evaluate two different machine learning tech-
niquesArtificial Neural NetworksandGenetic Algorithms. The ad-
vantages of our approach are: (1) unlike ATLAS, the machine learn-
ing model requires minimal domain knowledge, (2) for artificial
neural networks, we get a model based on the parameter space in-
stead of an optimal string of parameter values similar to Yotov et
al [8]. Please note that unlike Yotov et al, this model is platform-
specific.

Our approach can be extended to other library generators (e.g.,
FFTW) with minimal effort. The only domain knowledge needed
is a parameterized space that needs to be explored for best perfor-
mance, and some reasonable bounds in the case where unreason-
able parameters choke the compiler.

This paper is organized as follows. In Section 2, we review
some related work. In Sections 3, we present background, imple-
mentation, and results using the artificial neural network approach.

Name Description
NB L1 data cache tile size
MU , NU Register tile size
KU Unroll factor fork′ loop
Ls Latency for computation scheduling
FMA 1 if fused multiply-add available, 0 otherwise
FF , IF , NF Scheduling of loads

Table 1. ATLAS Optimization Parameters

Section 4 presents background, implementation, and results using
genetic algorithms. Finally, we present our conclusions and future
work in Section 5. The appendix presents configurations for the
machines used and the actual performance numbers obtained using
ATLAS CGw/S, artificial neural networks, and genetic algorithms.

2. Related Work
This work builds off of the research into ATLAS done by Yotov
et al [8], where the search part of ATLAS is replaced by a hand-
crafted model.

Epshteyn et al [2] use machine learning in conjunction with
ATLAS, using active sampling to try to reduce the search space by
learning which points are good to sample. Our method is much
more comprehensive and uses machine learning for the entire
search process.

While genetic algorithms have been applied to many similar
problems, no one has seriously attempted to apply them to the
ATLAS search before. It had been suggested previously though,
as can be seen in the ATLAS FAQ [6]. The author of ATLAS
has a strong commitment to the current search mechanism, but
he mentions genetic algorithms explicitly in the FAQ as a method
suggested previously to him by outside contributers.

A last minute additional literature search has turned up a paper
released just a week ago at UTK [10]. This work applies Genetic
Algorithms to ATLAS, but claims the results for 4 architectures are
not as good as ATLAS’s search overall. Our work tests more archi-
tectures, and provides more details on what results were found.

3. Artificial Neural Networks
3.1 Background

Artificial Neural Networks (ANNs) are a class of machine learning
models that can be used to model complex relationships between a
set of inputs and outputs. They are a powerful method for perform-
ing non-linear regression and work well even with noisy data. A
neural network consists of layers with sets of units in each layer. A
unit takes an input and produces an output based on an activation
function (e.g. linear, sigmoid etc). Each unit in a layer is connected
to units in the next layer via a weight. When values are propagated
through the network, each unit sees the sum of the products of all

COM S 612 Paper 1 2007/4/6

Output

Input1 Input2 Input3

Hidden Layer

Input Layer

Output Layer

Figure 1. A feedforward neural network with one hidden layer [1]

the units and the weights connected to it. An ANN consists of an
input layer, an output layer, and one or more hidden layers. Units
receiving input values comprise the input layer, and units outputting
the results form the output layer. Hidden layers lie between the in-
put and output layers and help increase the representational power
of the net. The network shown in Figure 1 represents a multilayer
fully connected feedforward neural network, since every unit in a
given layer receives values only from its immediately preceding
layer.

Training an ANN consists of learning the edge weights in the
net from a given training sample. Good learning implies that the
net can generalize well and can make accurate predictions for
inputs it has not been trained on. We use resilient backpropagation
to train edge weights. Backpropagation, in general, uses gradient
descent to minimize the error between the real and predicted values.
When training, examples are repeatedly passed through the neural
network and error is calculated. Then backpropagation takes a
small step in the direction with minimal error using a small learning
rate constant as the step size. Resilient backpropagation is adaptive
and only propagates the sign of the error such that an evolving
update rule is developed for each weight. Training with rprop tends
to be faster than standard backpropagation.

In addition to rprop for training, there are some additional tech-
niques that help enhance learning in ANNs.

3.1.1 Cross-validation

ANNs are prone to overfitting, in which case they tend to do
extremely well on the train set but do not generalize well. As a
result, they perform poorly on any new data they see. A common
technique used to avoid overfitting isearly stopping. We hold out
part of the training set as an early stopping set. While training on the
rest of the data, we check the performance on the early stopping set
and save a copy if it has improved since the last run. If performance
were to deteriorate, that would be an indicator of overfitting and a
copy of the net would not be saved. In the end, we have copy of the
net with the best performance (or least error) across all iterations.
The drawback of this technique is that we end up losing some
data we could have used for training an even better model.Cross-
validationhelps overcome this problem by allowing us to have an
early stopping set but still get to train on all the data.

The training set of sizeN is divided up intok folds. Each fold
containsN/k training cases. We train on folds1 throughk − 1,
and use foldk for early stopping. Then we train another neural net
on folds2 throughk and use fold1 for early stopping, and so on.
This way we getk models that have seen all of the training data.
We get the final predictions by averaging the predictions from each
fold. Also, it has been shown that averaging multiple models tends

to give better performance than a single model trained on all of the
data. We can also keep one fold for error estimation, depending on
our requirements.

3.1.2 Active learning

Another technique that helps reduce the number of points we need
for getting a good model isactive learning. The aim of this tech-
nique is to get the smallest sample that will give the most benefit
when used for training. We use the active learning technique pro-
posed by Ipek et al [1]. Whenever points are added to the training
set, the point selection is based on the predictions of the nets trained
so far. The topn points with most disagreement between the fold
nets are chosen to be added to the training set. The idea here be-
ing that if the nets agree for a given data point, they have already
learned what they need to know about it. However, if they disagree
on it, then training on that data point might contribute to learning
the target function better.

3.2 Implementation

We use the Stuttgart Neural Network Simulator (SNNS) [5] pack-
age for our neural network needs. Cross-validation and active learn-
ing are implemented using bash and python scripts. We use a neu-
ral network with 16 hidden units trained using min-max scaling
and resilient backpropagation. We useNB , MU , NU , KU , Ls,
FMA, FF , IF andNF as our inputs to the neural network, and
MFLOPS as the output. We use 4-fold cross-validation and ac-
tive learning. We use3 folds for training and1 fold for early stop-
ping and error estimation. We start the algorithm with16 points
and keep adding to the training set in steps of16 until it reaches96

points. Once training is finished, we go back and query our models
for the best prediction.

Since the compiler tends to slow down severely with unreason-
able inputs, we place some constraints on the search space using
the ATLAS constraints as guidelines.

Steps for optimizing BLAS using ANNs:

1. Take random sample of 16 points from the search space.

2. Run sets of parameters using ATLAS code generator and
form initial training set.

3. Train on the training set.

4. Add another 16 points to the training set using feedback
from active learning.

5. Train on the training set.

6. Repeat steps 4-5 till training set is 96 points.

7. Query models for best prediction and verify.

3.3 Results

Figures 2 through 8 show learning curves as more cases are added
to the training set. The horizontal line represents performance
acheived by ATLAS CGw/S. Figure 9 shows performance that
the ANN approach gets compared to ATLAS CGw/S. The perfor-
mance numbers are normalized to those of ATLAS CGw/S and
vary between 85% to 111%. Figure 10 shows runtimes normalized
to ATLAS CGw/S. The runtimes vary between 13% and 202% of
those acheived by ATLAS. One thing to note is that the Opteron
240, Athlon MP, and Pentium III show the most slowdown using
the ANN approach compared to ATLAS, but their optimum points
are found much before training on the entire 96 points ends (Fig-
ures 5, 6, 7). On the Pentium 4, the ANN approach takes 25%
of the time as ATLAS CGw/S and gets 111% of the performance.
For the Itanium 2, we can get better performance by loosening the
bound on NB. We intend to generate platform-specific bounds us-
ing a tool like X-Ray [9] so that we can have a better idea of the

COM S 612 Paper 2 2007/4/6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90 100

P
er

fo
rm

an
ce

 (
M

F
LO

P
S

)

Number of training cases

ANN
ATLAS CGw/S

Figure 2. ANN: Power3

 250

 300

 350

 400

 450

 500

 550

 10 20 30 40 50 60 70 80 90 100

P
er

fo
rm

an
ce

 (
M

F
LO

P
S

)

Number of training cases

ANN
ATLAS CGw/S

Figure 3. ANN: R12K

search space, as part of our future work. Overall speed can also
be improved by coding the python and bash components in C, and
also by using better active learning techniques.

There are no results for the Alpha 21264 and UltraSPARC
III using the ANN approach because we were unable to get our
software working on these machines by the time of this submission.

4. Genetic Algorithms
4.1 Background

Genetic algorithms are used to search large spaces in a reasonable
amount of time, achieving “good enough” results. The algorithms
were designed to mimic the behavior of biological systems. They
were first proposed by John Holland [3] and since then have been
used for a variety of purposes by many others. The chapter on
genetic algorithms in Mitchell’s book [4] provides a good overview
of the topic.

Genetic algorithms are a form of randomized hill-climbing.
Each cycle through the algorithm, called a generation, involves
first creating a new set of inputs based on the previous generation,
followed by an evaluation to find the best results.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70 80 90 100

P
er

fo
rm

an
ce

 (
M

F
LO

P
S

)

Number of training cases

ANN
ATLAS CGw/S

Figure 4. ANN: Itanium 2

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 1950

 2000

 2050

 10 20 30 40 50 60 70 80 90 100

ANN
ATLAS CGw/S

Figure 5. ANN: Opteron 240

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 10 20 30 40 50 60 70 80 90 100

ANN
ATLAS CGw/S

Figure 6. ANN: Athlon MP

COM S 612 Paper 3 2007/4/6

 600

 650

 700

 750

 800

 850

 900

 10 20 30 40 50 60 70 80 90 100

ANN
ATLAS CGw/S

Figure 7. ANN: Pentium III

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 10 20 30 40 50 60 70 80 90 100

ANN
ATLAS CGw/S

Figure 8. ANN: Pentium 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Pentium 4Pentium IIIAthlon MPOpteron 240Itanium 2R12KPower 3

P
er

fo
rm

an
ce

 n
or

m
al

iz
ed

 to
 A

T
LA

S
 C

G
w

/S

Architecture

Figure 9. ANN: Performance compared to ATLAS CGw/S

 0

 0.5

 1

 1.5

 2

 2.5

Pentium 4Pentium IIIAthlon MPOpteron 240Itanium 2R12KPower 3

T
im

e
no

rm
al

iz
ed

 to
 A

T
LA

S
 C

G
w

/S

Architecture

Figure 10. ANN: Runtime compared to ATLAS CGw/S

The initial state of the input sets is typically completely ran-
domized. The evaluation routine is called afitness functionand is
applied to all of the sets. Some number of the best sets are kept,
and the remaining potentially have modifications applied to them
in order to create the input sets for the next generation. The two
most common modifications used aremutationandcrossover. In
the mutation operation, some of the inputs are changed by a ran-
dom amount, thus adding new or modified values into the input
pool. In crossover, two input sets are picked, and a random subset
of the inputs is swapped from one set to the other. This is done in
the hopes of taking desirable inputs from the two parent sets and
combining them in a way that creates a superior child set.

After the mutation and crossover phases, the cycle is repeated
and the fitness function is run again. The algorithm is stopped either
after a fixed number of generations, or after some threshold value
of fitness has been achieved.

Genetic algorithms have the following good qualities:

• Rapidly find a “good” (though maybe not the best) solution.

• Can be easily parallelized.

• Can search a large space.

Genetic algorithms have the following limitations:

• May require a large number of runs.

• The inherent randomness leads to some non-determinism in
results.

• A large set of input sets is required to keep the algorithm
from becoming stuck at local minima.

• No easy way to determine how to tune the various factors in
the algorithm for best performance.

4.2 Implementation

Our genetic algorithm implementation is written in C. The C pro-
gram keeps track of the input sets, performs all of the mutations and
crossovers, and calls an outside program to measure performance.
The actual fitness function used is the mini-mm infrastructure pro-
vided by the vogue framework and ATLAS. The inputs are passed
to the mini-mm script, which creates the sample benchmark with
the proper parameters, runs the benchmark, and returns the number
of MegaFLOPS which is then read in by the C program.

COM S 612 Paper 4 2007/4/6

The search space is kept as open as possible. Unfortunately
the compiler tends to choke on unreasonable inputs (sometimes
getting stuck using huge amounts of memory and CPU and taking
hours to complete) so some limits were placed on the inputs using
the ATLAS provided constraints as guides. The only non-boolean
value with an upper limit set isLs, kept less than or equal to 6. All
of the inputs had lower limits.NB could not go lower than 16, and
was constrained to be a multiple of 4.MU , NU , andNF cannot be
less than 1, andKU cannot be less than 4.IF cannot be less than
2, and boolean valuesFF andFMA are enforced as such.

The standard C library random number generator is used for
all random decisions. It is seeded at run-time by the current time
returned by the time() function.

Each generation evaluates 9 input sets. The top result is found,
and is compared against the previous best which is stored sepa-
rately. If the current result is better than the old best, the old best is
replaced. To further keep the good values in circulation, each gen-
eration the worst performer is replaced by the current best result.

Mutation is handled next. In the current setup, 20 mutations
happen per generation. The set and parameter is picked completely
random. A value between -16 and 16 is added to the parameter
chosen. To avoid getting stuck at a local minima, there is a 25%
additional chance that this value added will be doubled. For boolean
values, a separate mutation function is used that only results in 0 or
1.

For crossover we useuniform crossover, which means that each
value inside a set undergoing this operation has a 50% chance of
moving over. The other possible ways of crossing over involve
moving over contiguous blocks of values, but we arbitrarily chose
to use the uniform method. We have 5 crossovers happening per
generation.

After undergoing mutation and crossover, the values are checked
to be sure they meet the limits described earlier. Then the fitness
function is applied, and the cycle repeats.

In order to keep the algorithm running in a timely manner, the C
program monitors the fitness calculation, and if it takes more than
5 minutes to complete the result is reported as invalid and the test
involved is killed.

4.3 Results

The genetic algorithm was run for 250 generations on each plat-
form. The experiment was repeated at least twice if time allowed.
The best result obtained was chosen for comparison purposes. In
most cases the best overall result was within 5% of the worst re-
sult. The only exception was the Itanium 2 case where the worst
run was 10% slower than the best.

The results on the Pentium III architecture proved to be invalid
when independently tested. For some reason the ATLAS infrastruc-
ture occasionally reports invalid MegaFLOPS ratings on this partic-
ular machine, and this poisoned the genetic algorithm. At the time
of writing this paper the reasons for this bug have not been deter-
mined.

The results from the runs are shown in Figures 11 through 18.
On the plots, the resulting performance in MegaFLOPS is

shown versus number of generations required. TheNB parame-
ter is also shown (potentially scaled to make it easier to see), as it
is the one most closely related to performance. The horizontal line
shows the performance found by ATLAS’s search, and the vertical
line show the approximate time taken by ATLAS to find that result.

In all cases, the genetic algorithm found good results. In 5 of
the cases it found better results than ATLAS did, although in only
3 of those (Alpha, MIPS, and Pentium 4) did it do this faster than
ATLAS did.

0 50 100 150 200 250

Generations

0

500

1000

1500

2000

2500

M
eg

af
lo

ps

ATLAS
Performance
NBx10

Figure 11. Genetic Algorithm: Pentium 4

0 50 100 150 200 250

Generations

0

500

1000

1500

2000

M
eg

af
lo

ps
ATLAS
Performance
NBx10

Figure 12. Genetic Algorithm: Athlon

0 50 100 150 200 250

Generations

0

100

200

300

400

500

M
eg

af
lo

ps

ATLAS
Performance
NB

Figure 13. Genetic Algorithm: SPARC

COM S 612 Paper 5 2007/4/6

0 50 100 150 200 250

Generations

0

500

1000
M

eg
af

lo
ps

ATLAS
Performance
NBx10

Figure 14. Genetic Algorithm: Power3

0 50 100 150 200 250

Generations

0

100

200

300

400

500

M
eg

af
lo

ps

ATLAS
Performance
NB

Figure 15. Genetic Algorithm: MIPS

0 50 100 150 200 250

Generations

0

1000

2000

3000

4000

5000

M
eg

af
lo

ps

ATLAS
Performance
NBx10

Figure 16. Genetic Algorithm: ia64

0 50 100 150 200 250

Generations

0

500

1000

1500

2000

M
eg

af
lo

ps

ATLAS
Performance
NBx10

Figure 17. Genetic Algorithm: Opteron

0 50 100 150 200 250

Generations

0

200

400

600

M
eg

af
lo

ps
ATLAS
Performance
NB

Figure 18. Genetic Algorithm: Alpha

5. Conclusions and Future Work
Using the ANN approach, we see that we can achieve results com-
parable to ATLAS for most cases (within 85% to 111%). Unlike
ATLAS, which only gives a string of optimal values, the ANN ap-
proach gives us a model that can be queried for other points in the
search space. This can be useful for obtaining a feel for the structure
of the parameter space, especially when applied to new problems.

For future work, we intend to code the bash/python part of the
software in C to improve portability and also to attain a faster
runtime. It would be also be interesting to explore what benefits can
be attained by using platform-specific bounds using a tool like X-
Ray [9]. Another possible approach using ANNs could be to have
a global model for all architectures, which would be exactly what
Yotov et al [8] came up with, except it would not require a deep
understanding of the application or the architecture it is running
on.

For genetic algorithms, the results show that good results can be
found with an unbounded search space. Given enough time, genetic
algorithms can find results that are approaching that of ATLAS’s,

COM S 612 Paper 6 2007/4/6

and in many cases even better. More interesting is that the results
found are often outside of the narrow range ATLAS searches in.

For the future, more analysis needs to be done with the genetic
algorithm results. Many of the best results have high values for
NB which Whalen warns might have negative impacts when the
BLAS is run in actual high-performance applications [6]. If the
values returned by the genetic algorithms turn out to have good
behavior, it might be worth the trouble of having a tournament
setup for determining optimal BLAS, choosing either the result of
ATLAS or the genetic algorithm, whichever is better.

Overall, applying machine learning to self-optimizing systems
is a net win and should be investigated more thoroughly. Our work
can be extended to other library generators (e.g., FFTW) and other
similar problems with minimal effort. Some work remains to be
done to see if setting reasonable bounds can increase performance
and reduce runtime, but overall our setup has been show to be
practical and useful.

References
[1] Engin Ipek and Sally A. McKee and Martin Schulz and BronisR. de

Supinski and Rich Caruana. Efficiently exploring architectural design
spaces via predictive modeling. InUnder Review.

[2] A. Epshteyn, M. Garzaran, G. DeJong, D. Padua, G. Ren, X. Li,
K. Yotov, and K. Pingali. Analytic models and empirical search: A
hybrid approach to code optimization. InLCPC, 2005.

[3] J. H. Holland.Adaption in natural and artificial systems. MIT Press,
Cambridge MA, 1975.

[4] T. M. Mitchell. Machine Learning, chapter 9, pages 249–273. The
McGraw-Hill Companies, Inc., New York, 1997.

[5] U. of Stuttgart. Snns: Stuttgart neural network simulator.

[6] R. C. Whaley. Atlas faq, 2006.

[7] R. C. Whaley and J. Dongarra. Automatically tuned linear algebra
software. InSuperComputing 1998: High Performance Networking
and Computing, 1998. CD-ROM Proceedings.Winner, best paper
in the systems category.
URL:http://www.cs.utsa.edu/~whaley/papers/atlas_sc98.ps.

[8] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali,and
P. Stodghill. Is search really necessary to generate high-performance
blas? InProceedings of the IEEE, Special issue on Program
Generation, Optimization, and Adaptation, 2005.

[9] K. Yotov, K. Pingali, and P. Stodghill. X-ray: A tool for automatic
measurement of hardware parameters. InInternational Conference
on Quantitative Evaluation of SysTems, 2005.

[10] H. You, K. Seymour, and J. Dongarra. An effective empirical search
method for automatic software tuning. Technical report, University
of Tennessee, May 2006.

COM S 612 Paper 7 2007/4/6

Feature Value
CPU Alpha 21264
Architecture Out-of-Order, RISC
CPU Core Frequency 500MHz
L1 Data Cache 64KB
L1 Instruction Cache 64KB
L2 Unified Cache 4MB
Floating-Point Registers 32
Foating-Point Functional Units 2
Floating-Point Multiply Latency 4
Fused Multiply-Add No
Operating System Tru64 5.1
C Compiler gcc 4.0

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 56 4, 2, 1 4 0 1, 4, 2 672
ANN - -, -, - - - -, -, - -
Genetic 68 2, 3, 4 2 0 1, 44, 42 691

Table 2. Alpha 21264: Parameters

Feature Value
CPU Power3
Architecture Out-of-Order, RISC
CPU Core Frequency 375MHz
L1 Data Cache 64KB
L1 Instruction Cache 32KB
L2 Unified Cache 4MB
Floating-Point Registers 32
Foating-Point Functional Units 2
Floating-Point Multiply Latency 4
Fused Multiply-Add Yes
Operating System Linux 2.4.18
C Compiler gcc 3.3

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 48 3, 4, 48 6 1 0, 6, 1 1240
ANN 80 8, 1, 1 5 1 0, 2, 1 1053
Genetic 48 26, 1, 50 1 1 1, 4, 1 1216

Table 3. Power3: Parameters

Feature Value
CPU MIPS R12K
Architecture Out-of-Order, RISC
CPU Core Frequency 300MHz
L1 Data Cache 32KB
L1 Instruction Cache 32KB
L2 Unified Cache 4MB
Floating-Point Registers 32
Foating-Point Functional Units 2
Floating-Point Multiply Latency 2
Fused Multiply-Add Yes
Operating System IRIX 6.5.22
C Compiler SGI MIPSPro 7.2.1

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 60 5, 5, 1 5 1 0, 25, 1 495
ANN 80 2, 7, 1 6 1 0, 2, 1 509
Genetic 168 3, 6, 39 1 1 1, 2, 1 556

Table 4. MIPS R12k: Parameters

Feature Value
CPU UltraSPARC II
Architecture Out-of-Order, RISC
CPU Core Frequency 360MHz
L1 Data Cache ?
L1 Instruction Cache ?
L2 Unified Cache ?
Floating-Point Registers ?
Foating-Point Functional Units ?
Floating-Point Multiply Latency ?
Fused Multiply-Add ?
Operating System Solaris 9
C Compiler Sun Studio 11

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 40 4, 4, 1 4 0 0, 8, 2 500
ANN - -, -, - - - -, -, - -
Genetic 116 2, 7, 4 4 0 1, 52, 13 476

Table 5. UltraSPARC II: Optimization Parameters

Feature Value
CPU Itanium 2
Architecture In-Order EPIC IA-64
CPU Core Frequency 1.5GHz
L1 Data Cache 16KB
L1 Instruction Cache 16KB
L2 Unified Cache 256KB
L3 Unified Cache 3MB
Floating-Point Registers 128
Foating-Point Functional Units 2
Floating-Point Multiply Latency 4
Fused Multiply-Add Yes
Operating System Linux 2.6.9-5.0.5.EL
C Compiler icc 9.0

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 120 6, 6, 1 6 1 1, 36, 1 4495
ANN 80 8, 2, 1 3 1 0, 2, 1 3791
Genetic 272 6, 5, 4 1 0 0, 53, 45 5060

Table 6. Itanium 2: Parameters

Feature Value
CPU Opteron 240
Architecture Out-of-Order, CISC, x86-64
CPU Core Frequency 1.4GHz
L1 Data Cache 64KB
L1 Instruction Cache 64KB
L2 Unified Cache 1024KB
Floating-Point Registers 8 x87
Foating-Point Functional Units ADD + MUL+ MEM
Floating-Point Multiply Latency 4
Fused Multiply-Add No
Operating System Linux 2.6.9-perfctr
C Compiler gcc 3.4.4

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 60 6, 1, 60 2 1 0, 5, 1 2041
ANN 60 6, 1, 80 1 1 0, 2, 1 2049
Genetic 84 6, 1, 43 1 1 1, 55, 1 2106

Table 7. Opteron 240: Parameters

COM S 612 Paper 8 2007/4/6

Feature Value
CPU Athlon MP
Architecture Out-of-Order, CISC, x86
CPU Core Frequency 2.1GHz
L1 Data Cache 64KB
L1 Instruction Cache 64KB
L2 Unified Cache 256KB
Floating-Point Registers 8
Foating-Point Functional Units ADD + MUL+ MEM
Floating-Point Multiply Latency 4
Fused Multiply-Add No
Operating System Linux 2.6.9-perfctr
C Compiler gcc 3.4.5

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 60 5, 1, 20 6 1 0, 5, 1 2124
ANN 80 6, 1, 80 6 1 0, 2, 1 2188
Genetic 84 5, 1, 64 5 1 0, 45, 16 2323

Table 8. Athlon MP: Parameters

Feature Value
CPU Pentium III
Architecture Out-of-Order, CISC, x86
CPU Core Frequency 1.266GHz
L1 Data Cache 16KB
L1 Instruction Cache 16KB
L2 Unified Cache 512KB
Floating-Point Registers 8
Foating-Point Functional Units 1
Floating-Point Multiply Latency 5
Fused Multiply-Add No
Operating System Linux 2.4.21-40.ELsmp
C Compiler gcc 3.2.3

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 40 2, 1, 40 5 0 0, 2, 1 888
ANN 80 3, 1, 80 1 1 0, 2, 1 845
Genetic - - - - - -

Table 9. Pentium 3: Parameters

Feature Value
CPU Pentium 4
Architecture Out-of-Order, CISC, x86
CPU Core Frequency 2.8GHz
L1 Data Cache 8KB
L1 Instruction Cache 12K µOPs
L2 Unified Cache 512KB
Floating-Point Registers 8
Foating-Point Functional Units 1
Floating-Point Multiply Latency 7
Fused Multiply-Add No
Operating System Linux 2.6.11.4-21.10-smp
C Compiler gcc 3.3.5

NB MU , NU Ls FMA FF , IF MFLOPS
KU NF

CGw/S 72 1, 6, 72 1 0 0, 7, 1 2089
ANN 80 3, 1, 80 1 1 0, 2, 1 2332
Genetic 100 4, 1, 126 1 1 0, 36, 7 2547

Table 10. Pentium 4: Parameters

COM S 612 Paper 9 2007/4/6

