
Enhancing PAPI with Low-Overhead
rdpmc Reads

Yan Liu and Vince Weaver

{yan.liu,vincent.weaver}@maine.edu

University of Maine

ESPT Workshop 2017 — 12 November 2017

PAPI Background

• PAPI, the Performance API – widely used cross-platform

performance library

• Extreme Scale? Finding where performance is going

• We reduced counter read latency in PAPI by 3-10x

1

Hardware Performance Counters

• Counters built into CPU that measure useful

performance info:

◦ Cycles, Instructions

◦ Cache hits/misses

◦ Branch predictor

◦ etc.

2

Self-Monitoring

• Most other tools provide

◦ Aggregate total count – total for entire program run

◦ Statistical sampling – periodically read counters,

extrapolate hot spots based on where interrupted

• PAPI also provides self-monitoring

◦ Putting “calipers” around code of interest, giving exact

counts

◦ Does require inserting code into program, disrupting

results

3

PAPI caliper

PAPI_create_eventset(&eventset);

PAPI_add_named_event(eventset,"PAPI_TOT_CYC");

PAPI_start();

...

PAPI_read(&value_before);

CODE OF INTEREST

PAPI_read(&value_after);

...

PAPI_stop();

4

PAPI read() is the key

• On Linux perf event, by default, uses read() syscall

• This calls into the kernel via syscall (slow) and disrupts

execution

• Is there a better way?

5

rdpmc instruction

• x86 processors support rdpmc instruction which can read

performance counters directly from userspace

• Operating system has to set bit in CR4 to enable this

• NOTE: this only works on the core CPU counters

No Uncore counters, no RAPL counters

6

Add rdpmc to PAPI

• Not a new idea, perfctr (out-of-tree patch dating to

1999) did this and PAPI once supported it

• perf event didn’t originally until we complained. It’s

been there for years but no one had hooked it up

7

rdpmc difficulties

• Dropping rdpmc instruction into code is easy and fast

• If perf event is running things though, problems

◦ Kernel can re-schedule which event in which slot

◦ If multiplexing is going on, events can be swapped out

and counts might not reflect full time running

• Solution is kernel provides a page (per event) that can

be mmap()ed that provides enough info

• Slower than just a rdpmc, but faster than read()

8

rdpmc Pseudocode

do {
seq=pc−>l o c k ; b a r r i e r () ;

c a l c u l a t e m u l t i p l e x ;

g e t c o u n t e r s l o t to r e a d from ;

g e t p r e v i o u s count from k e r n e l ;

rdpmc ()

a d j u s t , s c a l e , h a n d l e m u l t i p l e x ;

} w h i l e (pc−>l o c k != seq) ;

9

rdpmc Linux Bugs Found

• Putting rdpmc in PAPI made various PAPI unit tests fail

◦ CR4 GPF when using multiple threads, rdpmc ref

count was wrong

◦ calling exec() without munmapping also get rdpmc ref

count wrong

◦ when measuring attached process, time accounting

wrong, causing PAPI to scale by hugely wrong number

• All of these were fixed by Linux 4.13

10

rdpmc PAPI results

• PAPI cost, runs million PAPI read()s, these are median results

Vendor Machine read() rdpmc Speedup
cycles cycles

Intel Pentium II 2533 384 6.6x

Intel Pentium 4 3728 704 5.3x

Intel Core 2 1634 199 8.2x

Intel Atom 3906 392 10.0x

Intel Ivybridge 885 149 5.9x

Intel Haswell 913 142 6.4x

Intel Haswell-EP 820 125 6.6x

Intel Broadwell 1030 145 7.1x

Intel Broadwell-EP 750 118 6.4x

Intel Skylake 942 144 6.5x

AMD fam10h Phenom II 1252 205 6.1x

AMD fam15h A10 2457 951 2.6x

AMD fam15h Opteron 2186 644 3.4x

AMD fam16h A8 1632 205 8.0x

11

Haswell Boxplot

5.
4.

0
5.

4.
1

5.
4.

3
5.

5.
0

5.
5.

1

cu
rre

nt
-g

it

PAPI Version

0

200

400

600

800

1000

C
y
c
le

s

Haswell -- PAPI Read Overhead for Recent Releases

17,160 30,908 113,723 17,426 17,332 15,202
13,382

rdpmc

12

Source of Outliers (AMD a10)

0
10

00
20

00
30

00
0

1000

2000

3000

4000

5000
C

y
c
le

s
AMD A10 -- Overhead of first 3000 rdpmc reads

4677 cycles

pagefault /

TLB miss

L1 Cache Misses

38,580 cycles

Interrupt

59,727 cycles

Interrupt

90,850 cycles

Interrupt

0
10

00
20

00
30

00
0

1000

2000

3000

4000

5000

C
y
c
le

s

AMD A10 -- Overhead of first 3000 rdpmc reads

L2 Cache Misses

35,511 cycles

Interrupt
6,107 cycles

13

Reading Multiple

1 2 3 4
Number of Events

0

500

1000

C
y
c
le

s

Haswell -- PAPI_read() overhead as more counters are read

13,739 14,655 9,505 45,575
54.965 15,652 17,263 16,468

read()
rdpmc

14

Historical Comparison (Core2)

pe
rf_

ev
en

t

rd
pm

c

pe
rfc

tr

pe
rfm

on
2

pe
rf_

ev
en

t

re
ad

()
0

500

1000

1500

2000

C
y
c
le

s

core2 Read Latency for Two Events
241,576 12,312 29,042 2,489,204

15

Real-World Results / hpl — Haswell

Caliper around one function, results here are the second

PAPI read() call itself measured using rdpmc

Note: the cycle counter cycles aren’t necessarily the same as rdtsc cycles

Routine Type Cycles L1 DMiss DTLB Miss
User Kernel User Kernel User Kernel

HPL pdpanel init rdpmc 512 0 5 0 0 0
(low mem pressure) read() 461 1755 7 20 0 0

HPL pdfact rdpmc 4019 0 39 0 11 0
(high mem pressure) read() 4551 13,545 43 123 16 16

16

TLB Impact of Multiple Events

Routine Type 2 Events 3 Events 4 Events
User Kernel User Kernel User Kernel

HPL pdpanel init rdpmc 0 0 0 0 0 0
(low mem pressure) read() 0 0 0 0 0 0

HPL pdfact rdpmc 11 0 14 0 16 0
(high mem pressure) read() 16 16 15 17 16 18

17

Now Available in PAPI 5.6 Release

• Enabled by default. Need Linux 4.13 or newer

./papi_avail | grep rdpmc

Fast counter read (rdpmc): yes

18

Future Work

• ARM64 support – should be possible, someone developed

patches but left before contributing

19

Questions?

http://web.eece.maine.edu/~vweaver/projects/papi-rdpmc/

vincent.weaver@maine.edu

20

http://web.eece.maine.edu/~vweaver/projects/papi-rdpmc/

