
UMaine VMW Group Tech Report UMAINE-VMW-TR-FUZZER-UPDATE-2016-11, November 2016

perf fuzzer November 2016 Status Update

Vincent M. Weaver
University of Maine

Electrical and Computer Engineering
vincent.weaver@maine.edu

Abstract
The perf fuzzer utility attempts to find bugs in the Linux
kernel by creating targeted, random, inputs to various in-
terfaces relating to the perf event open() system call.
These random, yet almost correct, inputs are designed to
find corner-cases in the operating system interface that
have been overlooked and may lead to warnings, errors,
crashes, or worse. The fuzzer has found numerous bugs
over the years, many of which have since been fixed
in the upstream Linux kernel. Despite these fixes, the
fuzzer is still capable of crashing Linux.

Most of the easy-to-fix bugs were fixed years ago, and
newly introduced trivial bugs are often also found by
other more generic fuzzers (such as trinity and syzkaller).
The bugs found by perf fuzzer tend to be obscure, hard-
to-reproduce concurrency issues deep inside the kernel.

This document is an update on the current status of the
fuzzer, as well as an overview of the bugs being found,
and attempts to fix them.

A brief overview of this paper was given at the 2016
Linux Plumbers Conference Fuzzing Microconference.

1 Introduction

The perf fuzzer [11, 10] utility creates targeted, random,
inputs designed to exercise the interface surrounding the
Linux perf event open() system call [9].

More generic Linux system call fuzzers exist, such as
trinity [5] and syzkaller [8]. These typically try to exer-
cise all possible system calls at once more or less ran-
domly. In contrast, the perf fuzzer has knowledge of
other system calls that provide inputs to the fuzzer, as
well as system calls known to operate on file descriptors
returned by the call. This includes complex interactions
with mmap(), ioctl(), poll(), prctl(), read(), and
signal(). It is unlikely that a generic fuzzer would set
up valid interactions among all of these system calls by
random chance.

2 Motivation

The primary motivation for the design of the fuzzer
was to reassure sysadmins of high-performance com-
puting (HPC) systems that it was safe to allow users
full access to the perf event open() syscall (via the
perf event open() interface. Sysadmins tend to be
paranoid, so by default they would want to completely
disable access if there were any threat at all (this is dif-
ficult currently as perf cannot be disabled in any mean-
ingful way by default, although some distributions apply
custom patches to allow it to be disabled).

There is the perf event paranoid interface, and by
default it has a restrictive setting (“2”) enabling only
user-only events. Detailed performance results, espe-
cially system-wide per-cpu results, work best with the
more permissive (“0”). How can we show this is safe?

Most users of the perf event interface, including the
kernel developers, mostly use the bundled perf tool.
Any interfaces not used by perf are essentially untested.
I work with the PAPI [6] performance library which uses
the perf event open interface in other ways, and in fact
for a while the PAPI validation tests would crash the ker-
nel.

This incident, along with a root exploit found by trin-
ity (due to perf event code I had contributed) led me to
develop the perf fuzzer in order to more thoroughly test
the interface.

Unfortunately the fuzzer has had the opposite re-
sult that I intended; instead of giving confidence that
perf event is safe, it has led for a push to disable the in-
terface altogether [3].

3 Finding Bugs

The perf fuzzer has found numerous bugs over the years,
many of which have been fixed in the upstream Linux
kernel. Despite years of effort, it is still possible to crash
the Linux kernel with the fuzzer.



Most easy-to-fix bugs were fixed years ago. There are
often a number of bugs found the first time perf fuzzer
is found on a new architecture, but after that it levels
off, and newly introduced bugs are found quickly as
many groups use perf fuzzer as a test before submitting
patches.

What is left to be found are long, insidious lurking
bugs that can take days to week to find, and are of-
ten more or less impossible to replicate. I try to report
them, and kernel developers (especially Peter Zijlstra) go
through great trouble trying to reproduce and fix them.
It’s a losing battle though for a variety of reasons.

• Determinism – most remaining bugs are not deter-
ministic. Even with best attempts to guarantee play-
ing back the same syscall order cannot always re-
produce.

• Bugs last past end of program. Either through cor-
rupting data structures, use-after free, or weird RCU
issues. So initial trigger might be long gone.

• It takes long enough to generate a crash (days) that
logging and replaying is not a valid solution.

• Turning on various kernel debug features like lock-
dep, etc. SLAB poison helps a bit. Nothing else re-
ally has turned up much (low hanging fruit already
gone).

• ftrace – It is often recommended to enable ftrace
and gather traces. This takes enormous amounts of
time and disk space and has rarely aided in finding
bugs.

Because it has not been possible to completely elimi-
nate bugs, kernel bisection is usually not possible to try
to track down the causes of bugs. This has also hindered
further development of perf fuzzer; it works so well now
I have had less reason to enhance the fuzzer.

4 Current Bug Status

I try to keep a full list of bugs I find here:
http://web.eece.maine.edu/~vweaver/

projects/perf_events/fuzzer/bugs_found.html

It is hard to keep up to date, as due to the random na-
ture of the fuzzer it can be unclear what kernel commit,
if any, might have fixed a particular bug.

For this report I have run the fuzzer a number of times
on a number of machines and reported the time it took to
crash the machine and what WARNing and errors hap-
pened along the way.

Table 1: Systems fuzzed in this paper.
Architecture name type

x86 64 a10 AMD a10
x86 64 core2 Intel Core2
x86 64 p4 Intel Pentium 4
x86 64 skylake Intel Skylake
x86 64 haswell Intel Haswell

arm pi2 Raspberry Pi 2
sparc spacr64 Sun Ultrasparc

4.1 Experimental Setup

I have a few machines that I consistently run the fuzzer
on. I try for a wide variety of machines, but this is lim-
ited because I cannot use the systems for general work if
there’s a chance the fuzzer might crash it. There’s also
other issues such as noise (the fuzzer can trigger fans),
getting debug messages (usually you need to have a se-
rial console to another machine), and the ability to reboot
the machine if it crashes. (The haswell machine has a bad
habit of crashing with the Ethernet interrupt stuck on and
will take down the entire Ethernet switch when it goes).

Ideally the systems will be running the latest linus-git
kernel; otherwise you end up chasing known and fixed
bugs. Also the kernel devels aren’t excited about chas-
ing bugs in old kernels. This is not much of an issue
on x86 hardware, but can be difficult for architectures
such as ARM. I currently have at least 17 different ARM
boards [1] but I have only fuzzed on Raspberry Pi and
Pandaboard boards because the rest of the systems would
take too much time to get an upstream kernel running on.

The systems actually fuzzed in this report are shown
in Figure 1.

I fuzz with the current version of the perf fuzzer
using the somewhat arbitrarily named helper script
./fast repro99.sh. Instead of letting the fuzzer run
indefinitely (which would lead to impossibly large log
files if trying to reproduce) the script only runs for a few
tens of thousands of syscalls before restarting. In theory
this would make reproducing things faster, although with
the low reproducibility of current bugs this might not be
a useful distinction.

These results are from the 4.9-rc0 kernel just before
the 4.9-rc1 release. I did not test 4.9-rc1 proper because
some sort of change broke the boot on my machines and
bisecting was inconclusive.

The Linux kernel has a mechanism
for limiting the perf event interface, the
/proc/sys/kernel/perf event paranoid file.
Values of -1 mean unrestricted, 0 means allow per-cpu
system wide data, 1 means allow both kernel and
user measurements, and 2 means only allow restricted
userspace measurements.

2

http://web.eece.maine.edu/~vweaver/projects/perf_events/fuzzer/bugs_found.html
http://web.eece.maine.edu/~vweaver/projects/perf_events/fuzzer/bugs_found.html


Table 2: Fuzzer results at paranoid level 2 (user only).
machine warnings time to crash kernel

p4 1 7m49s 4.9-rc0
core2 1 n/a (7days+) 4.9-rc0

haswell 1 3d9h26m 4.9-rc0
skylake 1 7d8h37m 4.9-rc0

a10 1 2d 4.9-rc0
sparc 0 30s 3.2
pi2 ? n/a 4.8?

There is a proposal to add a level of “3” to totally dis-
able events, but the perf event developers have fought
this (though various distributions are maintaining the
patch anyway) [3]. It is actually currently not possible to
disable perf event, either at compile time or at run time,
which is seen as a security issue.

I fuzz at all the various levels in both an attempt to see
the safety the levels, as well as to narrow down the cause
of some of the bugs.

5 Fuzzing Results

The results are split up by paranoid level.
There are a few common warnings that show up at all

levels. The first is the warning when the NMI interrupt
took too much time leading to throttling:

perf: interrupt took too long (3152 > 3135),

lowering kernel.perf_event_max_sample_rate

to 63250

Another is a WARNING in the breakpoint
code which is reproducible and might be an
actual bug but no one has bothered to chase
it down. WARNING: CPU: 0 PID: 24577 at

arch/x86/kernel/hw breakpoint.c:121 Can’t

find any breakpoint slot

5.1 Fuzzing Paranoid Level 2
Paranoid level 2 should be the safest level, and you would
not expect to be able to crash at this level. We can and
do, as shown in the summary in Table 2.

• Sparc64 locks up quickly with BUG: Bad page

state in process kworker/0:2 pfn:0db6e

my kernel is so old (3.2) that this might have been
fixed since. It is hard to get newer kernels on this
machine.

• ARM: the raspberry Pi2 seems to not find any bugs.
It has a very simple and straightforward interface
though and the developers are known to run the
fuzzer themeselves so maybe it is clean. It’s a lot

slower so it would take longer to hit the same num-
ber of syscalls tested.

• The Pentium 4 warned first with
WARNING: CPU: 0 PID: 456 at

arch/x86/events/core.c:1248

x86 pmu start+0xae/0x100 and then crashes
pretty quickly with BAD LUCK: lost 60330898

message(s) from NMI context! It’s arguable
whether anyone cares about Pentium 4 anymore.

• The Core2 machine generates many warnings
but manages to stay up for over a week. It hits
the breakpoint warning. Also generates many
Uhhuh. NMI received for unknown reason

2d on CPU 1. Do you have a strange

power saving mode enabled? Dazed and

confused, but trying to continue. mes-
sages.

• The Haswell machine has a few warnings and
manages to crash spectacularly. No mes-
sage, only [293191.486147] ------------[

cut here ]------------ in the log.

• The skylake machine managed to hang
too. It first hit the breakpoint warn-
ing. INFO: rcu sched self-detected

stall on CPU 3-...: (5249 ticks

this GP) idle=54b/140000000000001/0

softirq=42134142/42134142 fqs=0 (t=5250

jiffies g=60776826 c=60776825 q=84)

rcu sched kthread starved for 5250

jiffies! g60776826 c60776825 f0x0

RCU GP WAIT FQS(3) ->state=0x1 Seems to
be the dreaded perf cgroup attach+0x70/0x70

issue.

• The a10 machine took longer but eventually
crashed, and before that was in a state where it
wasn’t quite crashed but processes would hang for
arbitrary amounts of time.

WARNING: CPU: 2 PID: 29960 at

arch/x86/kernel/hw breakpoint.c:121

Can’t find any breakpoint slot

Crashed pretty hard but somehow the serial console
locked up so it was not possible to get a full record-
ing of the initial error. Did get: NMI watchdog:

BUG: soft lockup - CPU#0 stuck for 22s!

[perf fuzzer:9306]

5.2 Fuzzing Paranoid Level 1
Paranoid level 1 also enables kernel events. Crashing
tends to happen more quickly here, as seen in Table 3.

3



Table 3: Fuzzer results at paranoid level 1 (user+kernel).

machine warnings time to crash kernel
core2 2 1d15h20m 4.9-rc0

haswell 0 21h25m 4.9-rc0
skylake ? n/a (5d+) 4.9-rc0

a10 ? 2h15m 4.9-rc0

• Sparc64 – didn’t bother testing, only old kernel
available so uninteresting

• ARM – didn’t have time to test (pi2 board used in
another project)

• Pentium 4 – didn’t bother testing, it crashed so
quickly and is not common anymore

• Core2 – hit the breakpoint warning. Hit
this: WARNING: CPU: 1 PID: 19400

at kernel/events/ring buffer.c:546

rb free aux+0x40/0xe8 WARNING: CPU: 0

PID: 18824 at kernel/events/core.c:4998

perf mmap close+0x151/0x252. Eventually
locked up with no message.

• Haswell Got this warning: WARNING: CPU: 0

PID: 19729 at kernel/events/core.c:4998

perf mmap close+0x386/0x390 Then
kept chugging past at least one stall:
INFO: rcu sched detected stalls

on CPUs/tasks: 2-...: (0 ticks

this GP) idle=8ed/140000000000000/0

softirq=1096112/1096112 fqs=225

(detected by 6, t=5559 jiffies,

g=1304654, c=1304653, q=181)

Remarkably recovered, but then
INFO: rcu sched detected stalls

on CPUs/tasks: 4-...: (1 GPs

behind) idle=23b/140000000000000/2

softirq=5456919 with hard crash at NMI

watchdog: Watchdog detected hard

LOCKUP on cpu 5 with not much debug info.

• skylake – First this warning: WARNING: CPU: 5

PID: 25876 at kernel/events/core.c:4998

perf mmap close+0x2dd/0x2f0 Then
lots of stalls INFO: rcu sched detected

stalls on CPUs/tasks: 1-...: (1 GPs

behind) idle=e53/140000000000001/2

softirq=17327005/17327006 fqs=1672

(detected by 0, t=5286 jiffies,

g=24835965, c=24835964, q=246) Includ-
ing a big one that shut off the timekeeping source:
clocksource: timekeeping watchdog on

Table 4: Fuzzer results at paranoid level 0 (system-
wide/uncore).

machine warnings time to crash kernel
core2 3 21h19m 4.9-rc0

haswell 3 8h58m 4.9-rc0
skylake 0 4h50m 4.9-rc0

a10 1 7h55m 4.9-rc0

CPU1: Marking clocksource ’tsc’ as

unstable because the skew is too large

But in the end didn’t crash.

• a10 – hung quickly BAD LUCK:

lost 42 message(s) from NMI

context! WARNING: CPU: 0 PID:

21338 at arch/x86/mm/fault.c:435

vmalloc fault+0x58/0x1f0 BUG:

stack guard page was hit at

ffffc90008500000 (stack is

ffffc900084fc000..ffffc900084fffff)

kernel stack overflow (page fault):

0000 [#1] SMP This was reported to linux-kernel
and a fix committed.

5.3 Fuzzing Paranoid Level 0
Paranoid level 0 enables per-CPU events, including
things like uncore, offcore, and RAPL. It exercises a lot
more of the unusual CPU event sources.. Crashing tends
to happen even more quickly here, as seen in Table 4.

• Core2 WARNING: CPU: 0 PID: 24818

at kernel/events/ring buffer.c:546

rb free aux+0x40/0xe8 Breakpoint
warning. WARNING: CPU: 0 PID: 23863

at net/sched/sch generic.c:316

dev watchdog+0xde/0x139 Locked up no
message?

• Haswell

WARNING: CPU: 2 PID: 24400 at

kernel/events/ring buffer.c:546

rb free aux+0x107/0x120 WARNING: CPU: 2

PID: 24400 at kernel/events/core.c:4998

perf mmap close+0x386/0x390 The following
only happens on Haswell and only in uncore mode,
an interrupt register gets stuck. This is likely a
hardware problem. WARNING: CPU: 3 PID: 0

at arch/x86/events/intel/core.c:2093

intel pmu handle irq+0x2ca/0x460 core:

clearing PMU state on CPU#3 We get slab
corruption. I suspect this is due to use-after
free and not a bad DIMM, but who knows.

4



Table 5: Fuzzer results at paranoid level -1 (tracepoints
too).

machine warnings time to crash kernel
core2 0 14m 4.9-rc0

haswell ? didn’t run 4.9-rc0
skylake ? 34m 4.9-rc0

a10 ? lost log 4.9-rc0

Slab corruption (Tainted: G W ):

task struct start=ffff8800bb7e6500,

len=5760 010: 6b 6b 6b 6b 6b 6b

6b 6b 6a 6b 6b 6b 6b 6b 6b 6b

kkkkkkkkjkkkkkkk Single bit error

detected. Probably bad RAM. Crash hard
(nothing in log)

• skylake INFO: rcu sched self-detected

stall on CPU NMI watchdog: Watchdog

detected hard LOCKUP on cpu 7

INFO: rcu sched detected stalls on

CPUs/tasks: Unresponsive.

• a10 WARNING: CPU: 3 PID: 8399

at arch/x86/mm/fault.c:435

vmalloc fault+0x58/0x1f0 BUG:

stack guard page was hit at

ffffc90001720000 (stack is

ffffc9000171c000..ffffc9000171ffff)

5.4 Fuzzing Paranoid Level -1
I usually avoid doing this, as this enables ftrace/trace-
points and this triggers “don’t-do-that-then” type bugs,
such as inserting an interrupt tracepoint inside of the in-
terrupt handler which then overflows causing recursive
interrupts. You can get some pretty spectacular stack
traces, and crashes happen quickly as seen in Table 5.

• core2

NMI watchdog: BUG: soft lockup - CPU#1

stuck for 22s! then hard lockup.

• haswell – did not have a chance to run this

• skylake

NMI watchdog: Watchdog detected hard

LOCKUP on cpu 3 Crashed.

• a10 – this system always seems to hit
this bug, odd the others don’t. BAD

LUCK: lost 43 message(s) from NMI

context! WARNING: CPU: 2 PID: 26737

at arch/x86/mm/fault.c:435

Table 6: Fuzzer as root (lots of /proc).
machine warnings time to crash kernel

core2 ? 1h13m 4.9-rc0

5.5 Fuzzing as Root

Fuzzing as root has all the fun of -1, but also the
perf fuzzer does some wacky thigns to various /proc files
which can be pretty verbose. This is generally not recc-
ommended, but Peter Z has fixed many of the issues so in
general the things preventing this (such as setting impos-
sibly fast interrupt rates) are no longer a problem. See
Table 6. Only ran for core2.

• core2

INFO: rcu sched self-detected stall on

CPU NMI watchdog: Watchdog detected

hard LOCKUP on cpu 0

6 Open Questions

Various questions for discussion.

6.1 Can we design a tool to auto-generate
the equivalent of perf fuzzer?

You can use the kernel header files, the manpage, maybe
even reverse engineer the kernel ABI to figure out what
parameters to send a syscall. How can you train it though
on what combinations of syscalls go together? Trace
perf? Analyze the kernel code somehow?

6.2 Can we enhance kernel to make it pos-
sible to debug the weird perf fuzzer
generated deadlocks?

This is a major stumbling block for me. Recording and
capturing errors after a fuzzing run can take up to an
hour. Trying to find/reproduce the bug can take days,
with little reward or hope the bug will actually be found.

6.3 Can we make anyone care about
fuzzing?

As an academic I have had trouble getting funding or
publications out of this work. The work is considered
“not novel”, “iterative”, or a “solved problem”. Yet the
reviewers often stress I am doing important work and
continue doing it, even without support. I end up feel-
ing like Clifford Stoll [7] who ran into similar problems
when chasing a hacker.

5



6.4 Can we make people contribute back?
Lots of people run fuzzers. However as open source
projects go, they get little feedback. Dave Jones also ran
into this problem with Trinity [2].

Security researchers run and use the fuzzers, but don’t
report bugs, or else report them and get bug bounties and
such without even letting us know. I have had this prob-
lem with perf fuzzer, where possibly CVE-2016-0805
was found with the fuzzer but it has not been possible
to get the author of the talk to confirm or deny this [12].

7 Future Work

There are various pieces of future work I’d like to com-
plete if I have time. The main thing is to get bet-
ter support for some large interfaces that interact with
perf event open, namely cgroups, eBPF, and ftrace.

eBPF is an interesting one, as it is very powerful, but
at the same time is a full programmable language and
fuzzing it would require fuzzing a whole new architec-
ture.

8 Conclusion

The perf fuzzer continues to find bugs in the kernel and
seems as if it will for the foreseeable future, if only be-
cause the bugs it finds are nearly impossible to properly
isolate.

Properly fuzzing and reporting the bugs is boring and
tedious. It is not much fun, and so the work suffers es-
pecially if you are doing it in your rare free time. How-
ever fuzzers are a valuable tool for finding bugs, and thus
we need to power through and keep developing them. If
somehow this process could be more automated (both in
generating the fuzzers and in finding/reporting bugs) it
would be amazing.

9 After the Conference

The Fuzzing and Testing mini-workshop at the 2016
Linux Plumbers Conference was rushed, but it did lead
to useful discussion and outcomes. LWN posted a good
summary of the fuzzer discussion [4].

There is now a push for documenting the kernel syscall
ABIs in a way that can lead to better automated fuzzing.
I put forth the claim that the perf event interface is com-
plicated enough to defy description, but that was not
easily believed. PeterZ backed me up on the fact that
perf fuzzer was still causing crashes whlie the other
fuzzers were not.

Still, it’s difficult enough to intentionally create some-
thing complex like an Intel PT tracing AUX buffer event,
let alone stumble upon how to do it with random fuzzing.

Vyukov, the syzkaller author, strongly suggested that
we fuzzer users compile with the newish KASAN kernel
address sanatizer in order to better find bugs. This was
a great suggestion, as once I got my kernels up to date
(the MODVERSION breakage introduced in 4.9-rc1 was
nearly impossible to track down) I started fuzzing again.
And promptly found a number of bugs via KASAN, in-
cluding a few in the uncore that I think were the ones
we’ve been chasing for a very long time.

At least four bugs have been found and fixed using
perf fuzzer and KASAN.

References
[1] CLOUTIER, M., PARADIS, C., AND WEAVER, V. A raspberry pi

cluster instrumented for fine-grained power measurement. Elec-
tronics 5, 4 (2016), 61.

[2] CORBET, J. Jones: Future development of trinity. Linux Weekly
News (July 2015).

[3] EDGE, J. Disallowing perf event open(). Linux Weekly News
(Aug. 2016).

[4] EDGE, J. A trio of fuzzers. Linux Weekly News (Nov. 2016).

[5] JONES, D. Trinity: A Linux system call fuzzer. http://

codemonkey.org.uk/projects/trinity/.

[6] MUCCI, P. J., BROWNE, S., DEANE, C., AND HO, G. PAPI:
A portable interface to hardware performance counters. In Proc.
Department of Defense HPCMP User Group Conference (June
1999).

[7] STOLL, C. The cuckoo’s egg: tracking a spy through the maze of
computer espionage, 1st ed. Doubleday, 1989.

[8] VYUKOV, D. syzkaller: a distributed, unsupervised, coverage-
guided Linux syscall fuzzer. https://github.com/google/

syzkaller.

[9] WEAVER, V. perf event open manual page. In Linux Program-
mer’s Manual, M. Kerrisk, Ed. Dec. 2013.

[10] WEAVER, V. Fuzzing perf events. Linux Weekly News (Aug.
2015).

[11] WEAVER, V., AND JONES, D. perf fuzzer: Targeted fuzzing of
the perf event open() system call. Tech. Rep. UMAINE-VMW-
TR-PERF-FUZZER, University of Maine, Aug. 2015.

[12] WU, W. PERF: From profiling to kernel exploiting. In HITBSec-
Conf2016.

6

http://codemonkey.org.uk/projects/trinity/
http://codemonkey.org.uk/projects/trinity/
https://github.com/google/syzkaller
https://github.com/google/syzkaller

	Introduction
	Motivation
	Finding Bugs
	Current Bug Status
	Experimental Setup

	Fuzzing Results
	Fuzzing Paranoid Level 2
	Fuzzing Paranoid Level 1
	Fuzzing Paranoid Level 0
	Fuzzing Paranoid Level -1
	Fuzzing as Root

	Open Questions
	Can we design a tool to auto-generate the equivalent of perf_fuzzer?
	Can we enhance kernel to make it possible to debug the weird perf_fuzzer generated deadlocks?
	Can we make anyone care about fuzzing?
	Can we make people contribute back?

	Future Work
	Conclusion
	After the Conference

