
This was presented at the 2017 Extreme-Scale Programming Tools Workshop

Enhancing PAPI with Low-Overhead rdpmc

Reads

Yan Liu1 and Vincent M. Weaver1

University of Maine, Orono ME 04469, USA
{yan.liu,vincent.weaver}@maine.edu

Abstract. The PAPI performance library is a widely used tool for gath-
ering self-monitored performance data from running applications. A key
aspect of self-monitoring is the ability to read hardware performance
counters with minimum possible overhead. If read overhead becomes too
large then the act of measurement will start to interfere with the gathered
results, adversely affecting the performance analysis.
On Linux systems PAPI uses the perf event subsystem to access the
counter values via the read() system call. On x86 systems the special
rdpmc instruction allows userspace measurement of counters without the
overhead of entering the operating system kernel. We modify PAPI to
use rdpmc rather than read() and find it typically improves the latency
by at least a factor of three (and often a factor of six or more) on most
modern systems. The improvement is even better on machines using a
KPTI enabled kernel to avoid the Meltdown vulnerability. We analyze
the effectiveness and limitations of the rdpmc interface and have gotten
the rdpmc interface enabled by default in PAPI.

1 Introduction

PAPI [16] is a portable, cross-platform library for accessing hardware perfor-
mance counters. These counters are found on most modern CPUs and are widely
used when evaluating system and program performance. Various tools are avail-
able that can read the values of these performance counters (such as perf [7],
LIKWID [23] and VTUNE [27]). While all of these tools can measure overall
aggregate counts and perform statistical sampling, PAPI is one of the few that
allows easy self-monitoring.

Self-monitoring is the ability to read the values of the counters from within
the running program, allowing fine-grain “caliper” measurements solely around
the code of interest. Other tools can provide overall counts for an entire program
run, or gather samples periodically that can be used to extrapolate statistically
where a program spends most of its time. However a self-monitoring tool like
PAPI is required to get exact fine-grained measurements for a single function,
or to measure the impact of just a few lines of program code.

Self-monitoring is a powerful methodology, but care must be taken to keep
overhead low. To use PAPI the code of interest must be instrumented, which
involves adding extra code to the program. If the extra code needed to read the
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counter values becomes too long or intrusive then the resulting measurements
will start to be affected. Mytkowicz et al. [17] found that instrumentation which
increased instruction count by just 2.5% interfered with properly correlating
performance results. Mytkowicz et al. [18] also showed that simply adding an
additional PAPI counter could be enough to cause noticeable perturbations. Low
overhead is critical for accurate performance measurements.

Instrumenting a program with PAPI is a multi-step process. First, setup code
is added to the beginning of the program that initializes PAPI and sets up an
“event set” with the chosen performance events of interest. These setup routines
can end up calling a large amount of library code, but since this is run only once
during program initialization it has minimal impact on a long-running process.
Next, caliper code is added around the region of interest. It is critical that that
code has minimal overhead. The routines involved are PAPI start() which starts
the measurements, PAPI read() which reads the counters, and PAPI stop()

which stops the measurements. The PAPI start() and PAPI stop() calls can
be put away from the critical code section to avoid overhead by using two reads
(before and after) and calculating the difference. This leaves PAPI read() as the
most important routine requiring low-overhead.

In an ideal system a hardware counter read would simply be an assembly
language instruction loading from the special CPU counter register, followed by
a store of the value to memory for later analysis. On actual systems there is
additional overhead caused by the operating system, as well as indirection and
housekeeping overhead inside the measurement library. The PAPI library is a
cross-platform abstraction layer and so the read call involves additional instruc-
tions, memory accesses, and branches. In addition, reading counters on Linux
traditionally involves using the read() system call which involves a relatively
slow entry to the Linux kernel. This is essentially a software interrupt which
brings the CPU to a halt, changes to privileged mode, branches to internal ker-
nel code that does some housekeeping, reads the value from the CPU, ensures
all buffers are valid, writes the results out to userspace, and then finally switches
back to the original running program. All of this overhead can take hundreds
to thousands of cycles, much higher than the tens of cycles needed for a raw
counter read [24].

Much of this overhead can be avoided if we bypass the read() system call
and read the counters directly from userspace, without involving the operating
system at all. On x86 systems there is a special rdpmc instruction which allows
exactly this. Setting up and using this instruction can be complex and it was not
available in the initial perf event release. Once the Linux kernel added support,
PAPI’s perf event still lacked rdpmc support and used the read() interface. We
extend PAPI to use the lower-overhead rdpmc interface and run a number of
tests to evaluate the change in performance. We run on a wide variety of x86
machines and find a typical speedup of around six times when using the new
interface. The work revealed four bugs in the low-level Linux interface, but we
have gotten these fixed upstream. Due to our work, PAPI uses rdpmc by default
as of the 5.6 release of the library.
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2 Background

The concept of performance counters is straightforward: they are hardware coun-
ters that increment when certain architectural events happen on a processor.
Gathering these results in a fast, efficient fashion involves complex interactions
between the hardware, operating system, libraries, and applications.

2.1 Performance Counter Hardware

Hardware performance counters are configured by setting values in a series of
special low-level CPU registers. On x86 machines these are called Model Specific
Registers (MSRs) which are described in the vendor documentation [2, 9].

Recent x86 processors tend to have between four to seven counters per CPU,
as can be seen in Table 1. This number can be affected by the existence of hard-
ware multithreading. These counters are used to measure per-core architectural
events such as cache behavior, branch predictor behavior, cycle and instruc-
tion counts, etc. Recent CPUs often have additional events, such as “uncore”
and RAPL power measurement; these are measured by a different interface and
cannot be accessed via the rdpmc interface we describe here.

To start measurement the desired events (from a list of potentially hundreds)
are programmed into the event configuration registers. A bit is set in another
configuration register to start the counting. The current values can be read out
of the counter registers, typically from 40 to 48 bits in size. An interrupt can be
configured for when the counter overflows; this allows both statistical sampling
as well as keeping track of total event counts when they overflow.

2.2 Linux perf event Interface

Access to performance counter registers requires supervisor level permissions;
because of this the operating system is usually responsible for the interface. The
operating system might further restrict access for security reasons, as a clever
user can monitor in detail what a system is doing based on the fine grained
performance information (one prime worry is being able to reverse engineer en-
cryption happening on other cores by monitoring cycle or cache miss counts).
The standard counter interface on Linux is known as perf event and the pri-
mary way of accessing it is the perf event open() system call [25]. This system
call is used to configure and open a performance counter event; it is a complex
call with over forty interacting parameters. The system call returns a file de-
scriptor which can be used to control and access the event. Values can be read
with the read() system call, and memory can be set up with mmap() that allows
both sampling to a circular buffer as well as gathering additional information
about the event. Various ioctl() calls are used to start and stop the events. Ad-
vanced features, such as event scheduling, event multiplexing, and save/restore
on context switch, are all provided by the interface.
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2.3 PAPI Library

The PAPI performance library [16] is a cross-platform library designed to allow
access to performance counters on a wide variety of machines. On current Linux
machines PAPI uses the perf event interface. Before perf event became stan-
dard (in 2009 with the Linux 2.6.31 release) PAPI used the perfmon2 [6] and
perfctr [21] interfaces (which required custom patching of your Linux kernel).
perfctr in particular has extremely fast counter reads due to using the rdpmc

call, something perf event initially lacked.

2.4 Linux rdpmc support

The merging of perf event into Linux was not without controversy. Due to the
complaints from the PAPI developers about the high overhead of the read()

system call, a userspace interface to allow fast rdpmc reads was eventually added
with the Linux 3.4 release in 2012. An interface-breaking bug was found and fixed
in the 3.11 release in 2013 [4] involving overlapping fields in a union which had
unintentionally disabled some of the functionality. This was fixed, but this makes
fully supporting both old and new kernels in a backwards compatible way tricky.

2.5 PAPI rdpmc Code

The rdpmc instruction itself only takes a short amount of time to run, on the
order of a few tens of cycles [24]. Enabling userspace rdpmc support on x86 is
simply a matter of the kernel setting a bit in the special CR4 system register. After
that, one might think access would be as simple as inserting rdpmc instructions
into your code. However the complications of modern multi-tasking operating
systems lead to a more complicated interface. Because there might be multiple
users of perf event, we cannot simply set counters to be free-running and use an
assembly-language call to rdpmc to access them (this was a typical way to use
rdpmc before perf event was merged into Linux).

The recommended code for using rdpmc with perf event is complicated, as
seen in the example code found in Figure 1. This boilerplate code more than
doubles the overhead of a read, on the order of a few hundred cycles. Despite
this overhead, this code all runs in userspace, so it is still much faster than using
the default read() interface which must go through the kernel.

The reason for the extra code is that PAPI needs to be sure that the event
configuration has not been changed by the kernel since the last time the event
was read. The kernel is free to rearrange event counter mappings at any time.
This might happen on a context switch, or due to multiplexing.

Multiplexing is when the kernel allows adding more events than the physical
number available, providing estimated total event counts as if the hardware had
that many counters. This is done by periodically stopping the counters and
swapping in ones currently not running, so all events have a turn to run. The
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do {
/* The kernel increments pc->lock any time */
/* perf_event_update_userpage () is called */
/* So by checking now , and the end , we */
/* can see if an update happened while we */
/* were trying to read things , and re -try */
/* if something changed */
/* The barrier ensures we get the most */
/* up -to date version of pc ->lock */

seq=pc ->lock;
barrier ();

/* For multiplexing */
/* time_enabled: time the event was enabled */
enabled = pc->time_enabled;
/* time_running: time the event was */
/* actually running */
running = pc->time_running;

/* if cap_user_time is set we can use rdtsc */
/* to calculate more exact enabled/running */
/* for more accurate multiplex calculations */
if ( (pc ->cap_user_time) &&

(enabled != running )) {
cyc = rdtsc ();
time_offset = pc->time_offset;
time_mult = pc->time_mult;
time_shift = pc->time_shift;

quot = (cyc >>time_shift );
rem = cyc & ((( uint64_t)1<<time_shift )-1);
delta = time_offset + (quot * time_mult) +

((rem * time_mult) >> time_shift );
}
enabled +=delta;

/* Index of register to read */
/* 0 means stopped/not -active */
/* Need to subtract 1 to get rdpmc () index */
index = pc->index;

/* count is the value of the counter the */
/* last time the kernel read it. */
/* If we don’t sign extend , we get negative */
/* numbers which break if IOC_RESET is done */
width = pc->pmc_width;
count = pc->offset;
count <<=(64- width );
count >>=(64- width );

/* Only read if rdpmc enabled and index */
/* valid , otherwise return the older count */
if (pc->cap_usr_rdpmc && index) {

/* Read counter value */
pmc = rdpmc(index -1);

/* sign extend result */
pmc <<=(64- width);
pmc >>=(64- width);

/* add value into existing kernel count */
count+=pmc;
running += delta;

}

barrier ();

} while (pc->lock != seq);

if (en) *en=enabled;
if (ru) *ru=running;

return count;

Fig. 1. Sample code for a perf event rdpmc read.
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time an event has actually spent running is tracked, so by scaling this based
on the total time you can estimate how many counts would have happened if
the event had been running the full time. Multiplex handling is a big part of
the extra rdpmc measurement code, as due to multiplexing the events currently
scheduled might be changed by the operating system at any time. Also, before
reporting the final event counts, you need to scale any events that did not run
for the full time during measurement.

The perf event interface provides helper information that can be mapped
into the program’s address space with a call to mmap(). Each event you want
to read via rdpmc must have an associated mmap() page. This potentially adds
overhead issues: the read() interface allows grouping multiple events so they
can be read with one single call. However with rdpmc each event needs to be
read individually and with large numbers of events this could potentially hurt
performance. In addition each mmap() page takes up a valuable TLB slot and
could hurt performance if a large number of events are mapped. On architectures
with large page sizes events can take up large amounts of RAM, which can be
troublesome since by default the amount of mmap area that perf event can pin
into memory is limited to 516kB.

A rdpmc read involves the following series of events. First, the seq sequence
field is read, followed by a memory barrier to make sure it is synchronized with
the kernel. Next, check time running and time enabled. If they are equal then
multiplexing is not happening, otherwise the result needs to be scaled appropri-
ately. The count value (which needs to be sign extended) holds the value from
the last time the kernel has read the counter. This needs to be accounted for, as
the value in the actual counter might have been reset on context switch, CPU
migration, or if an overflow happened. Finally use rdpmc to obtain the current
counter value which is added to count. While all of this is happening various
things could happen that would make the values inconsistent (such as a context
switch). To verify this has not happened, the seq value should be read again
to verify it matches the earlier value. If this has changed then the whole pro-
cess needs to be repeated until we complete the process without a change. From
our experiments we find it is rare for seq to change unless the system is under
heavy load. A livelock could potentially happen where the sequence checking
could never make progress if the kernel is busy updating the page. Code could
be added to break out and fall back to a read() in this situation.

This code path may seem like it has a lot of overhead, but it it still much
faster than performing a read() system call (which is slow, disruptive to the
CPU, and involves running an unpredictable amount of kernel code).

This code has been added to PAPI and is enabled by default in the 5.6 release
of the library. Use the --enable-perfevent-rdpmc=yes/no configure option to
explicitly enable or disable the feature when building and installing.
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2.6 Linux rdpmc Bugs Found

Once we started testing the rdpmc code in PAPI, the PAPI regression tests
turned up a number of bugs. After some analysis, most of these bugs were found
to be in the Linux kernel implementation.

The first bug found was that various pthread tests would randomly cause
general protection faults (GPF) and crash. This is due to a change made in
the Linux 4.0 kernel that disabled rdpmc support when a process had no events
running. Prior to this, when perf event was started the CR4 bit that enables
rdpmc support was globally enabled, so even processes without active events
could still read the counter values. This is a possible information leakage security
issue, so the kernel was modified to only allow using rdpmc if a process was
actively using an event. There was a bug in the implementation of this fix: a
wrong field was checked and sometimes when multiple threads were active the
reference count would get out of sync and rdpmc support would be disabled while
events were still running, leading to a GPF. This bug was reported by us and
fixed in the Linux 4.12 release.

Another related bug happened when a process created a perf event mmap
mapping, but then called the exec() system call without closing the mapping
first. This would cause the mmap reference count to go negative and again GPFs
would happen on rdpmc access. This bug was reported by us and fixed in the
Linux 4.13 release.

Another test that failed was one that created a large number of events in
a large number of threads. This was a kernel limitation: the number of mmap()
pages is limited by the value in sysctl kernel.perf event mlock kb to a de-
fault of 516kB. We were hitting this limit and PAPI was crashing. We modified
PAPI to only use 1 mmap page per process when using rdpmc (except when
sampling), and if mmap space runs out it will now fall back to using read()

which is slower but should always work.

The final bug involves time accounting when attaching to another process.
With perf event it is possible for one process to monitor another by specifying
a process id at event creation time (this is how tools like perf can monitor a
separate process). The enabled time accounting code did not handle the case
where an event was disabled while the attached processor was asleep, leading to
the value being reported as negative. PAPI saw the non-matching enabled and
running times and assumed this was a multiplexed event and scaled the results
accordingly leading to impossibly large values. This bug was reported by us and
fixed in the Linux 4.13 release.

3 Related Work

Low-overhead counter access is an important area with a lot of previous research.
PAPI is widely used and is often the comparison point for such studies.
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3.1 Lower-Level Interface Overhead

Prior to the introduction of perf event with the 2.6.31 Linux kernel, there were
external patches to provide performance counter support to Linux. PAPI used
two of these: perfctr [21] (which had rdpmc support) and perfmon2 [6] (which
did not). Most previous PAPI comparisons predate the introduction of perf event
and use one of these interfaces. These results are out of date now, as work on
the alternate interfaces stopped once perf event was merged into the mainline
Linux kernel.

We [26] previously investigated the overhead of perf event in terms of start
/ stop / read overhead on various x86 64 machines. The measurements are at
the raw system call level, one level lower than the PAPI interface we investigate.
We found that perf event read() has relatively high overhead, but that the
perf event rdpmc interface could be competitive with the previous perfctr and
perfmon2 interfaces.

3.2 PAPI Overhead

Our work, as well as much of the previous work, primarily looks at the effect
in cycle time when adding instrumentation. Instrumentation can affect other
metrics, and the reduced overhead from rdpmc should help in these cases too.

Maxwell et al. [12] and Moore et al. [15] compare the overhead of PAPI,
including read calls, on various architectures available in 2002. This predates
perf event so making direct comparisons to our work is difficult.

Lehr [10] finds that even though PAPI instrumentation causes less than a
10% slowdown in SPEC CPU 2006, the actual counter measurements (including
stores and cache events) can be perturbed enough to give misleading results.

Huang et al. [8] investigate the power overhead of using PAPI. This is not
directly related to our work, but any/time instruction overhead is also going to
lead to a certain amount of power and energy overhead.

Babka and Tůma [3] investigate the overhead of PAPI in both cycle count and
other metrics on AMD and Intel machines. Their primary concern is overhead
of memory metrics. Their measured overhead is high, as it appears they were
using perfmon2. Using a rdpmc capable interface would reduce the overhead.

Zaparanuks, Jovic and Hauswirth [28] investigate measurement overhead of
both user and user+kernel counters using PAPI on top of perfmon2 and perfctr,
as well as using perfmon2 and perfctr directly. It is a detailed investigation into
obtaining minimum overhead on these interfaces, but predates the introduction
of perf event.

3.3 Other Performance Counter Tools

Röhl et al. [22] investigate the performance of likwid-perfctr and the LIKWID
Marker API under the Linux OS on Intel IvyBridge-EP, Intel Haswell and AMD
Interlagos. At the time LIKWID did not support the perf event interface, and
instead directly accesses the relevant MSRs using the Linux /dev/msr interface.
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Table 1. Machines used in this study. Note that on Intel machines more counters may
be available if hyperthreading is disabled.

Processor Counters Available

Intel Pentium II 2 general

Intel Pentium 4 18 general

Intel Core 2 P8700 2 general 3 fixed

Intel Atom Cedarview D2550 2 general 3 fixed

Intel IvyBridge i5-3210M 4 general 3 fixed

Intel Haswell i7-4770 4 general 3 fixed

Intel Haswell-EP E5-2640 4 general 3 fixed

Intel Broadwell i7-5557U 4 general 3 fixed

Intel Broadwell-EP E5-2620 4 general 3 fixed

Intel Skylake i7-6700 4 general 3 fixed

AMD fam10h Phenom II 4 general

AMD fam15h A10-6800B 6 general

AMD fam15h Opteron 6376 6 general

AMD fam16h A8-6410 4 general

Using /dev/msr still requires entry/exit from the kernel so can still have high
overhead. The Marker API allows calipered measurement of code, although it
is not full self-monitoring as the values measured are written straight to disk
without the running application having access. They find that moving to rdpmc

would greatly reduce overhead, but since the kernel disables rdpmc by default
if not using perf event, they cannot use it without patching the kernel. They
compare their results to PAPI, but do not break out the read overhead separately.
LIKWID does show an advantage over PAPI in their results, but this was before
our addition of rdpmc support.

Demme and Sethumadhaven propose LiMiT [5], a Linux interface to provide
fast, userspace access to performance counters reminiscent of the much older
perfctr project. It requires patching the Linux kernel, and a note on the project’s
website notes that the patch is unstable and can cause system crashes. They
claim LiMiT is 90x faster than PAPI and 23x faster than perf event, although
the test is not described in detail nor what kernel versions used for the test so it
is a bit unclear what is being compared. The addition of rdpmc support to PAPI
should make it compare more favorably since pure userspace accesses are being
used.

AMD proposed an advanced Lightweight Profiling [1] interface providing
userspace-only access to all aspects of controlling performance counters, not
just reads. This could potentially speed up much more than reads, however the
Linux kernel developers have refused to add support for the interface unless it
was moderated by the kernel, which would defeat the entire purpose [14].



X

4 Experimental Setup

We test on fourteen different machines as shown in Table 1. This covers multiple
generations of Intel and AMD processors from a 20 year old Pentium II machine
up to and including more modern machines. Most machines are running the
Linux 4.9 kernel provided with the Sid release of Debian Linux. A few of the
machines are running the 3.16 kernel provided with Jessie Debian Linux. A full
list of operating system, compiler, and cpu information is available for download
along with our raw measurement information.

Most of our experiments are against a PAPI development git snapshot from
March 2017, as at that time no full PAPI release contained rdpmc support. For
comparison we also look at the 5.4.0, 5.4.1, 5.4.3, 5.5.0, and 5.5.1 official PAPI
releases.

We measure the overhead of the core PAPI calls using the papi cost utility
that comes with PAPI. This runs each PAPI library call of interest one million
times, measuring the latency using PAPI get real cyc(). On x86 systems this
maps to a rdtsc read timestamp instruction. We extend papi cost to also return
the median and 25th and 75th percentile values so that we could use those to
make boxplots. For the more complicated results, such as the outlier analysis,
we modify papi cost further to log performance counter data for each iteration.
In addition, we instrument the STREAM [13] and Linpack [20] benchmarks to
investigate how the PAPI read() overhead changes when a system is under load.

5 Results

We compare the overhead for traditional PAPI using read() to our modified
PAPI using the rdpmc instruction.

Table 2 summarizes the read() vs rdpmc speedup found on the fourteen x86
machines. The results are given based on the median out of 1 million consecutive
calls to read. We use the median, and not the average, as the measurement code
occasionally has extremely large outliers which skew the average and standard
deviation. See Section 5.1 for more discussion of these outliers. The speedup
found is at least 2.6x in all cases, and is typically around 6x on recent Intel
machines. This speedup is still large, but not quite as high on AMD machines
and low end machines such as the Atom processors.

Figure 2 shows the PAPI read() overhead gathered for the past few PAPI
releases, as well as the current git snapshot we use for testing. This was mostly
a sanity check to make sure the values have not changed greatly over time. The
plots are boxplots: the black box shows the range between the 25th and 75th
percentiles, the white line is the median, and the lines are showing the maximum
outliers. Since the outliers are large, we zoom in on the plot and label at the
top of the graph their numerical value. It can be seen that the overhead has not
changed much in the recent past on the Haswell machine that we measure on.

By default the papi cost benchmark measures two events. That is a typical
number to measure, especially if you are interested in metrics such as Instruction
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Table 2. Median rdpmc speedup in papi cost running the read test 1 million times.

Vendor Machine read() rdpmc Speedup
cycles cycles

Intel Pentium II 2533 384 6.6x

Intel Pentium 4 3728 704 5.3x

Intel Core 2 1634 199 8.2x

Intel Atom 3906 392 10.0x

Intel Ivybridge 885 149 5.9x

Intel Haswell 913 142 6.4x

Intel Haswell-EP 820 125 6.6x

Intel Broadwell 1030 145 7.1x

Intel Broadwell-EP 750 118 6.4x

Intel Skylake 942 144 6.5x

AMD fam10h Phenom II 1252 205 6.1x

AMD fam15h A10 2457 951 2.6x

AMD fam15h Opteron 2186 644 3.4x

AMD fam16h A8 1632 205 8.0x
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Fig. 2. Boxplot comparison of read overheads for the past few releases of PAPI.

per Cycle (IPC). To get a wider range of results we modify papi cost to measure
from one to four events. Figure 3 shows how the overhead increases on a Haswell
machine. Both the read() and rdpmc results increase, but the increase is linear
as expected.

The read() code uses the perf event format group feature to read multiple
events with a single system call. Despite grouping multiple events into on system
call, the time still grows linearly as the internal kernel code still has to read the
counters out one by one. The rdpmc code must read out the results one by one,
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Fig. 3. Boxplot comparison of read overheads as more simultaneous events are mea-
sured.

Table 3. Results under load. Note: the cycle counter cycles aren’t necessarily the same
as rdtsc cycles.

Routine Type Cycles L1 DMiss DTLB Miss
User Kernel User Kernel User Kernel

HPL pdpanel init rdpmc 512 0 5 0 0 0
(low memory pressure) read() 461 1,755 7 20 0 0

HPL pdfact rdpmc 4,019 0 39 0 11 0
(high memory pressure) read() 4,551 13,545 43 123 16 16

Table 4. TLB misses for various number of simultaneous events. When using rdpmc

more mmap pages are used, which could potentially increase the TLB pressure on a
memory-intense workload.

Routine Type 2 Events 3 Events 4 Events
User Kernel User Kernel User Kernel

HPL pdpanel init rdpmc 0 0 0 0 0 0
(low memory pressure) read() 0 0 0 0 0 0

HPL pdfact rdpmc 11 0 14 0 16 0
(high memory pressure) read() 16 16 15 17 16 18

with the additional overhead from the fixup code for each read. There has been
an interface suggested [29] that would allow grouping multiple events into one
mmap() page but this interface has not been implemented yet.

In addition to the papi cost results, which only look at overhead when doing
PAPI read() calls and nothing else, we also investigate overhead found in more
real-world situations. We look at the architectural overhead of the PAPI read()
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call. This is difficult, as the traditional way of gathering such measurements
would be to use PAPI, but using PAPI to measure PAPI does not work well.
Instead we put raw calls to rdpmc around the PAPI read() calls under the as-
sumption that for such short time intervals it is unlikely that the kernel will
move events around.

Table 3 shows results for the overhead of PAPI read() while instrumenting
two different Linpack functions: HPL pdpanel init() and HPL pdfact(). The
former does not access memory much, and so the cycle count, L1 misses, and
TLB misses are low. (Note that the cycle counts reported here are CPU cycles,
which are not the same as the rdtsc bus cycles reported for other results in this
paper). The rdpmc results show that the kernel is not entered at all, and that
some of the read() overhead is caused by cache misses when running kernel code.
The HPL pdfact() routine is memory intensive, so the addition of PAPI read()

to the code causes cache and TLB misses which generate a lot more overhead
than when the same routine is added to HPL pdpanel init(). In both cases the
rdpmc version of PAPI read() has much lower overhead overall.

Table 4 investigates the same routines as more events are being measured by
PAPI read(). This is to see if the additional mmap pages required by the rdpmc
interface cause enough TLB pressure to adversely affect the measured overhead.
While the TLB misses do grow, overall they are still less than for the read()

version of the code.

5.1 Outliers

Our overhead results mostly cluster around the median, but there are occasional
outliers of over an order of magnitude. We initially suspected the rdtsc cycle
measurements, but on newer x86 processors the cycle counter has had many
improvements to make it invariant in the face of frequency scaling. PAPI follows
most of the suggestions by Intel for how to obtain accurate cycle readings [19].

An example of the magnitude of the outliers can be seen in Figure 4 which
shows the overhead of the first 3000 rdpmc reads in a papi cost run. We use the
performance counter results to determine the source of the outliers. For these
results we are using an AMD A10 machine as it has a richer set of events to
choose from (including a hardware interrupt event and a SMI system monitoring
interrupt event). We find that many of the extreme outliers (but not all of them)
are caused by a hardware interrupt happening in the middle of a read.

There are also some interesting recurring patterns every 500 reads or so.
Figure 5 plots a different run, this time showing L2 cache misses. We observe L2
cache misses are happening approximately every 500 iterations. The benchmark,
outside of the critical measurement loop, stores the gathered values (which are
64-bit integers) to a large array for later analysis. If you write 512 8-byte values
to memory, that works out to be 4096 bytes, which is the size of a page. So our
measurement code is potentially causing a TLB or cache miss when crossing a
page boundary which is likely the cause of that regular pattern.

The outlier immediately at the beginning on both plots is caused by a page-
fault and TLB miss the first time the mmap page is accessed. We noted this
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from the first access to the mmap() page.
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Fig. 5. Overhead seen in the first 3000 iterations of a different rdpmc papi cost run.
This plots L2 instead of L1 cache misses. There is a repeating pattern approximately
every 500 iterations, likely caused by accesses to our results array (512 64-bit writes
will fill one 4096 byte page).

previously [26], and suggested using MAP POPULATE or touching the mmap page
to avoid this issue. However, in Figure 5 we tried enabling MAP POPULATE and it
did not help. The initialization of the event happens so far in advance of the first
read that by the time it gets to our read code the page is no longer in the TLB
so preloading does not help. This behavior is probably typical of what would be
found in most PAPI instrumented code. This page-fault issue means that if you
are using PAPI to do a single read, the first rdpmc overhead is large. However
when using read() the first-access overhead is high for other reasons (including
shared-library setup if you are the first user of the system call) so rdpmc is still
better. In both cases, if more than one read is done, the initial first read overhead
is mitigated.

5.2 Historical Comparison

Table 5 and Figure 6 show a comparison of the performance interfaces historically
supported by PAPI on Linux. The results are on a Core 2 machine, as the older
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Table 5. Comparison of various historical perf counter interfaces on a Core 2 machine.
Core 2 is used as the older interfaces do not support more modern CPUs.

Interface Kernel Read results slowdown vs perf event rdpmc

perf event rdpmc 3.16 199 —

perfctr rdpmc 2.6.32 200 1.0x

perfmon2 read() 2.6.30 1216 6.1x

perf event read() 3.16 1587 8.0x

perf event KPTI read() 4.15-rc7 3173 15.9x
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Fig. 6. Boxplot comparison of historical PAPI methods of doing reads. The few outliers
are large, off the graph.

Table 6. Overhead caused by the KPTI workaround for the Meltdown security vul-
nerability found on Intel processors.

Processor rdpmc KPTI=off read KPTI=on read

Core2 199 1634 (8.2x) 3173 (15.9x)

Haswell 139 958 (6.9x) 1411 (10.2x)

Skylake 142 978 (6.9x) 1522 (10.7x)

interfaces do not support more modern CPUs as they are no longer maintained
now that perf event became standard with Linux 2.6.31. The perfctr interface
has a custom rdpmc interface that is similar to the one used by perf event,
whereas perfmon2 does not have a rdpmc interface. We find that the perf event
rdpmc interface is more or less the same speed as perfctr and much faster than
perfmon2 and perf event read(). It appears that after a many year absence,
PAPI read overhead can finally return to the levels that were seen back when
perfctr was the primary method of accessing performance counters.
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One additional change to recent Linux has affected these results. The release
of the Meltdown security vulnerability [11] on Intel processors has led to the
Kernel Page Table Isolation (KPTI) patchset being enabled by default. This
moves the kernel and user address spaces to be completely different, causing a
costly TLB flush on every system call. We measure the overhead caused by this
and indeed the read() overhead is much larger, as seen in Table 6.

6 Conclusion and Future Work

We have added userspace (rdpmc) performance counter read support to the PAPI
library and found that we can reduce overhead by at least three times (and more
typically around six times) on a wide variety of x86 hardware. We have validated
the results, which resulted in finding and getting fixed a number of bugs in the
Linux kernel. We also investigated and found the source of the large outliers in
the results (found on all interfaces and machines) that make analysis of timing
results difficult.

Our results provide sufficient evidence that the perf event rdpmc interface
consistently has less overhead than the read() interface, and we have enabled the
new interface in PAPI by default as of the 5.6 release. This allows PAPI to once
again obtain low-overhead performance counter data via rdpmc, a feature that
had been lost when the perfctr interface was abandoned with the introduction
of the Linux perf event component. We plan to investigate adding userspace
read support on other architectures that support it, most notably the ARM
and ARM64 architectures.ARM64 has a rdpmc alike interface, but currently the
Linux kernel does not support it. If support is added in a perf event compatible
way then PAPI should be able to use the interface with minimal changes.

Full data for the work presented in our paper can be downloaded from our
website: http://web.eece.maine.edu/~vweaver/projects/papi-rdpmc/

The reduced overhead provided by rdpmc should greatly help users of PAPI,
especially those in the high performance computing community. Performance
analysis will be greatly aided by the detailed performance results obtained with
less overhead than was recently possible.
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