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Abstract—
All modern computer systems, including supercomputers, are

vulnerable to a wide variety of security exploits. Performance
analysis tools are an often overlooked source of vulnerabilities.
Performance measurement interfaces can have security issues
that lead to information leakage, denial of service attacks, and
possibly even full system compromise. Desktop systems can
mitigate risk by disabling performance interfaces, but that is
not always possible on HPC systems where performance (and
thus measurement) is paramount. We investigate various ways
of finding security issues in the performance measurement stack.
We introduce the perf fuzzer, a tool that methodically finds bugs
in the Linux perf_event_open() system call. We also discuss
the perf data fuzzer which looks for userspace bugs in the perf
analysis tool. We describe the development of the fuzzing tools,
examine the bugs found, and discuss ways to prevent such bugs
from occurring in the future.

Index Terms—fuzzing, Linux perf, perf event, HPC security

I. INTRODUCTION

Modern high-performance supercomputers are complex sys-
tems. Their design is complicated enough that application
performance cannot be easily estimated. To optimize perfor-
mance a repeated cycle of iterative optimization is undertaken:
performance is measured, the code is improved, then the
process cycles back again to the measurement step.

Obtaining accurate performance information is always a
challenge. To aid in this, modern computer processors pro-
vide hardware performance counters which provide low-level
access to detailed information gathered during the execution
of code. This can provide great insight into the sources of
slowdowns and bottlenecks found in modern high-performance
computing (HPC) workloads.

The constant drive for fast and efficient code means that
users of HPC systems are much more likely to depend on the
results of performance counters than the users of desktop or
mobile systems. This puts pressure on system administrators
to enable the performance counters, despite the potential se-
curity issues this exposes. This danger is somewhat mitigated
because HPC systems tend to exist in locked down controlled
environments. Useful code does get developed and brought
in from outside these protected spaces, so it is critical that
the operating systems and performance tools running on the
untrusted code are robust against security issues.

There are various security concerns exposed by the use of
hardware performance counters:

• Detailed timing results can allow information leakage.
(See the recent Spectre and Meltdown [1] issues as
prominent examples of such attacks).

• Using the counters requires system-level access to low
level CPU interfaces such as model specific registers
(MSRs). Users with direct access to MSRs can com-
promise the entire system. Usually this is prevented by
having the operating system mediate access to the MSRs,
but this depends on this interface being secure.

• Device drivers controlling the counters should be robust
against invalid input, but bugs in this area can lead
to crashes (denial of service) or even code execution,
privilege escalation, and compromise of the machine.

In this paper we describe tools we have developed to
automatically find bugs in Linux performance infrastructure
so they can proactively be fixed before they can be exploited.

A. Secure Access to the Hardware Counters

Programs wishing to access the performance counters typ-
ically cannot do so directly, instead a library or operating
system provides an abstracted interface. On x86 compatible
systems the counters are implemented as MSRs which by
default require kernel-level permissions to access.

On Linux the official method of accessing performance
information is by using the perf_event interface and the
associated perf_event_open() system call [2]. The user
cannot access low-level hardware directly, rather the operating
system is used, and the operating system is responsible for
making sure the performance counters are properly managed.
This can simplify the tools, but adds overhead to the perfor-
mance measurements.

Some low-overhead system monitoring tools such as Lik-
wid [3] bypass perf_event and access the MSRs directly.
This requires privileged access; to talk to the MSRs a driver
is needed, often the minimal Linux /dev/msr interface that
allows user code to talk directly to the hardware. While this
has low overhead, it turns out that direct, unrestricted access
to the MSRs is not desirable. Arbitrary write access allows
dangerous actions, such as redirecting interrupt handlers to
your own code which leads to system compromise. Even read



access is considered dangerous, if only because it can leak
information useful to hackers, such as the address of operating
system structures in memory.

Attempts have been made to harden the user MSR inter-
face by only allowing known safe MSRs (via the msr-safe
driver [4]). This work is not included with Linux by default
and needs to be separately compiled and installed. Despite
these precautions, there has been a push by Linux kernel
developers to eliminate any direct user access to MSRs as
they believe it is not possible to fully harden such usage.

B. Fuzzing for Security
An important characteristic of an operating system is being

able to prevent a hostile user from compromising the system’s
security. In practice bugs appear in operating system code
despite the developer’s best efforts to avoid them.

In an attempt to proactively find bugs in the Linux kernel we
have written the perf fuzzer, a tool that methodically probes
Linux’s perf_event_open() system call. We do this by
fuzzing, which is a technique of finding bugs by systematically
generating invalid or almost invalid input for an interface and
seeing if it can cause crashes. Although it sounds unlikely,
this is an extremely effective way of finding bugs, especially
simple programming mistakes such as poorly validated input
or off-by-one errors. Fuzzing can be done at any level of the
computing stack, from high-level user programs [5] down to
the underlying hardware implementation [6]. In the best case
nothing happens, but often the malformed inputs can cause
crashes, or worse, lead to exploitable security issues.

To date our fuzzer has found seventeen major bugs in the
Linux kernel. Most are denial of service (DoS) bugs that can
crash a system, but at least one is a local root exploit. Fixes for
all of these bugs have been contributed back upstream to the
main Linux kernel source tree. Testing continues to find new
bugs, although they are becoming more obscure and harder to
isolate and fix.

In addition to our kernel work, we also are working on
the perf data fuzzer which probes the widely used userspace
perf analysis tool.

C. Does this Apply to HPC?
One might ask, in a highly regulated supercomputing en-

vironment, who cares about security issues? Unlike typical
desktop, mobile, or server computing environments in HPC
users are tightly screened and machines tend to be isolated
from the open internet.

In these cases security is still a concern. Bugs that can crash
a HPC system (either accidentally or maliciously) can lead to
long, expensive downtimes. Sensitive jobs are often run on
these systems, so information leakage or full compromise can
lead to data or code being obtained by non-authorized users.
Not all code has been fully audited and users are not always
careful about where they source code from. Finally, do not
underestimate the ingenuity of outside actors being able to
bring down sensitive computing machinery via obscure bugs: a
prime example of this is the Stuxnet attack [7] which managed
to infect air-gapped systems.

II. RELATED WORK

Related work in this area is split between supercomputing
security research and general fuzzing research.

A. Supercomputer Security

Previous supercomputer security research has often been
concerned with issues other than the performance measure-
ment interface. Usually the concerns are things such as proper
user authentication, stolen computing time, and the possibility
of leaking information over the network [8]–[10].

Malin and van Heule [11] describe using continuous moni-
toring and software inventory control to manage the security of
large clusters. Costin [12] looks at HPC tools that can lead to
security issues, but in this case it was infrastructure monitoring
tools, not performance ones.

B. Fuzzing

The use of random inputs when testing computer systems
has a long history, although at times it has been considered
less effective than more formal testing methods [13]. The term
“fuzzing” was first coined by Miller in 1988 as part of a class
project determining why line noise over a “fuzzy” modem
connection would crash many UNIX utilities. This research
was extended by Miller et al. [5] to investigate the causes
of the crashes on a wide range of UNIX systems. While they
focus on userspace utilities rather than kernel interfaces, many
of the bugs they find (including NULL pointer dereferences
and lack of bounds checking on arrays) are the same as those
found by us with perf fuzzer 25 years later.

Miller et al. revisited tool fuzzing in 1995 [14] and found
that they could still crash over 40% of common system utilities
on UNIX and Linux systems. Forrester and Miller extended
the work to look at Windows NT [15] and Miller, Cooksey
and Moore looked at Mac OSX [16] userspace programs and
found similar userspace error rates to those on UNIX. Most
of these investigations look at userspace utilities; our work
concentrates on operating system kernel interfaces.

Operating systems have many potential interfaces exposed
to users that can harbor bugs. Carrette’s CrashMe [17] program
attempts to crash the operating system by fuzzing the instruc-
tion stream. Unlike our work, this does not target system calls
directly, but the entire operating system and underlying hard-
ware in the face of random processor instructions. Medonça
and Neves [18] fuzz at the device driver level by externally
sending malicious inputs to wireless networking hardware.
Cadar et al. [19] use an analysis tool that examines executables
and generates inputs based on program flow; they apply this
to finding crashing bugs in the Linux filesystem code with
malicious filesystem images. Another interface open for bugs
in modern systems is the virtual machine interface [20], [21].

Koopman et al. [22] look at the robustness of five differ-
ent operating systems (Mach, HP-UX, QNX, LynxOS and
Stratus FTX) by injecting random data at the operating
system interface, focusing on seven commonly used system
calls: read(), write(), open(), close(), fstat(),
stat(), and select(). On four of the five systems bugs



severe enough to require a restart were found. Our work is
similar to this, but involves focusing on a single system call
on the Linux operating system.

Existing Linux system call fuzzers such as Jones’ Trin-
ity [23] and Ormandy’s iknowthis [24] test the majority of
available system calls with varied parameters. They currently
do not focus on one system call, and only have limited support
for using system call dependency information to chain together
related system calls the way that perf fuzzer can.

Vyukov’s syzkaller [25] is currently one of the more popular
fuzzers actively being used in Linux development. It depends
on custom written templates that describe the system calls,
but adds coverage-based support that instruments the kernel to
automatically detect when a fuzzed access has caused issues.
While this is much more powerful than plain random testing,
it still misses some of the bugs found by perf_fuzzer, as
we use detailed knowledge of what makes a valid sequence
of perf event related system calls, something that is hard for
a fully automated fuzzer to work out experimentally.

III. SECURITY ISSUES IN HPC TOOLS

HPC developers typically do not interact with the Linux
kernel directly, but rather they use various high-level tools
which collect performance data and provide data analysis.
These tools may talk directly to the Linux perf event interface,
or they might interface via a lower level library (such as
PAPI [26]) which provides an abstraction to the underlying
operating system. Each layer of abstraction makes it easier to
code, but the downside it that each level can be the home to
security issues.

Programs being run in an HPC environment are usually
not known for security issues. They tend to be long-running
simulations doing large amounts of floating point math and
only rarely take in user input or communicate with the outside
world. One should not be complacent though, as any process
on Linux has the power to communicate with the kernel and
do things like start network connections. A clever hacker that
finds a bug in an otherwise run-of-the-mill simulation could
potentially cause a lot of trouble if they can convince the
program to operate on untrusted input.

A more likely source of security issues can be found in the
performance measurement area, as these tools interact with
both the operating system and the user in complex ways that
are harder to audit. If you can trick a user into running a
performance analysis tool on untrusted input (say a previously
recorded perf.data file of unknown origin) and this input
was specifically constructed to trigger a buffer overrun, this
could take control of the tool execution. This could lead
to dangerous code being executed, such as erasing files or
opening illicit network connections. While this is bad, in
theory the danger should be limited in scope to whatever the
user could do with their account.

This crafting of invalid input that can corrupt or crash the
Linux perf tool is not hypothetical. In this paper we discuss
the perf data fuzzer, a tool we have written that has found

exploitable bugs. Our findings are not unique, various other
similar bugs have been found with the tool over the years.

To truly cause trouble, one needs to be able to escalate
beyond user code and disrupt the operating system. One way
of doing this is by finding bugs triggered by the system call
interface. This is the goat of our perf fuzzer utility, to test
how robust the Linux perf_event_open() syscall is when
probed by untrusted input.

IV. MOTIVATION FOR THE PERF FUZZER

We undertook the design of the perf fuzzer after ongoing
frustration from finding bugs in the perf_event_open()
system call. We use the PAPI [26] performance library, which
is widely used in the HPC community. PAPI tends to exercise a
different subset of functionality than the more commonly used
perf command-line utility distributed with the Linux kernel
source. Since most kernel developers restrict their perf event
usage to perf, any functionality not exercised by that tool
can break without being noticed. Work on PAPI has turned up
numerous kernel bugs, as seen in Table I. These issues were
all found by programs trying to exercise normal, expected
functionality of the interface. It is easy to add reactionary
tests that test for these bugs after they are known, such as
our perf_event_test [27] test suite. However this does
not help in finding new, unknown bugs introduced during the
fast-paced Linux kernel development process.

The existing Trinity fuzzer added support for
perf_event_open() soon after the system call was
introduced. Trinity initially had limited support for the call,
making it extremely unlikely that valid or near-valid events
would be generated. We contributed slightly better support
in November 2011 as an ongoing part of research into the
interface. Not much came of this until April 2013 when
Rantala [28] found a bug using Trinity where the 64-bit
attr.config value was being copied to a 32-bit integer
before being sanity checked. This bug meant that the high
32-bits could be controlled by the user, and eventually it
was discovered that this could be exploited by a local user
to get root privileges (CVE-2013-2094). More worrisome,
the kernel code change that introduced this bug happened in
2010 and was possibly being exploited soon after, but it took
3 years for the bug to be found and fixed. This incident is
what sparked perf fuzzer development.

V. THE PERF FUZZER

The Linux perf event performance monitoring subsystem
has a complex interface that is not completely exercised
by a naı̈ve fuzzer. A full description of the interface can
be found in the perf_event_open.2 manpage [2]. The
perf_event_open() interface is complex enough that it
has the longest manual page of any system call, longer even
than the elaborate ptrace() system call.

The prototype for the system call looks like this:
int perf_event_open(struct perf_event_attr *attr,

pid_t pid, int cpu, int group_fd,
unsigned long flags);



It takes five input arguments:
• attr is a complicated structure describing the event to

be created with 40+ inter-related fields,
• pid specifies which process id to monitor (0 indicating

current, -1 indicating all),
• cpu specifies which CPU core to monitor (-1 indicating

all),
• group_fd allows an event to join a group leader, cre-

ating a group of events that can be read simultaneously,
• and flags allows setting various optional event flags.
There are two common ways of using perf event: one is

monitoring a program belonging to a user (anyone can do
this by default), the other is system-wide measurement (which
generally requires root permissions to avoid leaking sensitive
information between users).

Opening an event with perf_event_open() is only
a small part of the perf event experience. Many bugs that
are found do not happen solely at open, but also depend on
interactions with other calls. Various other kernel interfaces
interact with perf event:

• prctl() (process control) can be used to start and stop
all events in a process,

• ioctl() is used to start, stop, and otherwise get infor-
mation about events,

• read() returns the current values of counters and some
additional information,

• mmap() can map pages that provide event info as well
as a circular ring buffer where the kernel places sampled
event information,

• poll() can wait for overflow or buffer-full signals,
• and, various files under /proc and /sys provide extra

event information and configuration settings.
The perf event implementation involves low-level code

scattered throughout the kernel, making the interface complex
to debug. Hardware events are generally programmed by
writing to CPU model specific registers (MSRs on x86).
Hardware events can overflow, triggering non-maskable (NMI)
interrupts. Software events (counts of kernel maintained val-
ues such as context-switches and interrupt counts) require
placing perf event code in time critical kernel functions. The
perf event interface has also grown to include the hardware
breakpoint interface and has major connections to the ftrace
system tracing interface. In addition support has been added
to support running Berkeley Packet Filter (BPF) programs in
the kernel in conjunction with events, further increasing the
potential sources of bugs.

A. The perf fuzzer Design
Jones introduced the Trinity fuzzer [23], [29], first as

scrashme in 2006, and then renamed Trinity in 2010. Trinity
does a remarkable job of finding bugs, but it currently runs
system calls mostly independently, and so takes a long time to
discover certain bugs. An interface like perf event often has
bugs that involve various system calls interacting in a complex
set of ways that are hard to describe with the current Trinity
infrastructure.

The perf fuzzer re-uses the perf_event_open()
fuzzing routines provided by Trinity. Sharing code between
the two projects avoids duplicated work and ensures that any
improvements in one project are included in the other.

At startup the perf fuzzer parses the command line. It seeds
the random number generator, either based on the time, or
else via a value passed by the user (to enable re-running with
same initial start conditions). This value is also printed and
written to disk to ease reproduction of a run. The process
id is logged so that during replay any invocations using
the previous process id are re-mapped to the current one.
Various structures are initialized, including calling the Trinity
syscall_perf_event_open.init() routine and cre-
ation of a Trinity-compatible “page rand”.

Next the signal handlers are initialized. These can be a
source of errors as the more widely used perf utility does not
use signal handlers (it uses poll() to detect overflows). The
perf fuzzer sets up counter overflows to trigger SIGRT signals
(as PAPI does) because they queue and avoid losing signals
when a system is busy. Eventually the queues can fill and the
kernel handles this by sending SIGIO; we set up handlers for
both SIGRT and SIGIO. The SIGRT handler disables the event
causing the signal, reads event values and then restarts the
event. If the SIGIO handler is triggered it means we are stuck
in a tight overflow storm and not making forward progress,
so it attempts to close the event causing the issues (this is
difficult, especially if the event was created in another thread
before forking). An additional SIGQUIT handler is set up that
will dump the current open event state so a user can monitor
the current status of the fuzzing.

The main perf fuzzer event loop is then entered, which
loops forever randomly selecting one of the following tasks:

• perf_event_open() a random event,
• close() a random event,
• ioctl() a random event,
• prctl() the process,
• read() a random event,
• write() a random event,
• access a random file,
• fork() the process,
• poll() an event,
• corrupt the mmap page, or
• run a million instructions.

B. Reproducibility

One highly desirable trait of a fuzzer is that it has repro-
ducible results: given the same random seed the same exact
values are generated by the fuzzer. This can greatly ease
debugging of problems, and is useful for creating regression
tests to verify if a particular bug has been fixed.

The perf fuzzer has been carefully written to be as repro-
ducible as possible, although full determinism is not always
possible when measuring performance events because outside
factors (such as hardware interrupts, kernel interactions, and
other system activity) can vary from run to run. Event avail-



ability can vary between kernel versions and processor types,
further reducing the possibility of deterministic results.

To ease reproducibility, a header is generated which includes
enough information to recreate a fuzzing run. This makes it
easy to include this state into bug reports and allows more
easily recreating test conditions that cause failures. The header
includes the version of perf fuzzer, the Linux version and
architecture, and the processor type. Also included is the
random number seed, which allows replicating the random
number generation exactly. Some kernel settings are also
saved, such as the /proc/sys/kernel/perf_event_
max_sample_rate value controls the maximum event sam-
ple rate. If this value differs from the original run then some
events may fail because they set the sample rate too high. This
is a particularly tricky value, as the kernel will automatically
adjust this downward (outside of user control) if it thinks
interrupts are happening too quickly. Another kernel value is
/proc/sys/kernel/perf_event_paranoid. This al-
lows the system administrator to allow access to some events
(such as system-wide events) that are disabled by default for
normal users for security reasons. If this value differs from the
default then some events that would normally fail will instead
open without error.

C. Logging and Replay

perf fuzzer has a logging mode that can be enabled. An
ASCII text file is generated: for each action a letter indicating
the action type is printed followed by a list of the parameters
needed to replay the action.

Logs quickly get large and the entire file contents can
be important. Bugs are often not simply caused by the last
perf_event_open() call, but by a long chain of related
actions scattered throughout the log. Determining the last
action that causes a lockup can be difficult as crashes can
happen quickly enough that key values are not logged to disk.
Even running sync() before logging is not always enough
to capture the value (and that slows the fuzzing process). The
behavior of the fuzzer is usually deterministic enough that
multiple runs with the same random seed usually get to the
same place, so a special trigger can be inserted in the code to
pause just before the last problem causing action.

D. Fuzzing Environment

The perf fuzzer can cause crashes so severe that the kernel
has no time to log the error. Sometimes the lockups are so
bad they can crash the ethernet card too which can take down
the local network. The best way to ensure kernel crashes
are logged is to have another dedicated monitoring system
connected to the fuzzed system via a serial cable.

To catch bugs early, the fuzzer can be run on pre-release
versions of Linux. In addition, there are kernel debugging
options such as KASAN and lockdep that allow catching
some classes of bugs immediately rather than allowing bugs
to corrupt kernel state in ways only detectable much later.

VI. THE perf_data_fuzzer

We have made an additional tool, the perf data fuzzer,
which attempts to fuzz the perf.data file created by the
perf record command. We realized the need for this while
writing a tool to parse this file, and we noticed how easy it
is to cause perf to segfault when fed invalid files. This tool
found a number of bugs, detailed in Table V, some of which
are exploitable. Running perf report on an untrusted
perf.data file (say one sent to you in e-mail, or one that
you found in a user directory) could take over the program and
make it do arbitrary things. Combined with the exploits found
with our other fuzzer, this could allow completely taking over
a system simply by running perf as a regular user.

VII. FUZZER RESULTS

Table II summarizes the major perf event bugs that have
been found (and subsequently fixed) by Trinity and perf fuzzer
from April 2013 through August 2022. Over twenty major
bugs have been found, which is more than those found by more
traditional methods over the preceding four years as shown in
Table I.

A. Critical Bugs Found

perf fuzzer triggers a wide variety of bugs; not all of them
are dangerous or security issues. What follows is a summary
of the types of issues we have found thus far.

1) Crash / Hang / Panic / Denial of Service: The most
annoying type of bug found is one that completely crashes
the computer. Tracking down this type of bug is difficult as
logging and debugging information are often lost.

These bugs have security implications; at the very least they
are “Denial of Service” (DoS) attacks. Even in cases where
the operating system does not crash outright, often the system
will be left in an unusable or fragile state that needs rebooting.
These bugs can often be triggered by a regular user to make
the system unavailable. Despite this, reports of this nature are
treated with fairly low urgency by the perf event developers
unless a small triggering case can be created.

An example of this type of bug is the “perf/ftrace wrong
permissions check” bug fixed in the 3.13 kernel. The ftrace
infrastructure allows creating perf event events that trigger at
various predefined code locations in the kernel. The fuzzer
created an event that caused an overflow on every function en-
try; if set up to overflow, then the overflow handler will trigger
this event, which can recursively cause another overflow which
triggers another event, etc., causing the kernel to get trapped
in an endless loop. The machine will become unresponsive at
this point, although the watchdog might eventually kick in and
display a “kernel is stuck” message.

2) Local Root Exploit: Sometimes a bug that only looks
like a crash or panic can turn out to have far greater security
implications. If a bug lets user-supplied values get written into
unexpected parts of kernel memory, eventually a clever user
will be able to figure out how to use this to escalate their
privileges and obtain root access.



TABLE I
LINUX KERNEL PERF EVENT SECURITY BUGS FROM 2009-2013 FOUND WITHOUT FUZZERS.

Type CVE Fixed (version/git commit) Description
root exploit CVE-2009-3234 2.6.32 b3e62e35058fc744 buffer overflow

crash CVE-2010-4169 2.6.37 63bfd7384b119409 improper mmap hook
crash - 2.6.39 ab711fe08297de14 task context scheduling

memleak - 2.6.39 38b435b16c36b0d8 inherited events leak memory
crash CVE-2011-2521 2.6.39 fc66c5210ec2539e x86 msr registers wrong
DoS CVE-2011-4611 2.6.39 0837e3242c73566f ppc cause unexpected interrupt
crash CVE-2011-2918 3.1 a8b0ca17b80e92fa software event overflow
crash - 3.5 9c5da09d266ca9b3 cgroup reference counting
crash CVE-2013-2146 3.9 f1923820c447e986 offcore mask allows writing reserved bit
crash - 3.9 1d9d8639c063caf6 pebs/bts state after suspend/resume

TABLE II
LINUX PERF EVENT SECURITY BUGS FOUND BY FUZZERS STARTING FROM APRIL 2013.

(T=TRINITY, P=PERF FUZZER, H=HONGGFUZZ [30], S=SYZKALLER [25])

Which Type CVE Fixed in Linux Description
T root exploit CVE-2013-2094 3.9 8176cced706b5e5d 32/64 bit cast
P crash - 3.10 9bb5d40cd93c9dd4 mmap accounting hole
P crash - 3.10 26cb63ad11e04047 mmap double free
P panic - 3.11 d9f966357b14e356 ARM array out of bounds
P root exploit CVE-2013-4254 3.11 c95eb3184ea1a3a2 ARM event validation
P panic - 3.11 868f6fea8fa63f09 ARM64 array out of bounds
P panic - 3.11 ee7538a008a45050 ARM64 event validation
P panic - 3.13 6e22f8f2e8d81dca alpha array out-of-bounds

P/T crash CVE-2013-2930 3.13 12ae030d54ef2507 perf/ftrace wrong permissions check
P crash - 3.14 0ac09f9f8cd1fb02 pagefault ftrace cr2 corruption
P crash - 3.15 46ce0fe97a6be753 race when removing event
P crash - 3.15 ffb4ef21ac4308c2 function cannot handle NULL return
P reboot - 3.17 3577af70a2ce4853 race in perf remove from context()
P crash - 3.19 98b008dff8452653 misplaced parenthesis in rapl scale()
P crash - 3.19 c3c87e770458aa00 fix the grouping condition
P crash - 3.19 a83fe28e2e453924 Fix put event() ctx lock
P crash - 3.19 af91568e762d0493 IVB-EP uncore assign events
P crash - 4.0 d525211f9d1be8b5 Fix perf callchain() hang
H memleak - 4.0 a83fe28e2e453924 fix put event() ctx leak
P crash - 4.1 8fff105e13041e49 arm64/arm reject groups spanning PMUs
P crash - 4.1 15c1247953e8a452 snb uncore imc event start crash
P crash - 4.2 57ffc5ca679f499f Fix AUX buffer refcounting
P panic - 4.5 fb822e6076d97269 powerpc: Oops destroying hw breakpoint event
P crash - 4.8 0b8f1e2e26bfc6b9 crash in perf cgroup attach
P crash - 4.9 7fbe6ac02485504b vmalloc stack unwinder crash

P(?) exploit CVE-2017-6001 4.10 321027c1fe77f892 perf event open() vs. move group race
S bug - 4.11 e552a8389aa409e2 Fix use-after-free in perf release()
P crash - 4.15 99a9dc98ba52267c BTS causes crash with KPTI meltdown fixes
P crash - 4.20 472de49fdc53365c BTS crash, uninitialized ptr
S crash - 5.3 1cf8dfe8a661f046 Race between close() and fork()
P panic - 5.5 242bff7fc515d8e5 i915 null pointer dereference
P crash CVE-2021-28971 5.12 d88d05a9e0b6d935 NULL pointer dereference with PEBS on haswell

The initial vulnerability that prompted the design of
perf fuzzer was such an exploit. An improperly checked
config value for a software event allowed a user to arbitrarily
increment any memory location. It was possible to use this
to redirect the undefined instruction interrupt vector to point
to user-supplied code, which then can carry out the privilege
escalation (Edge [31] describes this in more detail).

A different bug found by perf fuzzer is the “ARM
event validity” bug. The validate_event() func-
tion took a group leader of an event and called
armpmu->get_event_idx(). If the group leader was not
an armpmu type, then the function pointer was located past

the end of the struct and would have whatever arbitrary value
happened to be beyond it in memory. If you were unlucky,
this arbitrary value was a valid user address. For a short
window of time in the 3.11-rc cycle this value pointed to a
value initialized to INT MIN, which is a valid user mappable
address of 0x80000000. We wrote code that mapped proper
exploit code there and managed to escalate our privileges to
root. Luckily this bug was found and fixed before it made it
into a released kernel.

3) Warnings: Throughout the Linux kernel code are “warn-
ings”: debug macros of the type WARN ON used as asserts.
These catch corner cases the author of the code thinks are



TABLE III
LINUX PERF EVENT WARNING AND BUG ASSERTIONS FOUND BY FUZZERS (T=TRINITY, P=PERF FUZZER, Z=TRINITY RUN BY 0-DAY TESTER)

Which Type Fixed in Linux Description
P WARNING 3.11 734df5ab549ca44f WARNING: at kernel/events/core.c:2122
P WARNING 3.14 26e61e8939b1fe87 WARNING at arch/x86/kernel/cpu/perf event.c:1076

T,Z BUG 3.17-next caught early BUG: unable to handle kernel NULL pointer
P WARNING 3.19 9fc81d87420d0d3f WARNING: Can’t find any breakpoint slot
P BUG 3.19 af91568e762d0493 BUG: uncore assign events()
T WARNING 4.0 2fde4f94e0a95312 WARNING: add event to ctx()
P WARNING 4.1 2cf30dc180cea808 WARNING: trace events filter.c replace preds
P WARNING 4.2 b4875bbe7e68f139 WARNING: trace events filter.c replace preds
P WARNING 4.2 93472aff802fd7b6 WARNING: Fix active events imbalance
P BUG 4.9 c499336cea8bbe15 BUG: KASAN: slab-out-of-bounds
P WARNING 4.9 e96271f3ed7e702f WARNING: KASAN global-out-of-bounds in match token
P WARNING 4.17 9e5b127d6f334681 WARNING: armv8: Fix perf output read group()
P WARNING 4.19 7ccc4fe5ff9e3a13 WARNING: powerpc: sched task function thread-imc
P WARNING 4.19 6cbc304f2f360f25 WARNING: unwind errors with PEBS entries

TABLE IV
LINUX PERF EVENT CORRECTNESS BUGS FOUND WHILE USING FUZZER. (T=TRINITY, P=PERF FUZZER)

Which Type Fixed in Linux Description
P Aliasing 3.13 0022cedd4a7d8a87 ftrace config value 64-bit but only lower 32 checked
P Correctness 3.15 0819b2e30ccb93ed sample period unsigned cast to signed
P Correctness 3.16 643fd0b9f5dc40fe flags value 64-bit but only lower 32 checked
P Correctness 4.11 1572e45a924f254d Fix perf cpu time max percent check
P Wrong Resource 4.15 1289e0e29857e606 RAPL readings using wrong MSRs
P Wrong Return 5.5 da9ec3d3dd0f1240 perf event open() returns 0 on failure
P MSR error 5.12 2dc0572f2cef8742 unchecked MSR error from KVM event
P MSR error 5.19 b0380e13502adf7d unchecked MSR access error on HSW

TABLE V
RESULTS OF PERF DATA FUZZER FUZZING OF PERF INTERACTION WITH PERF.DATA FILES.

Type Fixed in Linux Description
Crash 5.3 7622236ceb167aa3 f header.attr size ==0 causes a floating point exception
Hang 5.3 57fc032ad643ffd0 parsing perf.data leads to being stuck in infinite loop

Buffer Overflow ? Not Fixed Yet buffer overflow in perf header read build ids

invalid but unlikely.
Fuzzers often trigger these messages. Sometimes the prob-

lem reported is real and can be fixed, sometimes it is a
false positive and just silenced. It is still important to report
these although such problems rarely cause crashes. A list of
warnings triggered by perf fuzzer can be seen in Table III.

B. Other Bugs Found

There are perf event bugs in the kernel that are not ob-
viously security bugs, but just problems with the interface.
Fuzzers are not designed to catch these bugs but these can
be noticed while tracking down other more serious issues.
Table IV shows various bugs of this type that were found
and fixed.

C. Bugs Avoided

Now that the perf fuzzer tool has become known in the
kernel development community, it has started being used to
catch bugs in patches before they are applied to the kernel
tree. For example, the ARM perf event developers encourage
usage of perf fuzzer during new patch submission [32].

VIII. FUTURE WORK

After years of work the number of bugs found by
perf fuzzer has tapered off. This means there are more op-
portunities to improve the fuzzer to exercise other parts of the
kernel. In addition the perf tool that is tightly-coupled to
the perf event interface turns out to also have many bugs and
it is not heavily fuzzed. We have started work on remedying
that, especially as a lot of trouble can be caused if you can
convince a sysadmin to run the perf tool on a perf.data
file that is crafted to take advantage of parsing bugs.

There are many future directions that can be explored:
• Testing more exotic ways of generating file descriptors,

such as events being passed across an opened socket,
• Setting up breakpoints inside of perf event data struc-

tures,
• Testing the cgroup (container) support. The perf event in-

terface supports special cgroup events, but the perf fuzzer
does not explicitly test this,

• More advanced coverage of multithreaded code. The
current fork() fuzzing code is simplistic and does not test
multiple children or errors caused by exec() of a new
process



• More intelligent raw hardware event choices. Currently
the fuzzer picks raw hardware events completely at
random. There are libraries that provide valid raw event
values, such as libpfm4 [33], that can be used to create
more likely to be valid CPU events.

• Fuzzing the Berkeley Packet Filter (BPF) interface which
can be used to enhance event collection

• Being sure to exercise some of the more obscure perfor-
mance features found on Intel processors, such as Intel
Processor Trace, PEBS, and others

Another goal is widening the test coverage. Most of the
fuzzing has been done on x86 systems (Core2, Haswell,
Skylake, Ryzen) as well as a few ARM systems. We have
also done limited fuzzing on Power, but we are aware of other
groups who have also tested on that architecture.

We hope to test other architectures, especially non-Intel
systems, and server systems that have more advanced perfor-
mance units with features such as Uncore, Offcore, and energy
events. The fuzzer can also be used to test emulated systems
(such as qemu) or the interfaces inside of virtual machines.

IX. CONCLUSION

The perf fuzzer tool is a unique system-call specific fuzzing
tool that has found over twenty critical bugs in the Linux
kernel. These bugs found are over and above those found by
more generic fuzzers, showing that targeted domain knowledge
can find bugs that more generic fuzzers miss.

Our work has made the Linux performance interface more
robust, and allows system administrators more confidence in
allowing users to use standard performance analysis tools with
less fear of crashes or system compromise.

X. AVAILABILITY

The perf fuzzer toolsuite is free software and is available
for download:
https://github.com/deater/perf_event_tests
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