
OPTIMIZING PAPI FOR LOW-OVERHEAD COUNTER MEASUREMENT

By Yan Liu

B.A., Central South University of Forestry and Technology (China), 2010

M.S., Central South University of Forestry and Technology (China), 2012

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Computer Engineering)

The Graduate School

The University of Maine

December 2017

Advisory Committee:
Vincent Weaver, Assistant Professor, Advisor

Bruce Segee, Henry R. and Grace V. Butler Professor

Yifeng Zhu, Dr. Waldo "Mac" Libbey '44 Professor & Graduate Coordinator

OPTIMIZING PAPI FOR LOW-OVERHEAD COUNTER MEASUREMENT

By Yan Liu

Thesis Advisor: Dr. Vincent Weaver

 An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Computer Engineering)

December/2017

Performance analysis is an essential step for better software optimization, which is critical for

embedded systems, desktop applications and scientific computing. Most modern

microprocessors contain hardware performance counters that can help with performance

analysis. The PAPI library is a widely used self-monitoring performance measurement interface

that supports the performance counter hardware found in most major microprocessors. PAPI

supports self-monitoring: letting programs instrument chunks of code and gather detailed

performance values.

A key aspect of self-monitoring is reading hardware performance counters with minimum

possible overhead. Any overhead in the measurements can affect the accuracy of the results. In

perf_event, the Linux interface to performance counters, the values are read via the read system

call. This involves a large overhead when entering and exiting the operating system kernel.

In this work, we modify PAPI to use the rdpmc instruction that allows userspace measurement of

counters on x86 systems. This replaces the use of the high-overhead read() system call. We

tested the result across 14 modern systems and 4 benchmarks. We find that the performance

measurement latency is improved by at least a factor of three (and often a factor of six or more)

in our test cases.

ACKNOWLEDGEMENTS

The greatest gratitude is sent to my advisor, Dr. Vincent M. Weaver, for his complete support on

this dissertation. Dr. Weaver has always been very encouraging, patient, knowledgeable,

inspiring and supportive. The door to Dr. Weaver’s office was always open whenever I had a

question about my research and thesis writing. Without the help of him, this thesis would have

never been written or completed. It is hard to imaging having a better advisor and mentor for my

research and study on performance measurement.

Also, acknowledged are my committee members: Dr. Bruce Segee, Dr. Yifeng Zhu for their

comments, suggestions and revisions provided to my research work.

It has been a good experience working and studying at the Department of Electrical & Computer

Engineering. I want to express my gratefulness to the professors that have taught me

professional knowledge during these two years. I thank Dr. Hummels, Dr. Segee, Dr. Zhu, Dr.

Abedi and Dr. Weaver for teaching such wonderful classes and providing countless help

whenever it is needed. I am also grateful to Ms. Cindy Plourde and Lynn Hathaway for taking care

of my administrative-related business.

Being a foreign student, I want to thank the staff from the Office of International Program,

especially Ms. Mireille Le Gal and Ms. Sarah Joughin. Without them, my study in Maine was not

possible.

I acknowledge the financial support from teaching assistance program of the department and

the National Science Foundation under Grant No. SSI-1450122.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

LIST OF TABLES..v

LIST OF FIGURES...vi

1 INTRODUCTION AND MOTIVATION..1

1.1 Motivation..2

1.2 Background...3

1.2.1 Hardware counters..3

1.2.2 PAPI Library...4

2 RELATED WORK..5

2.1 PAPI Overhead..5

2.2 Lower-Level Interface Overhead...5

2.3 Other Performance Counter Tools..6

2.4 Non-Temporal Overhead..7

3 SPEEDING UP PAPI WITH THE RDPMC INSTRUCTION...9

3.1 Proposal for using rdpmc in PAPI code..9

3.2 RDPMC instruction..9

3.3 PAPI rdpmc code...10

4 EXPERIMENTAL SETUP...14

4.1 PAPI_Cost Benchmark...15

4.1.1 PAPI benchmark setup...16

4.2 Sobel Edge Detector benchmark..19

iii

4.2.1 Sobel Edge Detector benchmark setup...19

4.3 High-Performance Linpack (HPL) Benchmark...21

4.3.1 HPL benchmark installation and setup [30]...21

4.4 STREAM benchmark...29

4.4.1 STREAM benchmark setup..29

5 RESULTS...32

5.1 read () vs rdpmc overhead..32

5.2 Additional Event Overhead...37

5.3 Read overhead by PAPI version...39

5.4 Kernel update influence..39

5.5 PAPI_start/stop overhead...39

6 CONCLUSION AND FUTURE WORK...43

REFERENCES..44

APPENDICES..48

Appendix A: Code patch for papi_cost benchmark...48

Appendix B: Sobel code..67

Appendix C: Code patch for HPL benchmark..82

Appendix D: Code patch for STREAM benchmark...97

BIOGRAPHY OF THE AUTHOR..109

iv

LIST OF TABLES

Table 4.1 Machines used in this study..15

Table 5.1 Median read vs rdpmc speedup from papi_cost running the PAPI_read

 1 million times...33

Table 5.2 Sobel comparing with papi_cost on Haswell machine..34

Table 5.3 HPL comparing with papi_cost on Haswell machine...34

Table 5.4 Event value for each HPL function...35

Table 5.5 User and kernel space event cost by PAPI_read () with rdpmc instruction...........35

Table 5.6 User and kernel space event value cost by PAPI_read () with read ()

 system call...36

Table 5.7 STREAM comparing with papi_cost...36

Table 5.8 Level 1 cache miss and TLB misses for each vector operation in STREAM.............37

Table 5.9 Total Level 1 cache miss and TLB miss for STREAM when PAPI_read()

 supported by rdpmc and read() separately..37

Table 5.10 PAPI_start ()/PAPI_stop () speedup on Haswell machine....................................40

v

LIST OF FIGURES

Figure 3.1 Instrument user code with PAPI..12

Figure 3.2 RDPMC operation on Pentium MMX processor...12

Figure 3.3 Code required for a perf_event rdpmc read..13

Figure 4.1 PAPI_read () test code from papi_cost utility...16

Figure 4.2 Sample for papi_cost output...16

Figure 4.3 PAPI_read in Sobel Convolution...20

Figure 4.4 Sobel output..21

Figure 4.5 Part of Makefile for HPL benchmark..22

Figure 4.6 HPL.dat file..25

Figure 4.7 HPL output...26

Figure 4.8 Free memory for Haswell machine..27

Figure 4.9 Main calculation code of HPL_pdgesv0...27

Figure 4.10 Part of HPL code with PAPI_read ()..28

Figure 4.11 Measuring user and kernel space event for PAPI_read()...................................29

Figure 4.12 STREAM output...30

Figure 4.13 STREAM code with PAPI instrumented (PAPI_read () after long

 vector operation)...31

Figure 4.14 STREAM code with PAPI instrumented (PAPI_read () inside

 long vector operation)...31

Figure 5.1 PAPI_read () cost with rdpmc instruction varies with event number...................38

Figure 5.2 PAPI_read () cost with read () system call varies with event number..................38

Figure 5.3 papi_cost varies with PAPI version...40

vi

Figure 5.4 rdpmc read code with loopCount checking...41

Figure 5.5 Output for strace -c ./papi_cost...42

vii

1 INTRODUCTION AND MOTIVATION

The number of transistors that can be fit on a silicon chip doubles about every 18 months.

However, despite the remarkable development in CPUs, software performance improvement

based on these ever-faster machines is not in the same step. One of the reasons for this

phenomenon could be that DRAM bandwidth increases quite slowly compared with the

dramatic growing speed of CPU performance [1], while the performance of most applications

depends on both core speed of the processor and bandwidth of the memory system.

Software optimization is quite critical no matter the application type: embedded application,

desktop application or science computing. For better application optimization, performance

measurement is an essential step. Reading data from the performance counters contained in

most modern microprocessors can help with performance measurement. However, gathering

this kind of data requires understanding the interaction of computer architecture, operating

system, compiler and the running application [2]. The information about accessing these

counters is usually poorly documented or unavailable to application developers and

performance tool designers.

However, there are various tools available that can read the values of these hardware counters,

such as PAPI [4], LIKWID [5] and perf [6]. Usually there are 3 ways for these tools to get hardware

counter values: aggregate measurement, statistical sampling and self-monitoring [7]. Aggregate

measurement is the kind of method that gathers total counts of specific events occurrences from

the start to the end of the workload. This is the easiest and lowest overhead method to get

hardware counter values. Statistical sampling obtains profiling data via counter overflows on

timer interrupts. Using this method usually can get an imprecise result with low overhead, or

fine-grained resolution values with high operating system overhead because of the increased

1

interrupts. Self-monitoring, on the other hand, allows developers to gather exact hardware

performance readings for any specific blocks of code, rather than the entire program.

Though all the performance measurement tools can get performance data either by aggregate

measurement or statistical sampling, Performance Application Programming Interface (PAPI) is

one of the only tools that support self-monitoring. PAPI allows users to instrument a simple

routine including start, read event, and stop to any block of code, that helps gather fine-grain

and exact “caliper” measurement solely around the code of interest. Instrumenting PAPI into

user’s code involves adding extra code to the program. This extra code will perturb the program’s

execution and cause overhead. A goal with measurement software is to make this perturbation

as small as possible.

1.1 Motivation

An overhead refers to a benchmark invariant difference between reported and actual count for a

given event such as cache misses, branch instructions, total cycles and so on. [9]. Mytkowicz et

al. [10] found that an overhead as low as a 2.5% increase in instruction count could interfere

with properly correlating results. Mytkowicz et al. [11] also later shows that simply adding an

additional PAPI counter could be enough to cause noticeable perturbations. Low overhead is

critical for accurate performance measurements.

There is a long list of application performance analysis third-party tools that use or incorporate

support for PAPI to gather, display and analyze performance information [11]. For instance, TAU

(Tuning and Analysis Utilities) developed at the University of Oregon uses PAPI to support

hardware counter reading and maintain portability. HPCToolkit can collect measurements based

on hardware performance counters with installation of PAPI; otherwise, it can only collect

measurements based on the operating system timer. There are various other tools that have

2

combined with PAPI to enhance their performance analysis module, such as KOJAK, PerfSuite,

Titanium, SCALEA, OpenlSpeedshop, SvPablo and so on [12]. The wide use of PAPI as a

performance tool illustrates the importance of reducing the PAPI overhead of collecting

performance data, which is very important for application developers to tune and optimize the

performance of their programs.

1.2 Background

1.2.1 Hardware counters

Hardware performance counters, or hardware counters, are a set of registers contained in most

modern microprocessors. These counters can provide critical hardware event information for

hardware verification/debugging and software related tasks such as performance monitoring,

analysis or tuning. For most modern microprocessors, a small number of counter registers (4-7

for recent x86 processors) support measurement of a subset of hundreds of events. These

events are usually about cycle count, instruction count, branch taken and prediction accuracy,

TLB misses and invalidations, pipeline stalls, and memory access behaviors like miss rate at each

memory hierarchy level.

There are usually two types of performance counter registers: configuration registers and

counting registers. To monitor a performance event, the user has to access the configuration

registers to select an event, start or stop counting, or enable interrupts. The operating system

can then send low-level CPU calls to carry out the user’s request. The user can than read from

the counting registers that holds the current counts. Extra permission may be needed for users

to access the counting registers, although they can also read the event value directly on some

processors by special instructions (like rdpmc on x86) [6].

3

1.2.2 PAPI Library

The information about accessing hardware counters is usually poorly documented or unavailable

to application developers and performance tool designers [3]. PAPI [13], initiated at the

University of Tennessee at Knoxville, is a consistent, portable, cross-platform easy-use interface

to the hardware counters on a wide variety of machines, providing developers information for

performance analysis and tuning.

PAPI has two interfaces for the users to get access to hardware counters: the high level interface

provides users simple and straightforward start, stop and read routines so that they can get

specified event information from hardware counters without changing code across different

platforms; the low level interface is fully programmable, thread safe, and allow users to define

their own event sets.

On Linux, PAPI uses the perf_event interface to get access to performance counters. The

perf_event subsystem was added to the Linux kernel in version 2.6.31 with the name of

“Performance Counters for Linux” and was renamed to perf_event in Linux 2.6.32 [14]. To

enable/disable counters, the ioctl () system call is called. The read () system call is used to read

counter values. When sampling, a ring buffer that contains results can be gained by calling

mmap () and users can check to see if the result is available by a signal or the poll () call[14].

Before perf_event was standard, PAPI used the perfctr [15] and perfmon2 [16] Linux interface,

but they needed extra custom patching of the Linux kernel. Perfctr reads the values by accessing

the mmap page and using the x86 rdpmc instruction without calling the read () system call. Once

perf_event was merged into the mainline Linux kernel, PAPI stopped the use of perfctr and

perfmon2. However, after changing to perf_event, PAPI read met with a sharp increase of read

overhead mainly because perf_event uses the read () instead of rdpmc instruction to read

counter values.

4

2 RELATED WORK

Low-overhead counter access is important, and there are various previous works on the topic,

such as PAPI overhead, low-level interface overhead, and other performance tool overhead. PAPI

is widely used and is often the comparison point for such studies.

2.1 PAPI Overhead

As mentioned in the last chapter, PAPI is now implemented via the perf_event interface.

However, most previous PAPI comparisons use perfctr or perfmon2 because they predate the

introduction of perf_event. This makes direct comparison to our work difficult.

The overhead of PAPI including PAPI_start () / PAPI_stop () and PAPI_read () was measured by

Moore et al. [18] [19] on several architectures and it seems that Linux / x86 had the least

overhead. But the Linux version and x86 machine information is not given.

Weaver [20] instruments several PAPI overhead measurements [3] on various kernel interfaces

for multiple PAPI versions (PAPI 4.0.0-4.1.2). The results show that the Linux 2.6.32 kernel

version with perfctr generated the least overhead, while perf_events has the most overhead. His

work gives a clue that the use of the read () system call introduces many extra clock cycles.

2.2 Lower-Level Interface Overhead

Weaver [7] investigates the overhead of perf_event in terms of start/stop/read/overall on

various x86_64 machines with a full range of Linux kernels. The measurements are at the raw

system call level, one level lower than the PAPI interface we investigate. He also conducts the

comparison against perfctr and perfmon2, and shows that perf_event has larger overhead in

some implementations. Several methods, including using rdpmc to reduce overhead of

5

userspace to kernel space, are used to minimize the overhead and results are comparable with

the perfctr and perfmon2 interfaces after the use of rdpmc.

Zaparanuks, Jovic and Hauswirth [28] investigate measurement overhead of both user and

user+kernel counters using PAPI on top of perfmon2 and perfctr, as well as using perfmon2 and

perfctr directly. It is a detailed investigation into obtaining minimum overhead on these

interfaces, but predates the introduction of perf_event.

2.3 Other Performance Counter Tools

Roehl et al. [20] study the performance of likwid-perfctr and the LIKWID Marker API under the

Linux OS on Intel IvyBridge-EP, Intel Haswell and AMD Interlagos. With the support of Marker

API, likwid-perfctr can provide self-monitoring for an application. The Marker API is designed to

measure code region performance by inserting API calls into user’s code and do self-monitoring.

However, comparing with PAPI, Marker API has to specify the events that need to be measured

on the command line rather than in user’s code. LIKWID relies on the MSRs using the Linux

/dev/msr interface, causing high overhead because every time it reads or writes to counters it

must context switch into the kernel. They mention the idea of using the rdpmc instruction to

reduce overhead caused by system calls, but since the kernel disables rdpmc by default if not

using perf_event, they cannot use it without patching the kernel. They also instrument the same

STREAM test code with PAPI and compare with the LIKWID start/stop routine, however the result

is not valuable and hard to know how much overhead read operations cost since they did not

use a separate read routine.

Demme and Sethumadhaven propose LiMiT [21], a Linux interface to provide fast, userspace

access to performance counters. Compared with PAPI, it is relatively complicated to install since

it requires a user land API and a kernel patch, and a note on the project’s website notes that the

6

patch is unstable and can cause system crashes. They claim LiMiT is 90x faster than PAPI and 23x

faster than perf_event, but the results are somewhat unclear since there is no detailed

description about the test or the kernel versions.

AMD proposed an advanced Lightweight Profiling [22] interface providing userspace-only access

to all aspects of controlling performance counters, not just reads. This could potentially speed up

much more than reads, however the Linux kernel developers have refused to add support for the

interface unless it moderated by the kernel, which would defeat the entire purpose [23].

DeRose [24] describes the HPM Toolkit, which contains components such as the hpmcount utility

that can measure application overall wall clock time as well as hardware performance counter

information. The HPM library supports the measurement of program sections. HPM Toolkit uses

the PAPI interface, so it supports the measurement of programs that run on the Intel platform

under Linux in addition to IBM Power 3 with AIX. The majority of the overhead of this tool is

caused by gettimeofday (), which is used to measure time cost. The reason why they do not

chose cycles for time measurement is recording cycles could occupy an extra hardware counter

and it is not accurate for PAPI since it measures total user mode time.

2.4 Non- T emporal Overhead

Our work, and much of the previous work, is mainly about the overhead in terms of extra cycles

introduced by the measurement. Performance can also affect other metrics.

Lehr [25] implements performance measurement on a subset of the SPEC CPU 2006 benchmark

suite [33] and found that even with as low as 10% of running time overhead, performance event

counts (including stores, branch misprediction and cache related events) can be perturbed

significantly.

7

Huang et al. [26] studied the power and energy consumption as well as PAPI power overhead

when doing the measurement on the Intel Haswell processors. They found that power

monitoring by PAPI could induce large power overhead (32% more than idle). The measurement

itself is using processor resources (memory, cache, cpu and so on) that can lead to a certain

amount of power and energy overhead.

Babka and Tuma [27] investigate the overhead of PAPI in both cycle count and cache behavior on

an AMD and Intel machine. Although the results were high, the PAPI version they were using was

based on a Perfctr interface that is out of date and benchmarks they used in the experiment

were not described in detail.

Maxwell et al. [17] test the PAPI overhead in terms of event counts (for example load/store

counts). The overhead is decided to be significant or not by comparing with the event counts

that PAPI read. If the expected value is very large then the overhead is insignificant, otherwise,

calibration is needed. By reducing the instruction overhead, event counts obtained by PAPI are

more accurate.

8

3 SPEEDING UP PAPI WITH THE RDPMC INSTRUCTION

3.1 Proposal for using rdpmc in PAPI code

In order to get hardware event values for any block of code of an application, one has to go

through several steps. Figure 3.1 presents example code instrumented with PAPI. The first step is

initialization where users have to initialize the PAPI library, create an event set, check event

availability and add events. These parts may have relative higher overhead than read calls, but

are of much less significance since users can separate this part of code from the object code to

avoid overhead influence. PAPI_start () and PAPI_stop () can be put in the startup/shutdown part

of the program as well to limit perturbation of the measurement. This leaves the PAPI_read ()

routine as the most important routine that needs to be low-overhead. To get counter values on

Linux, PAPI_read () calls the read () system call, which takes a relatively long time (hundreds to

thousands of cycles) to enter into the Linux kernel and executes a lot of code before returning to

the user. This overhead can be avoided by using the rdpmc instruction, which can read the

counters directly from userspace, without involving the operating system. In the following work,

we will extend PAPI to use this low-overhead rdpmc instruction instead of using the default

read () system call.

3.2 RDPMC instruction

RDPMC (Read Performance Monitor Counter) is a native instruction from the x86 instruction set.

Performance counters were first introduced with the Pentium MMX and rdpmc was introduced

at the same time. While at first only two counters were available, now all of the core CPU

counters support them (up to 8 general purpose plus three fixed on Intel processors).

9

Figure 3.1 illustrates rdpmc operation on the Pentium MMX processor. Two 40-bit performance-

monitoring counters (0 and 1) are specified in the ECX register. By calling the rdpmc instruction,

the value contained in performance-monitoring counter will be loaded into EDX: EAX, with the

high-order 8 bits going to EDX register and low-order 32 bits going to EAX register.

The purpose of the instruction is to allow application code to access performance counters

directly to avoid the overhead of calling into the operating system. The application code can read

the performance-monitoring counters at a privilege level of 1, 2, or 3 with the instruction

enabled (setting the PEC flag in the CR4 register). The instruction itself only takes a short amount

of time to run, on the order of a few tens of cycles [29].

3.3 PAPI rdpmc code

Before perf_event was merged into Linux, users could set performance counters to be free-

running and access them using an assembly-language rdpmc call. However, with perf_event

using rdpmc is not that simple any more, since Linux is a multi-tasking operating system and

there might be multiple users of perf_event. The kernel may rearrange event counters at any

point, which could happen due to context switching or multiplexing (when the number of events

that the kernel is measuring is more than the number of available counters). The counter value

might have changed since the last read because of multiplexing. Also, due to context switching

or counter overflowing, the kernel may have read and restarted the counters.

Extra PAPI code (show in Figure 3.3) is needed to ensure that the kernel has not changed the

event configuration since last time the event was read. The overhead of the code is on the order

of a few hundred cycles, which is double the read overhead. However, it is still much faster than

using the read () system call, which is slow, disturbs to the CPU, and involves running an

unpredictable amount of kernel code.

10

To conduct a rdpmc read, first the pc->lock variable is read in the beginning of the code and

checked at the end to ensure it stays the same since it may been be incremented by the kernel

any time the perf_event_update_userpage () is called. The calling of barrier () ensures that the

pc->lock value is synchronized with the kernel. To check whether or not multiplexing is

happening, pc->time_running and pc->time enabled is checked. There is multiplexing if those

values are not equal to each other, and more accurate multiplex calculation follows (The results

need to be scaled appropriately to account for the time where the event was not running). The

count value stores the most recent value read by the kernel. Then the rdpmc instruction is called

and the sign extended result returned from it is added to the count value. Variable pc->lock is

read again in the end and if it is not the same as the beginning, the whole process will run again

until the value is not changed.

The code listed in Figure 3.3 is based on sample code provided by the kernel developers. It works

in PAPI but may need some additional error handling. If the kernel is busy updating the page, the

sequence checking could never make progress and a livelock may happen, but we have not met

this problem in practice. Extra code is needed to help break out the loop and go back to a read ()

if this happens.

One should set --enable-perfevent-rdpmc = yes in configure when building and installing since it

currently is not enabled by default in PAPI. This feature will be enabled by default in the soon to

be released PAPI 5.6.

11

Figure 3.2 Instrument user code with PAPI

Figure 3.3 RDPMC operation on Pentium MMX processor.

12

Figure 3.4 Code required for a perf_event rdpmc read

13

4 EXPERIMENTAL SETUP

We test on fourteen different machines as shown in Table 4.1. These machines cover multiple

generations of Intel and AMD processors, from a 20-year-old Pentium II machine up to and

including more modern machines.

Most of the machines tested ran the Linux 4.9 kernel provided with the Sid release of Debian

Linux. A few of the machines are running the 3.16 kernel provided with Jessie Debian Linux.

We first compare the overhead of PAPI_read () and PAPI_start () / PAPI_stop () routines in the

papi_cost tool before and after being enhanced with rdpmc instructions across the 14 machines

mentioned above. On the Haswell machine we also test and compare the before and after

overhead by instrumenting PAPI code into several benchmarks like Sobel Edge Detector, HPL and

STREAM. Next, we run several benchmarks at the same time to create a situation of context

switching and multiplexing, aiming to catch event counter rearrangement. STREAM is a heavy

memory utilizing benchmark. Each event you want to read via rdpmc must have an associated

mmap page. This could potentially have overhead issues. We ran experiments on STREAM with

PAPI instrumented in to see if there are any page faults or significant numbers of extra TLB

accesses or misses.

Most of our experiments are against a development git snapshot a21e3da5096bb410eaf6 from

March 2017, as at the time of this writing no full PAPI release contains the rdpmc code. For

comparison we also look at the 5.4.0, 5.4.1, 5.4.3, 5.5.0, and 5.5.1 official PAPI releases.

14

Table 4.1 Machines used in this study

Processor Counters Available Processor Counters Available

Intel Pentium II 2 general Intel Broadwell i7-
5557U

4 general 3 fixed

Intel Pentium 4 18 general Intel Broadwell-EP
E5-2620

4 general 3 fixed

Intel Core2 P8700 2 general 3 fixed Intel Skylake i7-6700 4 general 3 fixed

Intel Atom Cedarview
D2550

2 general 3 fixed AMD fam10h
Phenom II

4 general

Intel IvyBridge i5-
3210M

4 general 3 fixed AMD fam15h A10-
6800B

6 general

Intel Haswell i7-4770 4 general 3 fixed AMD fam15h
Opteron 6376

6 general

Intel Haswell-EP E5-
2640

4 general 3 fixed AMD fam16h A8-
6410

4 general

4.1 PAPI _ C ost B enchmark

We use the papi_cost utility provided by PAPI as the reference benchmark to measure

PAPI_read () overhead. A segment of code in this utility for read testing is shown in Figure 4.1.

The code is wrapped with PAPI_start () and PAPI_stop () with the EventSet as parameter that was

defined in the set up part of the papi_cost. After one call to PAPI_read (), it loops num_iters

(initially 1 million) times calling the PAPI_read () function, and the value of events is saved in

array parameter values. To measure cycle cost for each PAPI_read () run, it calls the PAPI library

function PAPI_get_real_cyc() that uses rdtsc read timestamp instruction on x86 systems.

We extend papi_cost code to return the median, 25th and 75th percentile values so that we can

use those to make boxplots. The patch of the modified code is contained in Appendix A. A

sample of output about how many cycles PAPI_read() cost after running papi_cost utility is

shown in Figure 4.2. The 99th percentile value is used to show that the max cycles value is an

15

outlier. We also modified papi_cost further to log in which loop cycle the outliers happen to help

with outlier analysis.

Figure 4.5 PAPI_read () test code from papi_cost utility

Figure 4.6 Sample for papi_cost output

4.1.1 PAPI benchmark setup

To measure PAPI_read () overhead with the papi_cost utility, one needs to go through the

following steps to download PAPI, configure it properly and run the papi_cost program found in

the src/utils directory.

(1) Get the latest version of the PAPI repository.

If it is the first time, clone it with the following command:

16

 git clone https://bitbucket.org/icl/papi.git

The command above creates a papi folder on the local computer that contains a complete copy

of the PAPI git repository. If one is using an existing checkout of PAPI, be sure it is a version from

April 2017 or newer. One can update the current git tree via the git pull command.

(2) Configure papi with rdpmc enabled

cd src

./configure --enable-perfevent-rdpmc=yes

(3) Run make.

When make is running, among the options passed there should be something like:

-DUSEPERFEVENTRDPMC=1 in the command line options scrolling by just before the always

there message:

-DPEINCLUDE = libpfm4/include/perfmon/perfevent

(4) Once things are compiled, one can check if perf_event rdpmc is enabled by running

 ./papi_component_avail -d

and it should list Fast counter read: 1

(5) Run papi_cost

utils/papi_cost

(6) A subset of the results looks something like this:

Total cost for PAPI_read (2 counters)over 1000000 iterations

min cycles : 139
max cycles : 34190
mean cycles : 148.594704
std deviation: 67.128018

(7) Modify PAPI code to get percentile values. Patch the papi_cost with code in Appendix A. This

will report the boxplot information similar to the following:

17

Total cost for PAPI_read (2 counters)
over 1000000 iterations
min cycles : 139
max cycles : 34190
mean cycles : 148.594704
std deviation: 67.128018
25th percentile :145
50th percentile : 148
75th percentile : 148
99th percentile: 167

(8) Run through different number of event set from 1 event to 4 events. The default number of

events is 2, with PAPI_TOT_CYC and PAPI_TOT_INS. To delete or add events, modify the

papi/src/utils/cost.c file by the use of the PAPI_add_event () function. Be sure to change the

length of the value [] array appropriately.

(9) We run the comparative test on the latest PAPI git repository and released versions from 5.4

to 5.5.

One can use the wget command to download a specific released version, for example, if you

want to download papi 5.5.1, run the following command:

wget http://icl.utk.edu/projects/papi/downloads/papi-5.5.1.tar.gz tar -zxvf papi-5.5.1.tar.gz

Configure PAPI as before, though it is not possible to enable rdpmc support as it does not exist in

older versions.

(10) The test to generate the outlier plots modified papi_cost to print out all 1-million timing

results and counter results to disk, which is a minor change to papi_cost

(11) The historical PAPI versions are trickier, as they run on old versions of Linux that are not

necessarily easy to obtain or set up.

To get perfctr running, it is necessary to get a 2.6.32 Linux kernel source, and patch with the

most recent (confusingly named) 2.6.40 perfctr patch. Then boot into a version of Linux that can

handle old kernels (something newer like Debian Jessie might have problems, but booting with

18

init=/bin/sh and manually mounting the file system should let you run the tests). When

configuring and building PAPI should automatically detect you are using rdpmc. If it does not, it

may be necessary to manually make the permissions on /dev/perfctr be 666 Be sure to use a

current git snapshot of PAPI as there was a long-standing bug breaking older perfctr and

perfmon2 support that was not fixed as of 5.5.1.

Perfmon2 is more difficult because the newest supported version is 2.6.30. Checkout the

perfmon2 git tree and build the kernel, and boot into it. It is necessary to have an older version

of Linux, such as Debian Squeeze (most newer Linux distributions require 2.6.32 kernels at least).

It is necessary to be running on an older processor supported. For our measurements we created

a Debian squeeze chroot, booted with init=/bin/sh, and manually switched to and entered the

chroot. This worked, but can be a bit of a complex task if unless one is a Linux expert. Again

building PAPI is the same as it is on other platforms and should auto detect you are on

perfmon2.

4.2 Sobel Edge Detector benchmark

The Sobel edge detector, also called Sobel operator, usually is used to perform a 2-D gradient

measurement on an image and create an image emphasizing edges. The operator contains two

3*3 kernels that are convolved with the original image to get the approximate value of the image

derivatives. The kernels are applied to the image separately, producing Gx and Gy, which are the

horizontal and vertical magnitude. Combining the above two images together, can get the

gradient magnitude, using:

G=√GX
2
+GY

2

19

4.2.1 Sobel Edge Detector benchmark setup

As shown in 4.3, we instrumented the PAPI_read () function in the convolution section of the

sobel code (code is listed in Appendix B). The center of the matrix (3*3 kernel) is applied to the

pixel of interest from the input matrix and the surrounding pixels are added together and used

to calculate the value for the pixel in the output matrix. For example, with a convolution matrix

0 −1 0
−1 5 −1
0 −1 0

 of and pixel values
a b c
d e f
g h i

, if we want to apply the convolution to pixel f,

the resulting output pixel would end up being

out [1][1] = (0 * a) + (−1* b) + (0* c) + (−1 * d) + (5* e) + (−1*f) + (0 * g) + (−1* h) + (0* i) .

After each iteration of the convolution, the PAPI_read (Eventset,values)function is called and the

number of cycles is read by PAPI_get_real_cyc () function. Events PAPI_TOT_CYC and

PAPI_TOT_INS are added in the Eventset. By running command ./sobel test.jpg, we can get

output similar with Figure 4.4. Test.jpg is a jpg format image with the size of 1920*1200.

20

Figure 4.7 PAPI_read in Sobel Convolution

Figure 4.8 Sobel output

4.3 High-Performance Linpack (HPL) Benchmark

HPL is a software package that solves a dense linear equation Ax=b, where A is an N*N matrix in

double precision (64 bits). The main aim of the benchmark is to measure the floating point

21

computing power of a large distributed-memory computer, the result of which can be submitted

to the TOP500 supercomputer list [34].

The first step of solving the order-n linear system is computing LU factorization with row partial

pivoting of the n-by-n+1 coefficient matrix that will be partitioned into nb-by-nb blocks. The data

is distributed onto a P-by-Q grid of processes for cluster computing, however, in this experiment,

we only measure PAPI_read () in one process.

4.3.1 HPL benchmark installation and setup [30]

(1) Install dependencies

To successfully install and use HPL, a few software dependencies must be met. They are:

Gfortran (Fortran compiler), MPICH2 (an implementation of MPI), mpich2 (dev - development

tools) and BLAS (Basic Linear Algebra Subprograms) [30].

(2) Download HPL and set it up

 Download the HPL package, extract the tar file and create a makefile based on the given one.

Run the following commands one by another.

tar xf hpl-2.1.tar.gz
cd hpl-2.1/setup
sh make_generic
cd ..
cp setup/Make.UNKNOWN Make.OpenBLAS

The last command makes a copy of Make.UNKNOWN to Make.OpenBLAS. The make file contains

the details of system configuration, libraries like mpich2, atlas/blas package, home directory and

so on. Next we will adjust the Make.OpenBLAS file and compile HPL with the support of BLAS.

(1) Modify make file

The changes in makefileareshown in Figure 4.5

22

Figure 4.9 Part of Makefile for HPL benchmark

In the last row shown in Figure 4.5, the path of PAPI library is added in the HPL_LIBS variable, so

that we can instrument PAPI code into HPL benchmark.

(2) Compiling and running the HPL benchmark

Before making any changes to the code, we compiled the HPL benchmark using the following

command to make sure that the makefile was working properly.

make arch=OpenBLAS

After make finished successfully, the file “xhpl” will show up in the “bin/OpenBLAS” folder. Next,

it is necessary to create a “HPL.dat” input file in the same folder as shown in Figure 4.6 and run

the ./xhpl command. The output is shown in Figure 4.7.

(3) HPL parameter tuning

HPL.data is the input file for HPL. N is the problem size, which is the size of the coefficient matrix.

Normally, using the largest problem size fitting in memory can help give a best performance

result of the system. As shown in Figure 4.8, the free memory for this Haswell machine we are

23

working on is 3245M which is 405M double precision (8 bytes) elements. The size of the

coefficient matrix is the square root of that number and equals 20607. Since the OS and other

things need memory as well, 80%*20607=16000 should be a good setting for N.

NB is the block size and is used for data distribution and computational granularity. According to

[32], a good block sizes falls in [32..256] interval. We test the performance when NB is set to 32,

64, 128, 256 respectively, and find that when NB is set to 128, it gets the best performance

(Gflop). We set NB to 128 for our runs.

We are only studying the case of single processors, so we set Qs and Ps to 1.

(4) Instrument HPL with PAPI

We set Ps and Qs to 1 (we only use 1 process) and chose HPL_pdgev0 code as the host code

(Shown in Figure 4.9) of the PAPI_read () measurement since it takes the most time during the

whole calculation and iterates the main calculation code including LU factorization, panel

broadcast and update for Ns/NBs times. In this way, we can get the results of the total cycles

used for the PAPI_read (). The patch for the code instrumented with PAPI is listed in Appendix C.

As shown in Figure 4.10, we insert the code of PAPI_read () and calculate the cost of it after each

HPL function in every iteration. The functions are HPL_pdpanel_init (re-initializes panel data

structure), HPLpdfact (factors current panel), HPL_binit (initializes the row broadcast), HPL_bcast

(performs the row broadcast), HPL_bwait (finalizes row broadcast, waits for the row broadcast of

current panel to terminate), HPL_pdupdate (broadcasts a panel and update the trailing

submatrix) and MNxtMgid (updates message id for next factorization). The value array [i]

[num_iters] (i=0,1..6) saves the cost of PAPI_read () after the (i+1)th fuction, num_iters is the

index of the current iteration. For instance, if i=0, array [0][num_iters] saves the total cycle cost

of PAPI_read () after the calling of the first function HPL_pdpanel_init (). Similarly, the value

eventVal[i][num_iters] (i=0,1..6) saves the value of the event that being measured for the (i+1)th

24

function. The event value eventVal[1][num_iters], for example, stores event values for the

second function (HPL_pdfact). We first add events PAPI_TOT_CYC (total cycle) and PAPI_TOT_INS

(total instruction completed) to eventset so that we can keep consistent with papi_cost. To

analyze the cost of each PAPI_read, we then respectively set the event to PAPI_L1_DCM (level 1

data cache miss), PAPI_L1_ICM (level 1 instruction cache miss), PAPI_BR_INS (branch

instruction), PAPI_BR_MSP (conditional branch instructions mispredicted), PAPI_TLB_DM

(translation buffer data miss) and PAPI_TLB_IM (translation buffer instruction miss).

(5) Measuring user and kernel space event cost by PAPI_read ()

Our result shows that, for different subroutines where we instrumented PAPI_read () function,

the cycles that the PAPI_read () cost vary considerably. So we use the rdpmc instruction to

measure the user and kernel events that PAPI_read () costs for each subroutine. Figure 4.11

demonstrates how we measure the events value for PAPI_read () in HPL_pdfact section. Total

user events can be calculated by rawAfter-rawBefore1 and kernel event can be obtained by

rawAfter2-rawBefore2. USER_EVENT and KERNEL_EVENT are used as variables for rdpmc () and

they are the macro definitions for the counter index that rdpmc () requires. Usually they are 0

and 1 since we are measuring two events. To make sure the counters are getting desired event

data, we use the PAPI_add_named_event () function to help us setup counters. For example, if

we add the following two lines of code before using rdpmc (counter_index), the counter with

index 0 would measure userspace PAPI_TOT_CYC value and the counter with index 1 would

measure kernel space PAPI_TOT_CYC value.

PAPI_add_named_event (eventset," L1D:REPLACEMENT:u=1”);

PAPI_add_named_event (eventset,” L1D:REPLACEMENT:u=0:k=1”);

We did this measurement on the Haswell machine, so the event name can be looked up from

the Haswell machine section in papi/src/papi_events_table.h file.

25

Figure 4.10 HPL.dat file

26

Figure 4.11 HPL output

27

Figure 4.12 Free memory for Haswell machine

Figure 4.13 Main calculation code of HPL_pdgesv0

28

Figure 4.14 Part of HPL code with PAPI_read ()

29

Figure 4.15 Measuring user and kernel space event for PAPI_read()

4.4 STREAM benchmark

The STREAM benchmark [31] is used to test sustainable memory bandwidth (in MB/s) by

measuring the performance of four long vector operations including COPY (a (i) = b (i)), SCALE

(a (i) = q*b (i)), SUM (a (i) = b (i) + c (i)) and TRIAD (a (i) = b (i) + q*c (i)). The array size can be

set to a size that is larger than the machine cache size.

4.4.1 STREAM benchmark setup

The STREAM benchmark is quite easy to setup since we run it on a uniprocessor. The first thing

to do is to get the C code and the external timer code from the STREAM website [31]. Next, it is

necessary to run the following compiling command to compile a standard-conforming version of

STREAM.

gcc -O stream.c -o stream

After running the./stream command, the output will be similar to Figure 4.12.

30

With STREAM working properly, the PAPI_read () function is added after each long vector

operation in the stream code as shown in Figure 4.13. The vector operations are copy, scale, add

and triad separately. We also add the PAPI_read () function inside the operation of copy to

create a better comparison with the papi_cost benchmark as shown in Figure 4.14. The patch of

tuned STREAM code is listed in Appendix D. To compile the code instrumented with PAPI, run the

following commands one after another:

gcc -O -c stream.c

gcc -o stream stream.o PAPIPATH/src/libpapi.a

Figure 4.16 STREAM output

31

Figure 4.17 STREAM code with PAPI instrumented (PAPI_read () after long vector operation)

Figure 4.18 STREAM code with PAPI instrumented (PAPI_read () inside long vector operation)

32

5 RESULTS

We first compare the overhead results between existing PAPI and PAPI enhanced with our rdpmc

changes across the fourteen x86 machines. Next we will show the results when several real

world benchmarks are instrumented with PAPI, and read overhead with additional events is also

described. Finally, there are the result of read overhead across several past PAPI versions and

historical performance interfaces.

The results show that we can reduce overhead by at least three times (and more typically around

six times) on a wide variety of x86 hardware. We instrumented the PAPI library code into several

benchmarks and found that the more computer resources that the host code takes, the more

overhead PAPI_read () costs.

5.1 read () vs rdpmc overhead

We test read () vs rdpmc overhead on several benchmarks, including papi_cost, Sobel Edge

Detector, HPL and STREAM. The results are reported in tables from Table 5.1 to Table 5.7.

Table 5.1 summarizes the read () system call vs rdpmc instruction speedup found on the fourteen

x86 machines when running papi_cost util. The values are cycles that are measured by the

PAPI_get_real_cyc () calls wrapping around the target code. In papi_cost, PAPI_read () is called

1million times and we report the median value instead of the average as extremely large outliers

may show up occasionally and skew the average and standard deviation. Among all the fourteen

machines we test, the speedup is at least 2.5x, and is typically around 6x on recent Intel

machines. This varies a bit more on AMD machines, and also on low-end machines such as the

ATOM processors.

33

Table 5.2 Median read vs rdpmc speedup from papi_cost running the PAPI_read 1 million times

Vendor Machine read () cycles rdpmc cycles Speedup

Intel Pentium II 2533 384 6.6x

Intel Pentium 4 3728 704 5.3x

Intel Core 2 1634 199 8.2x

Intel Atom 3906 392 10.0x

Intel Ivybridge 885 149 5.9x

Intel Haswell 1118 142 7.8x

Intel Haswell-EP 820 125 6.6x

Intel Broadwell 1030 145 7.1x

Intel Broadwell-EP 750 118 6.4x

Intel Skylake 942 144 6.5x

AMD fam10h Phenom II 1252 205 6.1x

AMD fam15h A10 2457 951 2.6x

AMD fam15h Opteron 2186 644 3.4x

AMD fam16h A8 1632 205 8.0x

Table 5.2 shows the comparison of PAPI_read () cost supported by read () system call and rdpmc

instruction between papi_cost and Sobel-convolution. We run PAPI_read () after each iteration of

sobel convolution operation (Figure 6) and calculate the total cost for PAPI_read ()for 1 million

iterations. All cycles values are median value from the 1 million results. In the Sobel-convolution

code, PAPI_read () costs a bit more cycles than the plain papi_cost benchmark when using the

rdpmc instruction, while the results are quite close to each other when PAPI_read () is supported

by the read () system call. For the Sobel-convolution code, the rdpmc instruction shows a

significant speedup (6.7x) compared to the read () system call.

34

Table 5.3 Sobel compared with papi_cost on Haswell machine

　 Benchmark rdpmc cycles read () cycles speedup

papi_cost 142 1118 7.8x

Sobel-convolution 169 1139 6.7x

Table 5.4 HPL compared with papi_cost on Haswell machine

Benchmark rdpmc cycles read () cycles speedup

papi_cost(1million) 142 1118 7.8x

HPL_pdpanel_init 346 2277 6.6x

HPL_pdfact 3504 18076 5.2x

HPL_binit 371 2423 6.5x

HPL_bcast 383 2370 6.2x

HPL_bwait 453 2377 5.2x

HPL_pdupdate 4790 22309 4.6x

MNxtMgid 346 2603 7.5x

Table 5.3 summarizes the PAPI_read () cost with the support of rdpmc instruction and the read()

system call among the papi_cost and several HPL functions in the HPL_pdgv0.c file. As explained

in the HPL parameter tuning section, we set the problem size N to 16000 and the block to 128 so

each function is called for 125 (16000/128) times. Table 4 shows the average values from 125

times, excluding papi_cost (1 million). For most HPL calls, PAPI_read () is higher than in papi_cost

but still in the same order (300-500 cycles). However, if one calls PAPI_read () after HPL_pdfact ()

and HPL_pdupdate (), the cost is considerably higher than the plain PAPI_read () call. It is likely

this is due to cache misses caused by the intense workload. Table 5.4 gives average event value

read by the PAPI_read () for those HPL functions. We can see that for most events listed in Table

5.4, HPL_pdfact () and HPL_pdupdate () give much higher values than the others.

Table 5.5 shows userspace and kernel space event values for PAPI_read () after each HPL

function when the PAPI_read () is instrumented with the rdpmc instruction and the read ()

system call separately. We can see from Table 5.5 that for all three userspace events (total cycle,

35

L1 data cache misses and TLB data cache misses) caused by the PAPI_read() function that

instrumented after HPL_pdfact and HPL_pdupdtaed is a relatively higher value than the others.

Kernel space values are all 0. Table 5.6 shows similar values as in Table 5.5 for userspace events.

However, kernel event values are not 0 anymore, which is reasonable since PAPI_read () is

instrumented by read system call when measuring data in Table 5.6.

Table 5.5 Event value for each HPL function

PAPI event HPL_
pdpanel
_init

HPL_pdfact HPL_
binit

HPL_
bcast

HPL_
bwait

HPL_pdupdate MNxtMgid

PAPI_L1_ICM 65 10721 11 8 2 17832 7

PAPI_L1_DCM 15 1753095 14 5 4 38874364 13

PAPI_TLB_IM 3 30 1 0 1 12 0

PAPI_TLB_DM 2 10590 7 3 3 299735 7

PAPI_BR_INS 162 1405652 68 71 67 5149713 65

PAPI_BR_MSP 3 5532 0 0 0 13987 0

Table 5.6 User and kernel space event cost by PAPI_read () with rdpmc instruction

PAPI event HPL_
pdpanel
_init

HPL_pdfact HPL_
binit

HPL_
bcast

HPL_
bwait

HPL_pdupdate MNxtMgid

TOT_CYC(user) 512 4019 464 408 426 4813 420

TOT_CYC(kernel) 0 0 0 0 0 0 0

L1_DCM(user) 5 39 6 2 2 38 5

L1_DCM(kernel) 0 0 0 0 0 0 0

TLB_DM(user) 0 11 0 0 0 13 0

TLB_DM(kernel) 0 0 0 0 0 0 0

36

Table 5.7 User and kernel space event value cost by PAPI_read () with read () system call

PAPI event HPL_
pdpanel
_init

HPL_pdfact HPL_
binit

HPL_
bcast

HPL_
bwait

HPL_pdupdate MNxtMgid

TOT_CYC(user) 461 4551 383 379 396 4925 398

TOT_CYC(kernel) 1755 13545 1752 1741 1740 16024 1753

L1_DCM(user) 7 43 8 3 3 43 7

L1_DCM(kernel) 20 123 18 13 12 98 17

TLB_DM(user) 0 16 0 0 0 16 0

TLB_DM(kernel) 0 18 0 0 0 17 0

Table 5.8 STREAM comparing with papi_cost

　 Benchmark rdpmc cycles read() cycles speedup

papi_cost(1 million) 142 1118 7.8x

element copy 142 1085 7.6x

vector copy 3974 19233 4.8x

vector scale 4191 19100 4.6x

vector add 3932 18855 4.8x

vector triad 4524 19281 4.3x

Table 5.7 describes PAPI_read () cost in papi_cost and STREAM code. We insert a PAPI_read ()

after each element copy operation for 1 million times as shown in Figure 4.14 and after each

long vector (10M) operation for 1000 iterations as well. We can see from the table that the

read () system call and the rdpmc instructions give very similar result for both papi_cost and

element copy. However, for vector operations, the result is much higher, but still shows

significant speedup (around 4.5x). We assume there should be lots of cache misses and TLB

misses for those operations and the results from Table 5.8 confirm our assumptions. Table 5.9

shows total Level 1 cache misses and TLB misses for STREAM when PAPI_read () is supported by

37

rdpmc and read () system call respectively. Though the values are quite large, there is not much

difference between using the rdpmc instruction and read () system call in this case.

Table 5.9 Level 1 cache miss and TLB misses for each vector operation in STREAM

PAPI event vector copy vector scale vector add vector triad

PAPI_L1_DCM 2505104 2505348 3757675 3757657

PAPI_TLB_DM 25651 39855 27620 24158

Table 5.10 Total Level 1 cache miss and TLB miss for STREAM when PAPI_read() supported by

rdpmc and read() separately

PAPI event rdpmc read

PAPI_L1_DCM 12534134630 12534099690

PAPI_TLB_DM 110624743 110819195

5.2 Additional Event Overhead

By default the papi_cost benchmark measures two events, PAPI_TOT_INS(total instructions) and

PAPI_TOT_CYC(total cycles). They are typical events to measure, especially if you are interested

in metrics such as Instruction per Cycle (IPC).

We slightly modify papi_cost to measure from one to four events and test the result on the

Haswell machine. Figure 5.1 and Figure 5.2 show how the overhead increases with event

number increases for both situations. Each event to be read via rdpmc must have an associated

mmap page that can be mapped by the process. So, with rdpmc, each event needs to be read

individually and it is reasonable to take more cycles for more events. The read () interface can

group multiple events that can be read with one single call. However, the kernel code still has to

read the counters out one by one, so the time grows less linearly.

38

Figure 5.19 PAPI_read () cost with rdpmc instruction varies with event number

Figure 5.20 PAPI_read () cost with read () system call varies with event number

39

5.3 Read overhead by PAPI version

Figure 5.3 shows the PAPI_read () overhead gathered for the past few PAPI releases. It can be

seen that the overhead has not changed much in the recent past few version as they all use the

perf_event interface. The figure reports how PAPI_cost varies with PAPI on Haswell machine, and

results are similar on other machines.

5.4 Kernel update influence

To check if kernel changes pc->lock in rdpmc read code (see Figure 3.3 PAPI rdpmc code) when

per_event_update_userpage () is called, we add an index (loopCount) in the rdpmc code and

increment it every time pc->lock changes and print a message to screen if it increases (Figure

5.4). When we run stream benchmark with the setting of STREAM_ARRAY_SIZE=10M,

NTIMS=1000, the message of “pc->lock changes, loopCount is 2” happens occasionally.

5.5 PAPI_start/stop overhead

The PAPI_stop () function reads the current event value once to get a total result between the

PAPI_start () and the PAPI_stop () section. We assume the change from the read () system call to

the rdpmc instruction could also speedup the PAPI_start () / PAPI_stop () routines. Table 5.10

shows the speed up on the Haswell machine for the papi_cost benchmark, and results are

similar. We slightly change the papi_cost code and make it to only perform start/stop test. By

using the strace command, we find that the ioctl () call dominates the overhead (Figure 5.5).

That could be why rdpmc doesn’t speed up the PAPI_start () / PAPI_stop () routine.

40

Table 5.11 PAPI_start ()/PAPI_stop () speedup on Haswell machine

　 PAPI function rdpmc cycles read() cycles speedup

PAPI_start/stop 7318 7604 1.03x

Figure 5.21 papi_cost varies with PAPI version

41

Figure 5.22 rdpmc read code with loopCount checking

42

Figure 5.23 Output for strace -c ./papi_cost

43

6 CONCLUSION AND FUTURE WORK

We have added userspace (rdpmc) performance counter read support to the PAPI library and

found that we can reduce overhead by at least three times (and more typically around six times)

on a wide variety of x86 hardware. We instrument several benchmarks and found that the more

computer resources that the host code takes, the more overhead PAPI_read () costs. We also

found that pc->lock value in rdpmc code may change occasionally.

We gained enough confidence that now PAPI enables the feature by default on all future

versions of PAPI. PAPI will once again be able to gather low-overhead performance counter data,

with overhead as low as the perfctr interface that was used for years before the introduction of

the currently used Linux perf_event. We plan to investigate userspace read support on other

architectures that support it, most notably the ARM and ARM64 architectures. Linux perf_event

does not properly support this yet.

In addition to the PAPI_read () routine, we plan to investigate other parts of the PAPI library code

with the aim to decrease the overhead. The ioctl () system call is one in particular intend to

investigate.

44

REFERENCES

[1] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News 23, 1 (March 1995), 20-24.

[2] Philip Mucci. 2005. Performance Monitoring with PAPI.

http://www.drdobbs.com/tools/performance-monitoring-with-papi/184406109

[3]Browne, S., Dongarra, J., Garner, N., Ho, G. and Mucci, P., 2000. A portable programming
interface for performance evaluation on modern processors. The international journal of high
performance computing applications, 14(3), pp.189-204.

[4] Moore, S., Terpstra, D., London, K., Mucci, P., Teller, P., Salayandia, L., Bayona, A. and Nieto,
M., 2003, June. PAPI deployment, evaluation, and extensions. In User Group Conference, 2003.
Proceedings (pp. 349-353). IEEE.

[5] Treibig, J., Hager, G. and Wellein, G., 2010, September. Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments. In Parallel Processing Workshops (ICPPW),
2010 39th International Conference on (pp. 207-216). IEEE.

[6] de Melo, A.C., 2009, September. Performance counters on Linux. In Linux Plumbers
Conference.

[7] Weaver, V.M., 2015, March. Self-monitoring overhead of the Linux perf_ event performance
counter interface. In Performance Analysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on (pp. 102-111). IEEE.

[8] Moore, S.V., 2002, April. A comparison of counting and sampling modes of using performance
monitoring hardware. In International Conference on Computational Science (pp. 904-912).
Springer, Berlin, Heidelberg.

[9] Salayandía, L., 2002. A study of the validity and utility of PAPI performance counter
data (Doctoral dissertation, University of Texas at El Paso).

[10] Mytkowicz, T., Diwan, A., Hauswirth, M. and Sweeney, P.F., 2007, March. Understanding
measurement perturbation in trace-based data. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International (pp. 1-6). IEEE.

45

[11] Mytkowicz, T., Diwan, A., Hauswirth, M. and Sweeney, P., 2008, April. We have it easy, but do
we have it right?. In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on (pp. 1-7). IEEE.

[12] London, K.S., Dongarra, J., Moore, S., Mucci, P., Seymour, K. and Spencer, T., 2001, August.
End-user Tools for Application Performance Analysis Using Hardware Counters. In ISCA PDCS(pp.
460-465).

[13] Browne, S., Dongarra, J., Garner, N., Ho, G. and Mucci, P., 2000. A portable programming
interface for performance evaluation on modern processors. The international journal of high
performance computing applications, 14(3), pp.189-204.

[14] Weaver, V.M., 2013, April. Linux perf_event features and overhead. In The 2nd International
Workshop on Performance Analysis of Workload Optimized Systems, FastPath (Vol. 13).

[15] M. Pettersson. 1999. The Perfctr Interface. http://user.it.uu.se/ mikpe/linux/perfctr/2.6/. ∼
(1999).

[16] Eranian, S., 2006, July. Perfmon2: a flexible performance monitoring interface for Linux.
In Proc. of the 2006 Ottawa Linux Symposium (pp. 269-288).

[17] Maxwell, M., Teller, P., Salayandia, L. and Moore, S., 2002, October. Accuracy of performance

monitoring hardware. In Proceedings of the Los Alamos Computer Science Institute Symposium

(LACSI’02).

[18] Maxwell, M., Moore, S. and Teller, P., 2002, June. Efficiency and accuracy issues for sampling

vs. counting modes of performance monitoring hardware. In Proceedings of the DoD High

Performance Computing Modernization Program’s User Group Conference.

[19] Moore, S.V., 2002, April. A comparison of counting and sampling modes of using

performance monitoring hardware. In International Conference on Computational Science (pp.

904-912). Springer, Berlin, Heidelberg.

[20] Vincent Weaver. PAPI overhead on various kernel interfaces.

http://web.eece.maine.edu/~vweaver/projects/papi-cost/

46

[21] LiMiT-Overview. http://castl.cs.columbia.edu/limit/

[22] Advanced Micro Devices 2010. Lightweight Profiling Specification. Advanced Micro Devices.

[23] Ingo Molnar. 2010. Basic support for LWP. http://marc.info/?l=linux-

kernel&m=128630554614635.

[24] DeRose, L., 2001. The hardware performance monitor toolkit. Euro-Par 2001 Parallel

Processing, pp.122-132.

[25] Lehr, J.P., 2016. Counting performance: hardware performance counter and compiler

instrumentation. In GI-Jahrestagung (pp. 2187-2198).

[26] Huang, S., Lang, M., Pakin, S. and Fu, S., 2015, November. Measurement and

characterization of haswell power and energy consumption. In Proceedings of the 3rd

International Workshop on Energy Efficient Supercomputing (p. 7). ACM.

[27] Babka, V. and Tuma, P., Effects of Memory Sharing on Contemporary Processor

Architectures. MEMICS 2007, p.3.

[28] Zaparanuks, D., Jovic, M. and Hauswirth, M., 2009, April. Accuracy of performance counter

measurements. In Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE

International Symposium on (pp. 23-32). IEEE.

[29] Weaver, V. perf event use rdpmc rather than rdmsr when possible in kernel.

https://lkml.org/lkml/2012/2/20/418 (2012)

[30] HPL (High Performance Linpack): Benchmarking Raspberry.

https://www.howtoforge.com/tutorial/hpl-high-performance-linpack-benchmark-raspberry-

pi/#introduction

47

[31] STREAM reference. http://www.cs.virginia.edu/stream/ref.html

[32] HPL reference. http://www.netlib.org/benchmark/hpl/faqs.html

[33] Standard Performance Evaluation Corporation. https://www.spec.org/cpu2006/

[34] Top500 Supercomputer Sites. https://www.top500.org/

48

APPENDICES

Appendix A: Code patch for papi_cost benchmark

--- papi_cost.c 2017-10-26 15:39:50.247793044 -0400

+++ cost1.c 2017-10-26 15:37:50.910831915 -0400

@@ -1,44 +1,39 @@

-/** file papi_cost.c

+/** file cost.c

 * @brief papi_cost utility.

 * @page papi_cost

 * @section NAME

- * papi_cost - computes execution time costs for basic PAPI operations.

+ * papi_cost - computes execution time costs for basic PAPI operations.

 *

 * @section Synopsis

 * papi_cost [-dhs] [-b bins] [-t threshold]

 *

 * @section Description

- * papi_cost is a PAPI utility program that computes the min / max / mean / std. deviation

- * of execution times for PAPI start/stop pairs and for PAPI reads.

- * This information provides the basic operating cost to a user's program

- * for collecting hardware counter data.

+ * papi_cost is a PAPI utility program that computes the min / max / mean / std. deviation

+ * of execution times for PAPI start/stop pairs and for PAPI reads.

+ * This information provides the basic operating cost to a user's program

+ * for collecting hardware counter data.

 * Command line options control display capabilities.

 *

49

 * @section Options

 *

- * -b < bins > Define the number of bins into which the results are

+ * -b < bins > Define the number of bins into which the results are

 * partitioned for display. The default is 100.

 * -d Display a graphical distribution of costs in a vertical histogram.

 * -h Display help information about this utility.

- * -s Show the number of iterations in each of the first 10

+ * -s Show the number of iterations in each of the first 10

 * standard deviations above the mean.

- * -t < threshold > Set the threshold for the number of iterations to

+ * -t < threshold > Set the threshold for the number of iterations to

 * measure costs. The default is 100,000.

 *

 *

 * @section Bugs

- * There are no known bugs in this utility. If you find a bug,

- * it should be reported to the PAPI Mailing List at <ptools-perfapi@icl.utk.edu>.

+ * There are no known bugs in this utility. If you find a bug,

+ * it should be reported to the PAPI Mailing List at <ptools-perfapi@ptools.org>.

 */

-

-#include <stdio.h>

-#include <stdlib.h>

-#include <string.h>

-

-#include "papi.h"

+#include "papi_test.h"

 #include "cost_utils.h"

50

-int

+int

 find_derived(int i , char *type)

 {

 PAPI_event_info_t info;

@@ -106,7 +101,7 @@

 };

 printf("\nTotal cost for %s over %d iterations\n", test[i], num_iters);

 printf

- ("min cycles : %lld\nmax cycles : %lld\nmean cycles : %lf\nstd deviation: %lf\n ",

+ ("min cycles : %lld\nmax cycles : %lld\nmean cycles : %lf\nstd deviation: %lf\n",

 min, max, average, std);

 }

@@ -145,19 +140,59 @@

 printf("\n");

 }

 }

-

+static void

+print_percentile(long long percent25, long long percent50, long long percent75,long long

percent99)

+{

+ printf

+ ("25the percentile : %lld\n50th percentile : %lld\n75th percentile : %lld\n99th

percentile : %lld\n",

+ percent25,percent50,percent75,percent99);

+}

 static void

 do_output(int test_type, long long *array, int bins, int show_std_dev,

51

- int show_dist)

+ int show_dist)

+{

+ int s[11];

+ long long min, max;

+ double average, std;

+ long long percent25,percent50,percent75,percent99;

+ std = do_stats(array, &min, &max, &average);

+ print_stats(test_type, min, max, average, std);

+

+ do_percentile(array,&percent25,&percent50,&percent75,&percent99);

+

+ print_percentile(percent25,percent50,percent75,percent99);

+ if (show_std_dev) {

+ do_std_dev(array, s, std, average);

+ print_std_dev(s);

+ }

+

+ if (show_dist) {

+ int *d;

+ d = calloc(bins , sizeof (int));

+ do_dist(array, min, max, bins, d);

+ print_dist(min, max, bins, d);

+ free(d);

+ }

+}

+

+static void // add by YAN Liu for rdpmc outliers

+do_output_eventvalue(int test_type, long long *array, int bins, int show_std_dev,

+ int show_dist,long long*eventarray)

52

 {

 int s[11];

 long long min, max;

 double average, std;

+ long long percent25,percent50,percent75,percent99;

+ long long min_i,max_i;

+ std = do_stats_eventvalue(array, &min, &max, &average,&min_i,&max_i);

+ print_stats(test_type, min, max, average, std);

- std = do_stats(array, &min, &max, &average);

+ do_percentile(array,&percent25,&percent50,&percent75,&percent99);

- print_stats(test_type, min, max, average, std);

+ print_percentile(percent25,percent50,percent75,percent99);

+ printf("\n eventvalue for min(%lld) which located at array[%d]:

%lld",min,min_i,eventarray[min_i]);

+ printf("\n eventvalue for max(%lld) which located at array[%d]: %lld

\n",max,max_i,eventarray[max_i]);// add by YAN LIU for rdpmc outliers

 if (show_std_dev) {

 do_std_dev(array, s, std, average);

 print_std_dev(s);

@@ -179,11 +214,17 @@

 int i, retval, EventSet = PAPI_NULL;

 int retval_start,retval_stop;

 int bins = 100;

- int show_dist = 0, show_std_dev = 0;

- long long totcyc, values[2];

+ int show_dist = 0, show_std_dev = 0;

+ long long totcyc, values[4];

53

 long long *array;

 int event;

 PAPI_event_info_t info;

+ long long *eventarray;

+ /*add by yanliu for event recording*/

+ eventarray =(long long *) malloc((size_t) num_iters * sizeof (long long));

+ if (eventarray == NULL){printf("eventarray malloc failed\n"); return -1;};

+

+ tests_quiet(argc, argv); /* Set TESTS_QUIET variable */

 for (i = 1; i < argc; i++) {

 if (!strcmp(argv[i], "-b")) {

@@ -218,63 +259,41 @@

 printf("Cost of execution for PAPI start/stop, read and accum.\n");

 printf("This test takes a while. Please be patient...\n");

- retval = PAPI_library_init(PAPI_VER_CURRENT);

- if (retval != PAPI_VER_CURRENT) {

- fprintf(stderr,"PAPI_library_init\n");

- exit(retval);

- }

- retval = PAPI_set_debug(PAPI_VERB_ECONT);

- if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_set_debug\n");

- exit(retval);

- }

- retval = PAPI_query_event(PAPI_TOT_CYC);

- if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_query_event\n");

- exit(retval);

54

- }

- retval = PAPI_query_event(PAPI_TOT_INS);

- if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_query_event\n");

- exit(retval);

- }

- retval = PAPI_create_eventset(&EventSet);

- if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_create_eventset\n");

- exit(retval);

- }

- retval = PAPI_add_event(EventSet, PAPI_TOT_CYC);

- if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_add_event\n");

- exit(retval);

- }

- retval = PAPI_add_event(EventSet, PAPI_TOT_INS);

- if (retval != PAPI_OK) {

- retval = PAPI_add_event(EventSet, PAPI_TOT_IIS);

- if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_add_event\n");

- exit(retval);

- }

- }

+ if ((retval =

+ PAPI_library_init(PAPI_VER_CURRENT)) != PAPI_VER_CURRENT)

+ test_fail(__FILE__, __LINE__, "PAPI_library_init", retval);

+ if ((retval = PAPI_set_debug(PAPI_VERB_ECONT)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_set_debug", retval);

+ if ((retval = PAPI_query_event(PAPI_TOT_CYC)) != PAPI_OK)

55

+ test_fail(__FILE__, __LINE__, "PAPI_query_event", retval);

+ if ((retval = PAPI_query_event(PAPI_TOT_INS)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_query_event", retval);

+ if ((retval = PAPI_create_eventset(&EventSet)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_create_eventset", retval);

+

+// if ((retval = PAPI_add_event(EventSet, PAPI_L3_TCM)) != PAPI_OK) //add by YAN Liu for

rdpmc outliers

+// test_fail(__FILE__, __LINE__, "PAPI_add_event", retval);

+

+ if ((retval = PAPI_add_event(EventSet, PAPI_TOT_CYC)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_add_event", retval);

+

+ if ((retval = PAPI_add_event(EventSet, PAPI_TOT_INS)) != PAPI_OK)

+ if ((retval = PAPI_add_event(EventSet, PAPI_TOT_IIS)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_add_event", retval);

+

 /* Make sure no errors and warm up */

 totcyc = PAPI_get_real_cyc();

- if ((retval = PAPI_start(EventSet)) != PAPI_OK) {

- fprintf(stderr,"PAPI_start");

- exit(retval);

- }

- if ((retval = PAPI_stop(EventSet, NULL)) != PAPI_OK) {

- fprintf(stderr,"PAPI_stop");

- exit(retval);

- }

+ if ((retval = PAPI_start(EventSet)) != PAPI_OK)

56

+ test_fail(__FILE__, __LINE__, "PAPI_start", retval);

+ if ((retval = PAPI_stop(EventSet, NULL)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_stop", retval);

 array =

 (long long *) malloc((size_t) num_iters * sizeof (long long));

- if (array == NULL) {

- fprintf(stderr,"PAPI_stop");

- exit(retval);

- }

+ if (array == NULL)

+ test_fail(__FILE__, __LINE__, "PAPI_stop", retval);

 /* Determine clock latency */

@@ -299,8 +318,7 @@

 totcyc = PAPI_get_real_cyc() - totcyc;

 array[i] = totcyc;

 if (retval_start || retval_stop) {

- fprintf(stderr,"PAPI start/stop\n");

- exit(retval_start);

+ test_fail(__FILE__, __LINE__, "PAPI start/stop", retval_start);

 }

 }

@@ -309,10 +327,8 @@

 /* Start the read eval */

 printf("\nPerforming read test...\n");

- if ((retval = PAPI_start(EventSet)) != PAPI_OK) {

57

- fprintf(stderr,"PAPI_start");

- exit(retval);

- }

+ if ((retval = PAPI_start(EventSet)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_start", retval);

 PAPI_read(EventSet, values);

 for (i = 0; i < num_iters; i++) {

@@ -320,30 +336,27 @@

 PAPI_read(EventSet, values);

 totcyc = PAPI_get_real_cyc() - totcyc;

 array[i] = totcyc;

+ eventarray[i]=values[0];// add by YAN LIU for rdpmc outliers

+

 }

- if ((retval = PAPI_stop(EventSet, values)) != PAPI_OK) {

- fprintf(stderr,"PAPI_stop");

- exit(retval);

- }

+ if ((retval = PAPI_stop(EventSet, values)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_stop", retval);

- do_output(2, array, bins, show_std_dev, show_dist);

+ do_output_eventvalue(2, array, bins, show_std_dev, show_dist,eventarray);// add by YAN

LIU for rdpmc outliers

+// do_output(2, array, bins, show_std_dev, show_dist);

 /* Start the read with timestamp eval */

 printf("\nPerforming read with timestamp test...\n");

58

- if ((retval = PAPI_start(EventSet)) != PAPI_OK) {

- fprintf(stderr,"PAPI_start");

- exit(retval);

- }

+ if ((retval = PAPI_start(EventSet)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_start", retval);

 PAPI_read_ts(EventSet, values, &totcyc);

 for (i = 0; i < num_iters; i++) {

 PAPI_read_ts(EventSet, values, &array[i]);

 }

- if ((retval = PAPI_stop(EventSet, values)) != PAPI_OK) {

- fprintf(stderr,"PAPI_stop");

- exit(retval);

- }

+ if ((retval = PAPI_stop(EventSet, values)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_stop", retval);

 /* post-process the timing array */

 for (i = num_iters - 1; i > 0; i--) {

@@ -356,10 +369,8 @@

 /* Start the accum eval */

 printf("\nPerforming accum test...\n");

- if ((retval = PAPI_start(EventSet)) != PAPI_OK) {

- fprintf(stderr,"PAPI_start");

- exit(retval);

- }

+ if ((retval = PAPI_start(EventSet)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_start", retval);

59

 PAPI_accum(EventSet, values);

 for (i = 0; i < num_iters; i++) {

@@ -368,20 +379,16 @@

 totcyc = PAPI_get_real_cyc() - totcyc;

 array[i] = totcyc;

 }

- if ((retval = PAPI_stop(EventSet, values)) != PAPI_OK) {

- fprintf(stderr,"PAPI_stop");

- exit(retval);

- }

+ if ((retval = PAPI_stop(EventSet, values)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_stop", retval);

 do_output(4, array, bins, show_std_dev, show_dist);

 /* Start the reset eval */

 printf("\nPerforming reset test...\n");

- if ((retval = PAPI_start(EventSet)) != PAPI_OK) {

- fprintf(stderr,"PAPI_start");

- exit(retval);

- }

+ if ((retval = PAPI_start(EventSet)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_start", retval);

 for (i = 0; i < num_iters; i++) {

 totcyc = PAPI_get_real_cyc();

@@ -389,10 +396,8 @@

 totcyc = PAPI_get_real_cyc() - totcyc;

60

 array[i] = totcyc;

 }

- if ((retval = PAPI_stop(EventSet, values)) != PAPI_OK) {

- fprintf(stderr,"PAPI_stop");

- exit(retval);

- }

+ if ((retval = PAPI_stop(EventSet, values)) != PAPI_OK)

+ test_fail(__FILE__, __LINE__, "PAPI_stop", retval);

 do_output(5, array, bins, show_std_dev, show_dist);

@@ -411,14 +416,12 @@

 retval = PAPI_add_event(EventSet, event);

 if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_add_event");

- exit(retval);

+ test_fail(__FILE__, __LINE__, "PAPI_add_event", retval);

 }

 retval = PAPI_start(EventSet);

 if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_start");

- exit(retval);

+ test_fail(__FILE__, __LINE__, "PAPI_start", retval);

 }

 PAPI_read(EventSet, values);

@@ -432,8 +435,7 @@

61

 retval = PAPI_stop(EventSet, values);

 if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_stop");

- exit(retval);

+ test_fail(__FILE__, __LINE__, "PAPI_stop", retval);

 }

 do_output(6, array, bins, show_std_dev, show_dist);

@@ -458,14 +460,12 @@

 retval = PAPI_add_event(EventSet, event);

 if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_add_event\n");

- exit(retval);

+ test_fail(__FILE__, __LINE__, "PAPI_add_event", retval);

 }

 retval = PAPI_start(EventSet);

 if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_start");

- exit(retval);

+ test_fail(__FILE__, __LINE__, "PAPI_start", retval);

 }

 PAPI_read(EventSet, values);

@@ -479,8 +479,7 @@

 retval = PAPI_stop(EventSet, values);

 if (retval != PAPI_OK) {

- fprintf(stderr,"PAPI_stop");

62

- exit(retval);

+ test_fail(__FILE__, __LINE__, "PAPI_stop", retval);

 }

 do_output(7, array, bins, show_std_dev, show_dist);

@@ -490,6 +489,6 @@

 }

 free(array);

-

- return 0;

+ test_pass(__FILE__, NULL, 0);

+ exit(1);

 }

--- cost_utils.c 2017-10-26 15:39:11.775482486 -0400

+++ cost_utils1.c 2017-10-26 15:38:34.083178869 -0400

@@ -1,10 +1,6 @@

-#include <stdio.h>

-#include <math.h>

-

-#define NUM_ITERS 1000000

+#include "papi_test.h"

 int num_iters = NUM_ITERS;

-

 /* computes min, max, and mean for an array; returns std deviation */

 double

63

 do_stats(long long *array, long long *min, long long *max, double *average)

@@ -17,7 +13,7 @@

 for (i = 0; i < num_iters; i++) {

 *average += (double) array[i];

 if (*min > array[i])

- *min = array[i];

+ *min = array[i];

 if (*max < array[i])

 *max = array[i];

 }

@@ -76,3 +72,84 @@

 }

 }

+int partition(long long a[], int l, int r) {

+ long pivot, i, j, t;

+ pivot = a[l];

+ i = l; j = r+1;

+

+ while(1)

+ {

+ do ++i; while(a[i] < pivot && i < r);

+ do --j; while(a[j] > pivot);

+ if(i >= j) break;

+ t = a[i]; a[i] = a[j]; a[j] = t;

+ }

+ t = a[l]; a[l] = a[j]; a[j] = t;

+ return j;

+}

+void quickSort(long long a[], int l, int r)

64

+{

+ int j;

+

+ if(l < r)

+ {

+ // divide and conquer

+ j = partition(a, l, r);

+ quickSort(a, l, j-1);

+ quickSort(a, j+1, r);

+ }

+

+}

+

+void do_percentile(long long *a, long long *percent25, long long *percent50, long long

*percent75,long long *percent99)

+{

+ long long *a_sort;

+ a_sort = calloc(num_iters,sizeof(long long));

+ memcpy(a_sort,a,num_iters*sizeof(long long));

+ int i_25=(int)num_iters/4;

+ int i_50=(int)num_iters/2;

+ int i_75=(int)num_iters/4*3; // index for 75%, not quite accurate cause didn't take even or

odd in consideratio

+ int i_99=(int)num_iters/10*9.9;

+ quickSort(a_sort,0,num_iters-1);

+

+

+ *percent25=a_sort[i_25];

+ *percent50=a_sort[i_50];

+ *percent75=a_sort[i_75];

65

+ *percent99=a_sort[i_99];

+ free(a_sort);

+ a_sort=NULL;

+

+}

+double // add by YAN Liu for rdpmc outliers

+do_stats_eventvalue(long long *array, long long *min, long long *max, double *average,long

long *min_i,long long *max_i)

+{

+ int i;

+ double std, tmp;

+

+ *min = *max = array[0];

+ *average = 0;

+ for (i = 0; i < num_iters; i++) {

+ *average += (double) array[i];

+ if (*min > array[i])

+ {

+ *min = array[i];

+ *min_i=i;

+ }

+ if (*max < array[i])

+ {

+ *max = array[i];

+ *max_i=i;

+ }

+ }

+ *average = *average / (double) num_iters;

+ std = 0;

+ for (i = 0; i < num_iters; i++) {

66

+ tmp = (double) array[i] - (*average);

+ std += tmp * tmp;

+ }

+ std = sqrt(std / (num_iters - 1));

+ return (std);

+}

+

+

--- cost_utils.h 2017-10-26 15:39:19.167542110 -0400

+++ cost_utils1.h 2017-10-26 15:38:23.867096692 -0400

@@ -5,5 +5,6 @@

 extern double do_stats(long long*, long long*, long long *, double *);

 extern void do_std_dev(long long*, int*, double, double);

 extern void do_dist(long long*, long long, long long, int, int*);

+extern double do_stats_eventvalue(long long*, long long*, long long *, double *,long

long*,long long*);

 #endif /* __PAPI_COST_UTILS_H__ */

67

Appendix B: Sobel code

/* sobel benchmark for Papi overhead measurement */

/* modifed based on ece574 example code */

/*Yan Liu*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <stdint.h>

#include <errno.h>

#include <math.h>

#include <jpeglib.h>

//#include "../jpeg-6b/jpeglib.h"

#include "../papi/papi/src/papi.h"

#define MAX 1000000

/* Filters */

staticint sobel_x_filter[3][3]={{-1,0,+1},{-2,0,+2},{-1,0,+1}};

staticint sobel_y_filter[3][3]={{-1,-2,-1},{0,0,0},{1,2,+1}};

/* Structure describing the image */

struct image_t {

int x;

int y;

int depth;/* bytes */

unsignedchar*pixels;

};

68

struct convolve_data_t {

struct image_t *old;

struct image_t *new;

int(*filter)[3][3];

int papiEventset;

};

int partition(longlong a[],int l,int r){

long pivot, i, j, t;

 pivot = a[l];

 i = l; j = r+1;

while(1)

{

do++i;while(a[i]< pivot && i < r);

do--j;while(a[j]> pivot);

if(i >= j)break;

 t = a[i]; a[i]= a[j]; a[j]= t;

}

 t = a[l]; a[l]= a[j]; a[j]= t;

return j;

}

void quickSort(longlong a[],int l,int r)

{

int j;

if(l < r)

{

// divide and conquer

 j = partition(a, l, r);

 quickSort(a, l, j-1);

69

 quickSort(a, j+1, r);

}

}

void do_percentile(int

num_iters,longlong*a,longlong*percent25,longlong*percent50,longlong*percent75,longlong*p

ercent99)

{

longlong*a_sort;

 a_sort = calloc(num_iters,sizeof(longlong));

 memcpy(a_sort,a,num_iters*sizeof(longlong));

int i_25=(int)num_iters/4;

int i_50=(int)num_iters/2;

int i_75=(int)num_iters/4*3;// index for 75%, not quite accurate cause didn't take even or odd

in consideratio

int i_99=(int)num_iters/10*9.9;

 quickSort(a_sort,0,num_iters-1);

*percent25=a_sort[i_25];

*percent50=a_sort[i_50];

*percent75=a_sort[i_75];

*percent99=a_sort[i_99];

 free(a_sort);

 a_sort=NULL;

}

staticvoid

print_percentile(longlong percent25,longlong percent50,longlong percent75,longlong

percent99)

70

{

 printf

("25%% cycles : %lld\n50%% cycles : %lld\n75%% cycles : %lld\n99%% cycles : %lld\n" ,

 percent25,percent50,percent75,percent99);

}

staticvoid cal_stats(int num_iters,longlong*array,longlong*min,

longlong*max,double*avag,double*std){

int i;double tmp;

longlong percent25, percent50, percent75, percent99;

*max=*min=array[0];

for(i=0;i<num_iters;i++){

if(*max<array[i])*max=array[i];

if(*min>array[i])*min=array[i];

*avag+=(double)array[i];

// printf("%d-%lld \n",i,array[i]);

}

*avag=*avag/(double)num_iters;

for(i =0; i < num_iters; i++){

 tmp =(double)array[i]-(*avag);

*std += tmp * tmp;

}

*std=sqrt(*std/num_iters);

 do_percentile(num_iters,array,&percent25,&percent50,&percent75,&percent99);

 print_percentile(percent25,percent50,percent75,percent99);

}

71

/* very inefficient convolve code */

staticvoid*generic_convolve(void*argument){

int x,y,k,l,d;

int32_t color;

int sum,depth,width,height;

longlong totcyc,*array,values[3];

struct image_t *old;

struct image_t *new;

int(*filter)[3][3];

struct convolve_data_t *data;

int eventset;

int result;

longlong min,max;

double avag,std;

int num_iters;

/* Convert from void pointer to the actual data type */

 data=(struct convolve_data_t *)argument;

 old=data->old;

 new=data->new;

 filter=data->filter;

 eventset=data->papiEventset;

 depth=old->depth;

 width=old->x*old->depth;

 height=old->y;

 min=max=0;

 avag=std=0;

 array=(longlong*)malloc(width*height*sizeof(longlong));

 num_iters=0;

//PAPI start

72

//if((result=PAPI_start(eventset))!=PAPI_OK)

// printf("Error PAPI start:%s\n",PAPI_strerror(result));

// PAPI_read(eventset,values);

for(d=0;d<3;d++){

for(x=0;x<old->x;x++){

for(y=0;y<old->y;y++){

 sum=0;

for(k=-1;k<2;k++){

for(l=-1;l<2;l++){

 color=old->pixels[((y+l)*width)+(x*depth+d+k*depth)];

 sum+=color *(*filter)[k+1][l+1];

}

}

if(sum<0) sum=0;

if(sum>255) sum=255;

 new->pixels[(y*width)+x*depth+d]=sum;

if(num_iters<=MAX)

{

 totcyc=PAPI_get_real_cyc();

 PAPI_read(eventset,values);

 totcyc=PAPI_get_real_cyc()-totcyc;

 array[num_iters]=totcyc;

 num_iters++;

}

}

}

}

73

if((result=PAPI_stop(eventset,values))!=PAPI_OK)

 printf("Error PAPI stop:%s\n",PAPI_strerror(result));

 printf("Total cost for PAPI_read over %d iterations \n",--num_iters);

 cal_stats(num_iters,array,&min,&max,&avag,&std);

 printf("min cycles : %lld\nmax cycles : %lld\naverage cycles : %lf\nstandard deviation: %lf\n",

 min,max,avag,std);

returnNULL;

}

staticint load_jpeg(char*filename,struct image_t *image){

FILE*fff;

struct jpeg_decompress_struct cinfo;

struct jpeg_error_mgr jerr;

 JSAMPROW output_data;

unsignedint scanline_len;

int scanline_count=0;

 fff=fopen(filename,"rb");

if(fff==NULL){

 fprintf(stderr,"Could not load %s: %s\n",

 filename, strerror(errno));

return-1;

}

/* set up jpeg error routines */

 cinfo.err = jpeg_std_error(&jerr);

74

/* Initialize cinfo */

 jpeg_create_decompress(&cinfo);

/* Set input file */

 jpeg_stdio_src(&cinfo, fff);

/* read header */

 jpeg_read_header(&cinfo, TRUE);

/* Start decompressor */

 jpeg_start_decompress(&cinfo);

 printf("output_width=%d, output_height=%d, output_components=%d\n",

 cinfo.output_width,

 cinfo.output_height,

 cinfo.output_components);

 image->x=cinfo.output_width;

 image->y=cinfo.output_height;

 image->depth=cinfo.output_components;

 scanline_len = cinfo.output_width * cinfo.output_components;

 image->pixels=malloc(cinfo.output_width * cinfo.output_height * cinfo.output_components);

while(scanline_count < cinfo.output_height){

 output_data =(image->pixels +(scanline_count * scanline_len));

 jpeg_read_scanlines(&cinfo,&output_data,1);

 scanline_count++;

}

75

/* Finish decompressing */

 jpeg_finish_decompress(&cinfo);

 jpeg_destroy_decompress(&cinfo);

 fclose(fff);

return0;

}

staticint store_jpeg(char*filename,struct image_t *image){

struct jpeg_compress_struct cinfo;

struct jpeg_error_mgr jerr;

int quality=90;/* % */

int i;

FILE*fff;

 JSAMPROW row_pointer[1];

int row_stride;

/* setup error handler */

 cinfo.err = jpeg_std_error(&jerr);

/* initialize jpeg compression object */

 jpeg_create_compress(&cinfo);

76

/* Open file */

 fff = fopen(filename,"wb");

if(fff==NULL){

 fprintf(stderr,"can't open %s: %s\n",

 filename,strerror(errno));

return-1;

}

 jpeg_stdio_dest(&cinfo, fff);

/* Set compression parameters */

 cinfo.image_width = image->x;

 cinfo.image_height = image->y;

 cinfo.input_components = image->depth;

 cinfo.in_color_space = JCS_RGB;

 jpeg_set_defaults(&cinfo);

 jpeg_set_quality(&cinfo, quality, TRUE);

/* start compressing */

 jpeg_start_compress(&cinfo, TRUE);

 row_stride=image->x*image->depth;

for(i=0;i<image->y;i++){

 row_pointer[0]=& image->pixels[i * row_stride];

 jpeg_write_scanlines(&cinfo, row_pointer,1);

}

/* finish compressing */

 jpeg_finish_compress(&cinfo);

77

/* close file */

 fclose(fff);

/* clean up */

 jpeg_destroy_compress(&cinfo);

return0;

}

staticint combine(struct image_t *s_x,

struct image_t *s_y,

struct image_t *new){

int i;

int out;

for(i=0;i<(s_x->depth * s_x->x * s_x->y);i++){

 out=sqrt(

(s_x->pixels[i]*s_x->pixels[i])+

(s_y->pixels[i]*s_y->pixels[i])

);

if(out>255) out=255;

if(out<0) out=0;

 new->pixels[i]=out;

}

return0;

}

78

int main(int argc,char**argv){

struct image_t image,sobel_x,sobel_y,new_image;

struct convolve_data_t sobel_data[2];

longlong time_start,time_end,time_total,values[3];//for PAPI time measuring

/* Check command line usage */

if(argc<2){

 fprintf(stderr,"Usage: %s image_file\n",argv[0]);

return-1;

}

int eventset=PAPI_NULL;

int result;

if((result=PAPI_library_init(PAPI_VER_CURRENT))!=PAPI_VER_CURRENT)

 printf("Error PAPI library init:%s\n",PAPI_strerror(result));

/*create papi eventset and add events*/

if((result=PAPI_create_eventset(&eventset))!=PAPI_OK)

 printf("Error PAPI create event:%s\n",PAPI_strerror(result));

/* if((result=PAPI_add_named_event(eventset,"PAPI_L1_TCM"))!=PAPI_OK)

 printf("Error PAPI add event:%s\n",PAPI_strerror(result));

 if((result=PAPI_add_named_event(eventset,"PAPI_L2_TCM"))!=PAPI_OK)

 printf("Error PAPI add event:%s\n",PAPI_strerror(result));

*/if((result=PAPI_add_named_event(eventset,"BR_MISP_RETIRED:CONDITIONAL:k=1"))!

=PAPI_OK)

 printf("Error PAPI add event1:%s\n",PAPI_strerror(result));

if((result=PAPI_add_named_event(eventset,"BR_MISP_RETIRED:CONDITIONAL:u=1"))!

=PAPI_OK)

 printf("Error PAPI add event2:%s\n",PAPI_strerror(result));

79

//if((result=PAPI_add_named_event(eventset,"INSTRUCTIONS_RETIRED:k=1:u=1"))!=PAPI_OK)

// printf("Error PAPI add event3:%s\n",PAPI_strerror(result));

if((result=PAPI_add_named_event(eventset,"PAPI_BR_MSP"))!=PAPI_OK)

 printf("Error PAPI add event4:%s\n",PAPI_strerror(result));

 PAPI_start(eventset);

// time_start=PAPI_get_real_usec();

/* Load an image */

 load_jpeg(argv[1],&image);

 PAPI_stop(eventset,values);

//printf("L1 load jpeg %lld\n",values[0]);

//printf("L2 load jpeg%lld\n",values[1]);

 PAPI_start(eventset);

/* Allocate space for output image */

 new_image.x=image.x;

 new_image.y=image.y;

 new_image.depth=image.depth;

 new_image.pixels=malloc(image.x*image.y*image.depth*sizeof(char));

/* Allocate space for output image */

 sobel_x.x=image.x;

 sobel_x.y=image.y;

 sobel_x.depth=image.depth;

 sobel_x.pixels=malloc(image.x*image.y*image.depth*sizeof(char));

80

/* Allocate space for output image */

 sobel_y.x=image.x;

 sobel_y.y=image.y;

 sobel_y.depth=image.depth;

 sobel_y.pixels=malloc(image.x*image.y*image.depth*sizeof(char));

/* convolution */

 sobel_data[0].old=ℑ

 sobel_data[0].new=&sobel_x;

 sobel_data[0].filter=&sobel_x_filter;

 sobel_data[0].papiEventset=eventset;

 generic_convolve((void*)&sobel_data[0]);

 sobel_data[1].old=ℑ

 sobel_data[1].new=&sobel_y;

 sobel_data[1].filter=&sobel_y_filter;

 sobel_data[1].papiEventset=eventset;

// generic_convolve((void *)&sobel_data[1]);

/* Combine to form output */

 combine(&sobel_x,&sobel_y,&new_image);

/* Write data back out to disk */

 store_jpeg("out.jpg",&new_image);

 PAPI_stop(eventset,values);

//printf("L1 rest %lld\n",values[0]);

//printf("L2 rest %lld\n",values[1]);

 printf("kernel %lld\n",values[0]);

 printf("user %lld\n",values[1]);

 printf("k+u %lld\n",values[2]);

81

 printf("papi event %lld\n",values[2]);

// time_end=PAPI_get_real_usec();

// time_total=time_end-time_start;

// printf("PAPI_time_measure for main func: %lld us\n",time_total);

 PAPI_shutdown();

return0;

}

82

Appendix C: Code patch for HPL benchmark

--- 1HPL_pdgev0.c 2017-08-30 15:42:32.546218175 -0400

+++ HPL_pdgesv0.c 2017-10-25 15:59:21.716712958 -0400

@@ -48,6 +48,100 @@

 * Include files

 */

 #include "hpl.h"

+/*Add for papi test stats*/

+#include "/home/yanliu/research/papioverhead/papi/papi/src/papi.h"

+#include "stdio.h"

+#include "math.h"

+// rdpmc code

+static inline unsigned long long rdpmc(unsigned int counter) {

+

+ unsigned int low, high;

+

+ __asm__ volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (counter));

+

+ return (unsigned long long)low | ((unsigned long long)high) <<32;

+}

+

+int partition(long long a[], int l, int r) {

+ long pivot, i, j, t;

+ pivot = a[l];

+ i = l; j = r+1;

+

+ while(1)

+ {

83

+ do ++i; while(a[i] < pivot && i < r);

+ do --j; while(a[j] > pivot);

+ if(i >= j) break;

+ t = a[i]; a[i] = a[j]; a[j] = t;

+ }

+ t = a[l]; a[l] = a[j]; a[j] = t;

+ return j;

+}

+void quickSort(long long a[], int l, int r)

+{

+ int j;

+

+ if(l < r)

+ {

+ // divide and conquer

+ j = partition(a, l, r);

+ quickSort(a, l, j-1);

+ quickSort(a, j+1, r);

+ }

+

+}

+void do_percentile(int num_iters,long long *a, long long *percent25, long long *percent50,

long long *percent75,long long *percent99)

+{

+ long long *a_sort;

+ a_sort = calloc(num_iters,sizeof(long long));

+ memcpy(a_sort,a,num_iters*sizeof(long long));

+ int i_25=(int)num_iters/4;

+ int i_50=(int)num_iters/2;

+ int i_75=(int)num_iters/4*3; // index for 75%, not quite accurate cause didn't take even or

84

odd in consideratio

+ int i_99=(int)num_iters/10*9.9;

+ quickSort(a_sort,0,num_iters-1);

+

+

+ *percent25=a_sort[i_25];

+ *percent50=a_sort[i_50];

+ *percent75=a_sort[i_75];

+ *percent99=a_sort[i_99];

+ free(a_sort);

+ a_sort=NULL;

+

+}

+static void

+print_percentile(long long percent25, long long percent50, long long percent75,long long

percent99)

+{

+ printf

+ ("25%% cycles : %lld\n50%% cycles : %lld\n75%% cycles : %lld\n99%% cycles : %lld\n",

+ percent25,percent50,percent75,percent99);

+}

+static void cal_stats(int num_iters,long long *array, long long *min,

+ long long *max, double *avag,double *std){

+ int i; double tmp;

+ long long percent25, percent50, percent75, percent99;

+ *max=*min=array[0];

+ *avag=0; *std=0;

+ for(i=0;i<num_iters;i++){

+ if(*max<array[i]) *max=array[i];

+ if(*min>array[i]) *min=array[i];

85

+ *avag+=(double)array[i];

+ // printf("%d-%lld \n",i,array[i]);

+

+ }

+ *avag=(double)*avag/num_iters;

+ for (i = 0; i < num_iters; i++) {

+ tmp = (double)array[i] - (*avag);

+ *std += tmp * tmp;

+ }

+ *std=sqrt(*std/num_iters);

+ do_percentile(num_iters,array,&percent25,&percent50,&percent75,&percent99);

+

+ print_percentile(percent25,percent50,percent75,percent99);

+}

+

+

 #ifdef STDC_HEADERS

 void HPL_pdgesv0

 (

@@ -95,8 +189,48 @@

 */

 HPL_T_panel * * panel = NULL;

 HPL_T_UPD_FUN HPL_pdupdate;

- int N, j, jb, n, nb, tag=MSGID_BEGIN_FACT,

- test=HPL_KEEP_TESTING;

+ int N, j, jb, n, nb, tag=MSGID_BEGIN_FACT, test=HPL_KEEP_TESTING;

+

+/*start PAPI setup*/

+ int max_iters=1000;

+ int readNum=7;

86

+ long long totcyc,array[readNum][max_iters],values[3],lastVal1,lastVal2,

+ eventVal1[readNum][max_iters],eventVal2[readNum][max_iters],

+ rawVal1[readNum][max_iters],rawVal2[readNum][max_iters],

+ rawBefore1,rawBefore2,rawAfter1,rawAfter2;

+ long long min[readNum],max[readNum];

+ double avag[readNum],std[readNum];

+ int num_iters=0;

+ int eventset=PAPI_NULL;

+ int result;

+ #define USER_EVENT 0 //1073741825

+ #define KERNEL_EVENT 1

+ /*

+ haswell machine event name table

+ "PRESET,PAPI_TOT_CYC,NOT_DERIVED,CPU_CLK_THREAD_UNHALTED:THREAD_P\n"

+ "PRESET,PAPI_TOT_INS,NOT_DERIVED,INST_RETIRED:ANY_P\n" (user 1073741825 kernel 1)

+ "PRESET,PAPI_L1_DCM,NOT_DERIVED,L1D:REPLACEMENT\n"

+ "PRESET,PAPI_L1_TCM,DERIVED_ADD,L1D:REPLACEMENT,L2_RQSTS:ALL_CODE_RD\n"

+ PRESET,PAPI_BR_MSP,NOT_DERIVED,BR_MISP_RETIRED:CONDITIONAL\n"

+

PRESET,PAPI_TLB_DM,DERIVED_ADD,DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK,DTLB_STORE_

MISSES:MISS_CAUSES_A_WALK\n"

+ "PRESET,PAPI_TLB_IM,NOT_DERIVED,ITLB_MISSES:MISS_CAUSES_A_WALK\n"

+ */

+ // array=(long long*)malloc(max_iters*sizeof(long long));

+ if((result=PAPI_library_init(PAPI_VER_CURRENT))!=PAPI_VER_CURRENT)

+ printf("Error PAPI library init:%s\n",PAPI_strerror(result));

+ /*create papi eventset and add events*/

+ if((result=PAPI_create_eventset(&eventset))!=PAPI_OK)

+ printf("Error PAPI create event:%s\n",PAPI_strerror(result));

+

87

+

if((result=PAPI_add_named_event(eventset,"L1D:REPLACEMENT,L2_RQSTS:ALL_CODE_RD:u=1"))

!=PAPI_OK)

+ printf("Error PAPI add event1:%s\n",PAPI_strerror(result));

+

if((result=PAPI_add_named_event(eventset,"L1D:REPLACEMENT,L2_RQSTS:ALL_CODE_RD:u=0:k

=1"))!=PAPI_OK)

+ printf("Error PAPI add event2:%s\n",PAPI_strerror(result));

+ if((result=PAPI_start(eventset))!=PAPI_OK)

+ printf("Error PAPI start:%s\n",PAPI_strerror(result));

+ PAPI_read(eventset,values);

+

+/*end PAPI setup*/

 /* ..

 * .. Executable Statements ..

 */

@@ -115,29 +249,205 @@

 /*

 * Loop over the columns of A

 */

- for(j = 0; j < N; j += nb)

- {

- n = N - j; jb = Mmin(n, nb);

+ for(j = 0; j < N; j += nb)

+ {

+ n = N - j; jb = Mmin(n, nb);

 /*

 * Release panel resources - re-initialize panel data structure

 */

- (void) HPL_pdpanel_free(panel[0]);

88

- HPL_pdpanel_init(GRID, ALGO, n, n+1, jb, A, j, j, tag, panel[0]);

-/*

- * Factor and broadcast current panel - update

+ (void) HPL_pdpanel_free(panel[0]);

+ /*start papi read*/

+

+

+

+ PAPI_start(eventset);

+

+ HPL_pdpanel_init(GRID, ALGO, n, n+1, jb, A, j, j, tag, panel[0]);

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

+ // totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ //totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[0][num_iters]=totcyc;

+ eventVal1[0][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[0][num_iters]=values[1];

+ rawVal1[0][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[0][num_iters]=rawAfter2-rawBefore2;

+

89

+/*end papi read*/

+

+ /* Factor and broadcast current panel - update

 */

- HPL_pdfact(panel[0]);

- (void) HPL_binit(panel[0]);

+ /*start papi read*/

+

+ PAPI_start(eventset);

+

+ HPL_pdfact(panel[0]);

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

+ // totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ // totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[1][num_iters]=totcyc;

+ eventVal1[1][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[1][num_iters]=values[1];

+ rawVal1[1][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[1][num_iters]=rawAfter2-rawBefore2;

+ /*end papi read*/

90

+

+/*initilize panel*/

+ /*start papi read*/

+

+ PAPI_start(eventset);

+

+ (void) HPL_binit(panel[0]);

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

+ // totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ //totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[2][num_iters]=totcyc;

+ eventVal1[2][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[2][num_iters]=values[1];

+ rawVal1[2][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[2][num_iters]=rawAfter2-rawBefore2;

+

+ /*end papi read*/

+

+/*broadcast*/

+

91

+ /*start papi read*/

+

+ PAPI_start(eventset);

 do

 { (void) HPL_bcast(panel[0], &test); }

 while(test != HPL_SUCCESS);

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

+ // totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ // totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[3][num_iters]=totcyc;

+ eventVal1[3][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[3][num_iters]=values[1];

+ rawVal1[3][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[3][num_iters]=rawAfter2-rawBefore2;

+

+ /*end papi read*/

+

+/*HPL_bwait*/

+ /*start papi read*/

+

92

+ PAPI_start(eventset);

 (void) HPL_bwait(panel[0]);

- HPL_pdupdate(NULL, NULL, panel[0], -1);

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

+ // totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ // totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[4][num_iters]=totcyc;

+ eventVal1[4][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[4][num_iters]=values[1];

+ rawVal1[4][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[4][num_iters]=rawAfter2-rawBefore2;

+

+ /*end papi read*/

+

+ /*pannel update*/

+

+ /*start papi read*/

+

+ PAPI_start(eventset);

+ HPL_pdupdate(NULL, NULL, panel[0], -1);

93

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

+ // totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ // totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[5][num_iters]=totcyc;

+ eventVal1[5][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[5][num_iters]=values[1];

+ rawVal1[5][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[5][num_iters]=rawAfter2-rawBefore2;

+

+ /*end papi read*/

+

 /*

 * Update message id for next factorization

 */

+ /*start papi read*/

+

+ PAPI_start(eventset);

 tag = MNxtMgid(tag, MSGID_BEGIN_FACT, MSGID_END_FACT);

- }

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

94

+

+ //totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ //totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[6][num_iters]=totcyc;

+ eventVal1[6][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[6][num_iters]=values[1];

+ rawVal1[6][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[6][num_iters]=rawAfter2-rawBefore2;

+ //printf("%lld %lld\n",rawAfter2,rawBefore2);

+ /*end papi read*/

+ num_iters++;

+

+ }

 /*

 * Release panel resources and panel list

 */

@@ -147,4 +457,57 @@

 /*

 * End of HPL_pdgesv0

 */

+/*start papi message*/

+

+if((result=PAPI_stop(eventset,values))!=PAPI_OK)

95

+ printf("Error PAPI stop:%s\n",PAPI_strerror(result));

+/* for(int i=0;i<num_iters;i++)

+ {

+ printf("%d 1-panelInit %d %lld %lld ",i,array[0][i],eventVal1[0][i],eventVal2[0][i]);

+ printf("2-pdfact %d %lld %lld ",array[1][i],eventVal1[1][i],eventVal2[1][i]);

+ printf("3-binit %d %lld %lld ",array[2][i],eventVal1[2][i],eventVal2[2][i]);

+ printf("4-bcast %d %lld %lld ",array[3][i],eventVal1[3][i],eventVal2[3][i]);

+ printf("5-bwait %d %lld %lld ",array[4][i],eventVal1[4][i],eventVal2[4][i]);

+ printf("6-update %d %lld %lld ",array[5][i],eventVal1[5][i],eventVal2[5][i]);

+ printf("7-mnxtmgrid %d %lld %lld \n",array[6][i],eventVal1[6][i],eventVal2[6][i]);

+ }

+ */

+ for(int i=0;i<7;i++)

+ {

+/* printf("\n*****************the %dth read

cycle************************************\n",i+1);

+ cal_stats(num_iters,array[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("Total cost for PAPI_read over %d iterations \n", num_iters);

+ printf("min cycles : %lld\nmax cycles : %lld\naverage cycles : %lf\nstandard deviation:

%lf\n",

+ min[i],max[i],avag[i],std[i]);

+

+ printf("-------the %dth l1-icm event---------\n",i+1);

+ cal_stats(num_iters,eventVal1[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("min val : %lld\nmax val : %lld\naverage val : %lf\nstandard deviation: %lf\n",

+ min[i],max[i],avag[i],std[i]);

+ printf("-------the %dth l1-dcm event---------\n",i+1);

+ cal_stats(num_iters,eventVal2[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("min val : %lld\nmax val : %lld\naverage val : %lf\nstandard deviation: %lf\n",

+ min[i],max[i],avag[i],std[i]);

96

+*/

+ printf("\n*****************the %dth read

cycle************************************\n",i+1);

+ cal_stats(num_iters,array[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("Total cost for PAPI_read over %d iterations \n", num_iters);

+ printf("\naverage cycles : %lf\n",avag[i]);

+

+ printf("\n-------the %dth papi_start/stop user event ---------\n",i+1);

+ cal_stats(num_iters,eventVal1[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("\naverage val : %lf\\n",avag[i]);

+ printf("\n-------the %dth papi_start/stop kernel event ---------\n",i+1);

+ cal_stats(num_iters,eventVal2[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("\naverage val : %lf\n",avag[i]);

+ printf("\n-------the %dth raw user_event for papi_read ---------\n",i+1);

+ cal_stats(num_iters,rawVal1[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("\naverage val : %lf\\n",avag[i]);

+ printf("\n-------the %dth raw kernel_event for papi_read ---------\n",i+1);

+ cal_stats(num_iters,rawVal2[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("\naverage val : %lf\n",avag[i]);

+ }

+

+/*end papi message*/

 }

+

97

Appendix D: Code patch for STREAM benchmark

--- stream.c 2017-10-26 15:33:09.632593045 -0400

+++ stream1.c 2017-10-26 15:32:20.980177391 -0400

@@ -46,6 +46,10 @@

 # include <float.h>

 # include <limits.h>

 # include <sys/time.h>

+# include "../papi/papi/src/papi.h"

+#include "stdio.h"

+#include "stdlib.h"

+#include "string.h"

 /*---

 * INSTRUCTIONS:

@@ -109,7 +113,7 @@

 #endif

 #endif

 #ifndef NTIMES

-# define NTIMES 10

+# define NTIMES 1000

 #endif

 /* Users are allowed to modify the "OFFSET" variable, which *may* change the

@@ -204,6 +208,97 @@

 #ifdef _OPENMP

 extern int omp_get_num_threads();

 #endif

+/*add for papi test stats */

98

+// rdpmc code

+static inline unsigned long long rdpmc(unsigned int counter) {

+

+ unsigned int low, high;

+

+ __asm__ volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (counter));

+

+ return (unsigned long long)low | ((unsigned long long)high) <<32;

+}

+

+int partition(long long a[], int l, int r) {

+ long pivot, i, j, t;

+ pivot = a[l];

+ i = l; j = r+1;

+

+ while(1)

+ {

+ do ++i; while(a[i] < pivot && i < r);

+ do --j; while(a[j] > pivot);

+ if(i >= j) break;

+ t = a[i]; a[i] = a[j]; a[j] = t;

+ }

+ t = a[l]; a[l] = a[j]; a[j] = t;

+ return j;

+}

+void quickSort(long long a[], int l, int r)

+{

+ int j;

+

+ if(l < r)

99

+ {

+ // divide and conquer

+ j = partition(a, l, r);

+ quickSort(a, l, j-1);

+ quickSort(a, j+1, r);

+ }

+

+}

+void do_percentile(int num_iters,long long *a, long long *percent25, long long *percent50,

long long *percent75,long long *percent99)

+{

+ long long *a_sort;

+ a_sort = calloc(num_iters,sizeof(long long));

+ memcpy(a_sort,a,num_iters*sizeof(long long));

+ int i_25=(int)num_iters/4;

+ int i_50=(int)num_iters/2;

+ int i_75=(int)num_iters/4*3; // index for 75%, not quite accurate cause didn't take even or

odd in consideratio

+ int i_99=(int)num_iters/10*9.9;

+ quickSort(a_sort,0,num_iters-1);

+

+

+ *percent25=a_sort[i_25];

+ *percent50=a_sort[i_50];

+ *percent75=a_sort[i_75];

+ *percent99=a_sort[i_99];

+ free(a_sort);

+ a_sort=NULL;

+

+}

100

+static void

+print_percentile(long long percent25, long long percent50, long long percent75,long long

percent99)

+{

+ printf ("25%% cycles : %lld\n50%% cycles : %lld\n75%% cycles : %lld\n99%% cycles :

%lld\n",

+ percent25,percent50,percent75,percent99);

+}

+static void cal_stats(int num_iters,long long *array, long long *min,

+ long long *max, double *avag,double *std){

+ int i; double tmp;

+ long long percent25, percent50, percent75, percent99;

+ *max=*min=array[0];

+ *avag=0;*std=0;

+ for(i=0;i<num_iters;i++){

+ if(*max<array[i]) *max=array[i];

+ if(*min>array[i]) *min=array[i];

+ *avag+=(double)array[i];

+ // printf("%d-%lld \n",i,array[i]);

+

+ }

+ *avag=*avag/(double)num_iters;

+ for (i = 0; i < num_iters; i++) {

+ tmp = (double)array[i] - (*avag);

+ *std += tmp * tmp;

+ }

+ *std=sqrt(*std/num_iters);

+ do_percentile(num_iters,array,&percent25,&percent50,&percent75,&percent99);

+

+ print_percentile(percent25,percent50,percent75,percent99);

101

+}

+

+

+

 int

 main()

 {

@@ -213,7 +308,44 @@

 ssize_t j;

 STREAM_TYPE scalar;

 double t, times[4][NTIMES];

-

+/*-- setup -- papi read TLB miss*/

+ int eventset=PAPI_NULL;

+ int result;

+ int readNum=4;

+ int num_iters=0;

+ int max_iters=NTIMES;

+ long long totcyc,array[readNum][max_iters],values[3],lastVal1,lastVal2,

+ eventVal1[readNum][max_iters],eventVal2[readNum][max_iters],

+ rawVal1[readNum][max_iters],rawVal2[readNum][max_iters],

+ rawBefore1,rawBefore2,rawAfter1,rawAfter2;

+ long long min[readNum],max[readNum];

+ double avag[readNum],std[readNum];

+

+ #define USER_EVENT 0//1073741825

+ #define KERNEL_EVENT 1

+ /*

+ haswell machine event name table

+ "PRESET,PAPI_TOT_CYC,NOT_DERIVED,CPU_CLK_THREAD_UNHALTED:THREAD_P\n"

102

+ "PRESET,PAPI_TOT_INS,NOT_DERIVED,INST_RETIRED:ANY_P\n" (user 1073741825 kernel

1)

+ "PRESET,PAPI_L1_DCM,NOT_DERIVED,L1D:REPLACEMENT\n"

+ "PRESET,PAPI_L1_TCM,DERIVED_ADD,L1D:REPLACEMENT,L2_RQSTS:ALL_CODE_RD\n"

+ PRESET,PAPI_BR_MSP,NOT_DERIVED,BR_MISP_RETIRED:CONDITIONAL\n"

+

PRESET,PAPI_TLB_DM,DERIVED_ADD,DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK,DTLB_STORE_

MISSES:MISS_CAUSES_A_WALK\n"

+ "PRESET,PAPI_TLB_IM,NOT_DERIVED,ITLB_MISSES:MISS_CAUSES_A_WALK\n"

+ */

+

+ if((result=PAPI_library_init(PAPI_VER_CURRENT))!=PAPI_VER_CURRENT)

+ printf("Error PAPI library init:%s\n",PAPI_strerror(result));

+ /*create papi eventset and add events*/

+ if((result=PAPI_create_eventset(&eventset))!=PAPI_OK)

+ printf("Error PAPI create event:%s\n",PAPI_strerror(result));

+

+

if((result=PAPI_add_named_event(eventset,"DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK,DTLB_

STORE_MISSES:MISS_CAUSES_A_WALK:u=1"))!=PAPI_OK)

+ printf("Error PAPI add event:%s\n",PAPI_strerror(result));

+

if((result=PAPI_add_named_event(eventset,"DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK,DTLB_

STORE_MISSES:MISS_CAUSES_A_WALK:k=1:u=0"))!=PAPI_OK)

+ printf("Error PAPI add event:%s\n",PAPI_strerror(result));

+ PAPI_start(eventset);

+ PAPI_read(eventset,values);

 /* --- SETUP --- determine precision and check timing --- */

 printf(HLINE);

103

@@ -306,17 +438,49 @@

 scalar = 3.0;

 for (k=0; k<NTIMES; k++)

 {

+

 times[0][k] = mysecond();

+/*STREAM_COPY*/

+/*papi start*/

+ PAPI_start(eventset);

+

 #ifdef TUNED

 tuned_STREAM_Copy();

 #else

 #pragma omp parallel for

 for (j=0; j<STREAM_ARRAY_SIZE; j++)

- c[j] = a[j];

+ {

+ c[j] = a[j];

+ }

 #endif

+

 times[0][k] = mysecond() - times[0][k];

-

+

 times[1][k] = mysecond();

+

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

104

+ totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[0][num_iters]=totcyc;

+ eventVal1[0][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[0][num_iters]=values[1];

+ rawVal1[0][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[0][num_iters]=rawAfter2-rawBefore2;

+/*papi stop*/

+

+/*STREAM_scale*/

+/*papi start*/

+ PAPI_start(eventset);

 #ifdef TUNED

 tuned_STREAM_Scale(scalar);

 #else

@@ -327,6 +491,29 @@

 times[1][k] = mysecond() - times[1][k];

 times[2][k] = mysecond();

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

105

+ totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[1][num_iters]=totcyc;

+ eventVal1[1][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[1][num_iters]=values[1];

+ rawVal1[1][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[1][num_iters]=rawAfter2-rawBefore2;

+

+

+/*STREAM_add*/

+/*papi start*/

+ PAPI_start(eventset);

 #ifdef TUNED

 tuned_STREAM_Add();

 #else

@@ -337,6 +524,29 @@

 times[2][k] = mysecond() - times[2][k];

 times[3][k] = mysecond();

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

106

+ totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[2][num_iters]=totcyc;

+ eventVal1[2][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[2][num_iters]=values[1];

+ rawVal1[2][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[2][num_iters]=rawAfter2-rawBefore2;

+/*papi stop*/

+

+/*STREAM_triad*/

+/*papi start*/

+ PAPI_start(eventset);

 #ifdef TUNED

 tuned_STREAM_Triad(scalar);

 #else

@@ -345,6 +555,27 @@

 a[j] = b[j]+scalar*c[j];

 #endif

 times[3][k] = mysecond() - times[3][k];

+

+ rawBefore1=rdpmc(USER_EVENT); //raw rdpmc measure USER_EVENT for PAPI_read

+ rawBefore2=rdpmc(KERNEL_EVENT); // raw rdpmc measure KERNEL_EVENT for PAPI_read

+

107

+ totcyc=PAPI_get_real_cyc();

+ PAPI_read(eventset,values);

+ totcyc=PAPI_get_real_cyc()-totcyc; // measure total cycle cost by PAPI_read

+

+ rawAfter1=rdpmc(USER_EVENT);

+ rawAfter2=rdpmc(KERNEL_EVENT);

+

+ PAPI_stop(eventset,values);

+

+ array[3][num_iters]=totcyc;

+ eventVal1[3][num_iters]=values[0]; // event value measured by papi_start/stop

+ eventVal2[3][num_iters]=values[1];

+ rawVal1[3][num_iters]=rawAfter1-rawBefore1; // event value measured by rdpmc

+ rawVal2[3][num_iters]=rawAfter2-rawBefore2;

+/*papi stop*/

+

+ num_iters++;

 }

 /* --- SUMMARY --- */

@@ -374,8 +605,30 @@

 /* --- Check Results --- */

 checkSTREAMresults();

 printf(HLINE);

-

+/* print papi event*/

+ PAPI_stop(eventset,values);

+/*papi message start*/

+ for(int i=0;i<4;i++){

+ printf("\n*****************the %dth read

108

cycle************************************\n",i+1);

+ cal_stats(num_iters,array[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("Total cost for PAPI_read over %d iterations \n", num_iters);

+ printf("\naverage cycles : %lf\n",avag[i]);

+

+ printf("\n-------the %dth papi_start/stop user event ---------\n",i+1);

+ cal_stats(num_iters,eventVal1[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("\naverage val : %lf\\n",avag[i]);

+ printf("\n-------the %dth papi_start/stop kernel event ---------\n",i+1);

+ cal_stats(num_iters,eventVal2[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("\naverage val : %lf\n",avag[i]);

+ printf("\n-------the %dth raw user_event for papi_read ---------\n",i+1);

+ cal_stats(num_iters,rawVal1[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("\naverage val : %lf\\n",avag[i]);

+ printf("\n-------the %dth raw kernel_event for papi_read ---------\n",i+1);

+ cal_stats(num_iters,rawVal2[i],&min[i],&max[i],&avag[i],&std[i]);

+ printf("\naverage val : %lf\n",avag[i]);

+ }

 return 0;

+

 }

 # define M 20

109

BIOGRAPHY OF THE AUTHOR

Yan Liu was born in September 24th of 1986 in China. She was raised in Shijiazhuang,

Hebei, until 2006. She attended Central South University of Forestry & Technology in China and

received a Bachelor of Science degree in Geographic Information System in 2010. After

graduation, Yan continued her study at the same school as a master student. She achieved her

Master of Science degree in Computer Science in June 2012. She worked as a software engineer

for a year in NanJing Tornado Technology Company for a year after graduation. Yan started her

new adventure in the department of Electrical & Computer Engineering at the University of

Maine as a master graduate research assistant. She is a candidate for the master degree in

computer engineering from the University of Maine in December 2017.

110

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION AND MOTIVATION
	1.1 Motivation
	1.2 Background
	1.2.1 Hardware counters
	1.2.2 PAPI Library

	2 RELATED WORK
	2.1 PAPI Overhead
	2.2 Lower-Level Interface Overhead
	2.3 Other Performance Counter Tools
	2.4 Non-Temporal Overhead

	3 SPEEDING UP PAPI WITH THE RDPMC INSTRUCTION
	3.1 Proposal for using rdpmc in PAPI code
	3.2 RDPMC instruction
	3.3 PAPI rdpmc code

	4 EXPERIMENTAL SETUP
	4.1 PAPI_Cost Benchmark
	4.1.1 PAPI benchmark setup

	4.2 Sobel Edge Detector benchmark
	4.2.1 Sobel Edge Detector benchmark setup

	4.3 High-Performance Linpack (HPL) Benchmark
	4.3.1 HPL benchmark installation and setup [30]

	4.4 STREAM benchmark
	4.4.1 STREAM benchmark setup

	5 RESULTS
	5.1 read () vs rdpmc overhead
	5.2 Additional Event Overhead
	5.3 Read overhead by PAPI version
	5.4 Kernel update influence
	5.5 PAPI_start/stop overhead

	6 CONCLUSION AND FUTURE WORK
	References
	APPENDICES
	Appendix A: Code patch for papi_cost benchmark
	Appendix B: Sobel code
	Appendix C: Code patch for HPL benchmark
	Appendix D: Code patch for STREAM benchmark

	BIOGRAPHY OF THE AUTHOR

