UMaine ECE Tech Report 2014-2

Enabling Raspberry Pi Performance Counter Support on
Linux perf_event

Chad Paradis
University of Maine
chad.paradis@umit.maine.edu

ABSTRACT

The Raspberry Pi is a low-cost, low-power, embedded ARM
platform designed for use as an educational tool. The ARMv6
processor core included on the Raspberry Pi includes sup-
port for hardware performance counters (low-overhead reg-
isters that can provide detailed architectural performance
measurements). Support for these counters is available for
ARM Linux via the perf_event interface, but not enabled by
default for the Raspberry Pi.

In this paper we investigate why the counters were not en-
abled, describe what steps are needed to enable them, and
then validate the results to ensure they are working. We
contributed the patches needed to enable the counters to
upstream Linux maintainers so that support will be avail-
able by default for all users.

1. INTRODUCTION

The Raspberry Pi is a low-cost, low-power, ARM-based com-
puter capable of running many distributions of the Linux
operating system. At $35, the Raspberry Pi is an inexpen-
sive introduction to modern embedded systems, and widely
used as an educational tool.

Understanding performance and power on modern systems
is difficult, as advanced processors do all sorts of extra work
behind the scenes to obtain maximum performance. Even
moderately complex processor models have difficulty captur-
ing this. To truly understand a program’s behavior, actual
measurements must be taken. Most modern processors have
hardware performance counters that provide low-overhead
access to system performance (including information such
as elapsed cycles, total instruction counts, cache misses, and
branch mispredictions).

Although the BCM2835 CPU included in the Raspberry-Pi
has ARM1176 ARMv6 compatible performance counters, by
default they are not exported by the Linux perf_event per-
formance counter subsystem. There are two barriers to this

Vincent M. Weaver
. University of Maine
vincent.weaver@maine.edu

support: the first is notifying the kernel that such support
is there, the second is the lack of a usable overflow inter-
rupt. The lack of overflow interrupt will prevent the use
of sampled event measurements, but total aggregate counts
can still be measured. It is also possible to gather sampled
events using a software workaround described later.

We detail what changes are needed to get support work-
ing on modern Linux kernels. We contribute these changes
back to the upstream Linux developers so all users can have
counter access support. In addition we validate the counters
to be sure the results match expected values.

2. BACKGROUND

The Raspberry Pi comes in two flavors: model A and model
B. Commonalities between the two models include an HDMI
port, Composite RCA, 3.5 mm audio jack, SD card slot, USB
port, and a flexible GPIO port. Both models take up an area
about the size of a credit card and consume roughly 3 Watts
of power under load.

Of greater interest, both models feature a Broadcom BCM2835
SoC which implements ARM’s ARM1176JZ-F processor [1].
ARM1176JZ-F is based on the 32-bit RISC ARMv6 archi-
tecture. The SoC is clocked at 700MHz (but can be over-
clocked to 800MHz). A Dual Core VideoCore IV Multimedia
Co-Processor is present in both models to relieve the CPU
from having to do any graphics processing.

In addition to those features listed above, the model B also
includes an Ethernet port and 512 MB of RAM (twice the
memory of the model A). Due to the greater set of features,
most importantly the Ethernet port, the model B is used in
all parts of this paper and is hereafter referred to as Rasp-
berry Pi, Pi, or RPI. The significance of the Ethernet port is
simply a matter of convenience and not a necessity. Internet
access allows the Pi to run in headless mode (i.e. without
a display) and allows easy remote access via SSH (Secure
Shell).

2.1 Linux perf_event

Performance counter support is via the perf_event interface
which was introduced with the 2.6.31 kernel by Gleixner and
Molnar [5]. More on the interface can be found here [6].

The primary tool for accessing performance counters is the
perf tool that is included with the Linux kernel source.

UMaine ECE Tech Report 2014-2

Running the perf utility on a kernel prior to Linux 3.15:

$ perf stat ls

does not yield the desired results. What is expected is
for useful information such as the number of instructions,
branches, and branch-misses to be displayed to the user.
Instead, something similar to the following is reported,

Listing 1: Unmodified perf Utility Output
Performance counter stats for ’ls’:

9.418000 task—clock # 0.469 CPUs utilized
6 context—switches # 0.637 K/sec
0 cpu—migrations # 0.000 K/sec
170 page—faults # 0.018 M/sec

<not supported> cycles

<not supported> stalled—cycles—frontend

<not supported> stalled—cycles—backend

<not supported> instructions

<not supported> branches

<not supported> branch—misses

0.020098000 seconds time elapsed

Our goal is to get this reporting proper values.

2.2 ARM1176JZ-F Performance Monitoring

The ARM1176JZ-F performance monitoring system is de-
scribed in the processor’s technical reference manual [1] Sec-
tion 3.2.51, titled Performance Monitor Control Register.

The hardware interface involves several registers including
three counters and a control register. The three counters
are Cycle Counter Register, Count Register 0, and Count
Register 1. Each counter is 32 bits wide. The cycle count
register simply provides access to core clock cycles of the
processor. Count registers zero and one are used to access
a large range of performance information including transla-
tion lookaside buffer misses, branch prediction information,
stalls and more. A complete list of events is available in
Table 3-137 of the technical reference manual. The events
monitored by the counter registers are determined by bits
in the Performance Monitor Control Register.

The BCM2835 documentation [2] is unclear about the status
of the performance monitoring unit (PMU) interrupt. Dom
Cobley (an engineer working for the Raspberry Pi founda-
tion) confirms [3] that the nPMUIRQ PMU interrupt is not
exported on the BCM2835 SOC.

3. ADDING KERNEL SUPPORT

To find the source of the missing perf event support we
started with the source code for the perf tool that is in-
cluded with the Linux kernel. Searching for the <not sup-
ported> string reveals a few useful hits under tools/perf/.
The errors returned can be traced back to the ARMv6 per-
formance event implementation in the kernel.

The ARM perf event support resides in the arch/arm/k-
ernel/ directory in several files with the naming scheme
perf_event*.c. For an ARMv6 CPU as found in the Raspberry-
pi the files of interest are perf_event_v6.c and perf_event_cpu.c.
perf_event_cpu.c contains initialization code for the perfor-
mance event system and perf_event_v6.c contains the inter-
rupt handler function dealing with overflows. It is in these
two files that most of the changes will be made.

3.1 PMU Discovery

The first task needed to be done is have the kernel detect
the ARM 1176 PMU available on the chip.

For older kernels, including the one supported by the Raspberry-

pi foundation, this involves hard coding the detection into
the kernel via the platform model of detection.

On newer upstream kernels the platform support is being
phased out and instead support is added via a device tree [4].
We describe both methods for adding support.

3.1.1 Platform Model

On kernels provided by the raspberry-pi foundation, the pi
specific hardware is initialized as part of the mach-bcm2708
support. This code is maintained outside of the main Linux
tree, it is not included in upstream kernels.

The file arch/arm/mach-bcm2708/becm_2708.c contains Rasp-
berry Pi initialization routines for things such as the GPIO
module, audio, and system clocks. Absent from this is a call
to start the performance monitoring system.

The driver platform is organized using structs and function
pointers as a simple form of inheritance. A device is de-
scribed by a struct of type platform_driver. The struct spec-
ifies several things including the driver name, but more im-
portantly a device probe function. The probe function finds
the device and allocates memory for the struct. The plat-
form_device_register(struct platform_driver) function is used
to initialize the device.

The first file modified is arch/arm/mach-bem2708/becm2708.c.
The code in this file is executed soon after boot and starts
and configures many of the Raspberry Pi specific modules.
A few necessary changes are made to this file in order to en-
able the performance monitoring system. A platform_device
struct is created specifying the performance monitoring sys-
tem driver, and then a call to becm_register_device() is
added to initialize the performance monitoring unit. The
patch is shown in Figure 1.

3.1.2 Device Tree Model

Newer ARM kernels attempt to automate discovery of re-
sources via a device tree file, rather than hard-coding plat-
form definitions in a C file. This allows generic kernels which
can boot on multiple boards, as long as an appropriate de-
vice tree file is available at boot time.

Booting an up-to-date upstream Linux kernel on the Rasp-
berry Pi is not an easy task, although as of the 3.15 kernel
it is at least possible to get a minimal system working. The
problem is not all hardware support has been contributed

UMaine ECE Tech Report 2014-2

diff --git a/arch/arm/mach-bcm2708/bcm2708.c b/arch/arm/mach-bcm2708/bcm2708.c

index 13b91de..71£8447 100644
--- a/arch/arm/mach-bcm2708/bcm2708.c
+++ b/arch/arm/mach-bcm2708/bcm2708.c

@@ -462,6 +462,11 @@ static struct resource bcm2708_powerman_resources[] = {

},
};

+static struct platform_device bcm2708_pmu_device =
+ .name = "arm-pmu",

+ .id = -1, /* Only one */

+};

+

static u64 powerman_dmamask = DMA_BIT_MASK(DMA_MASK_BITS_COMMON) ;

struct platform_device bcm2708_powerman_device = {
@@ -728,6 +733,7 @@ void __init bcm2708_init(void)
bem_register_device (&bcm2708_usb_device) ;
bcm_register_device (&bcm2708_uartl_device);
bcm_register_device(&bcm2708_powerman_device) ;

+ bem_register_device (&bcm2708_pmu_device) ;

#ifdef CONFIG_MMC_SDHCI_BCM2708
becm_register_device (&bcm2708_emmc_device) ;

Figure 1: Patch needed to enable platform PMU detection.

upstream, so things like USB and ethernet may not func-
tion.

In addition the default Raspberry-pi bootloader does not
support device tree files. The Raspberry-pi has a somewhat
unusual boot sequence for an embedded processor. The
graphics processor (GPU) first boots and loads firmware be-
fore passing control to the ARM cpu and loading a kernel.
The pi can be configured instead to boot the more common
Uboot boot loader, which can then load a custom kernel
with a device tree.

Once an upstream kernel is configured and Uboot set to
boot, the bcm2835 device tree needs to be updated to know
about the ARM1176 PMU. This change, as seen in Figure 2,
was contributed by us upstream, and was merged into the
Linux 3.15 kernel as git change:
14ac652b67fe08b0dca78995a4298aad38345a31

“ARM: bcm2835: perf_event support for Raspberry-Pi”.

3.2 Ignoring the missing Interrupt

Once one of the previously mentioned methods of enabling
PMU detection is enabled, then upon boot the following
message should be in the changelog:

hw perfevents: enabled with v6 PMU driver,
3 counters available

However if you try to run perf, an error will still be gener-
ated and a message “no irgs for PMUs defined” will appear in
the system log. It turns out that having a functional PMU
interrupt is not strictly needed for perf_event functionality.
While sampling events (i.e., perf record) will not work,

total aggregate event counts should still work. In theory
counter overflows could be lost, so if an event managed to
overflow a few billion instructions (2%') this could also be a
problem, but it appears that this problem would be caught
at the next context switch, so as long as the counter you are
measuring does not overflow faster than the context switch
rate (usually many times a second) things should work fine.

In addition, it is still possible to gather sampled results by
using a software event as the sample source, something like
perf record -e cpu-clock.

The simplest change that disables the interrupt check can
be found in Figure 3.

The change that will be in the 3.16 kernel was a more generic
change proposed by us that allows no-irq PMU setups to
work on any architecture, not just ARM. That patch series
was posted to the Linux kernel mailing list in June 2014
with the title "perf: Disable sampled events if no PMU in-
terrupt”. See commits:
¢184c980de30dc56fecdb281928aa6743708da9
edcb4d3c36a6429caal3ddfeab4dcbb153c7002b2

3.3 ARM Perf Utility Issues

While debugging the Raspberry-pi perf_event issues, we found
some issues with the perf tool on ARM processors.

3.3.1 Compilation Error

On our particular setup the perf utility would not compile
due to various gcc flags being used. This has since been
fixed, possibly by git commit:
575bf1d04e908469d26da424b52fc1b12aldb9d8.

UMaine ECE Tech Report 2014-2

diff --git a/arch/arm/boot/dts/bcm2835.dtsi b/arch/arm/boot/dts/bcm2835.dtsi
index b021c96..beb8659 100644
--- a/arch/arm/boot/dts/bcm2835.dtsi
+++ b/arch/arm/boot/dts/bcm2835.dtsi
@@ -113,6 +113,10 @@
reg = <0x7e980000 0x10000>;
interrupts = <1 9>;

};
+
+ arm-pmu {
+ compatible = "arm,arml176-pmu";
+ };
};
clocks {

Figure 2: Patch needed to enable device-tree PMU detection.

diff --git a/arch/arm/kernel/perf_event_cpu.c b/arch/arm/kernel/perf_event_cpu.c

index d85055c..a74e0cd 100644

--- a/arch/arm/kernel/perf_event_cpu.c

+++ b/arch/arm/kernel/perf_event_cpu.c

@@ -97,8 +97,9 @@ static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)

irgs = min(pmu_device->num_resources, num_possible_cpus());
if (irgs < 1) {
- pr_err("no irqs for PMUs defined\n");
- return -ENODEV;
+ printk_once("no irgs for PMUs defined, disabling sampled events\n");
+ return O;

}

for (i = 0; i < irqs; ++i) {

Figure 3: Patch needed to enable perf event even if no PMU interrupts are available.

3.3.2 pert list Not Working

On the Pi, perf 3.12 fails to list any hardware performance
events or hardware cache events. It was initially thought
that this was a result of the performance monitoring system
being configured improperly. Upon running the same perf
list command with the newly compiled version, 3.10.22, all
expected hardware perf events were listed.

The newer perf utility had changed to iteratively check that
each hardware event could indeed be measured before re-
porting it as available (before all events were shown, whether
they were available or not). The problem was the test was
run with the .exclude_kernel flag set on the events, but most
ARM devices pre-dating the Cortex A15 do not support this
mode of operation. This means that all hardware events
were listed as unsupported when in fact some of them were.

We contributed a fix for this issue, git commit:
88fee52e58cal4d8465b614774ed0bf08e1a7790 “perf list: Fix
checking for supported events on older kernels” which was
included in the Linux 3.14 release.

4. VALIDATION

Once perf_event support is enabled, it becomes necessary to
validate to make sure it is actually working. We have only
done some preliminary testing, more in-depth tests should
be conducted.

4.1 10 billion test

An initial validation test is a simple hand-coded assembly
language benchmark that runs 10 billion instructions. When
run on ARMv6 devices it will return a value above 10 billion;
this is due to a hardware limitation where it is not possible
to exclude kernel events from the count. The results are
shown in Figure 4, where the results seem reasonable with
10 billion instructions plus 67 million from the kernel.

4.2 perf_event validation tests
Weaver has made available perf_event validation tests that
check the behavior of perf_event on a given system.

Prior to our changes, the Rasp-pi only passes two of the tests
(the ones checking for software only events, not affected by

lack of hardware event support).

More pass once our changes are made, but still many fail.
This needs to be investigated further.

These tests can be downloaded from:

git clone https://github.com/deater/perf_event_tests.git

S. RELATED WORK

Because rasp-pi support was not available, various people
have written drivers to directly read the low-level counter
values. Since reading these counters is a low-level access,
this involved writing custom kernel modules.

Vince Weaver wrote the rasp-pi-pmu module available as
part of his uarch-configure.

Paul J. Drongowski wrote rpistat, described at his website

http://sandsoftwaresound.net/raspberry-pi/rpi-perf-event-monite

6. CONCLUSIONS AND FUTURE WORK

We contribute code that enables Linux perf_event hardware
performance counter support for Raspberry-Pi hardware.
This will allow users to gather useful performance data with-
out having to hand-patch the kernel, and without using cus-
tom written kernel modules. Performance is critical on small
embedded boards where every cycle counts, having the perf
tool work by default will enable performance analysis by a
wider range of users.

There still remains various pieces of related work that need
to be done.

e Even though the upstream kernel has gained support
for counters, we should ensure the Raspberry-pi foun-
dation version also does.

e Further testing should be done that the results ob-
tained from the counters are correct.

e We should ensure the generic no-irq patch gets com-
mitted for Linux 3.16. The patches are in the linux-tip
tree but have not made it fully upstream yet.

e We should make sure that the generic no-irq patches
are extended to work on other platforms (besides ARM)
that lack working IRQs.

e Support for other tools that use perfeven (such as
PAPI) should have Raspberry-pi support addded.

. REFERENCES

[1] ARM. ARM1176JZF-S Techincal Reference Manual,
2009.

[2] Broadcom Europe Ltd. BCM2835 ARM Peripherals,
2012.

[3] D. Cobley. Re: Profiling on the pi?
http://www.raspberrypi.org/phpBB3/
viewtopic.php?f=33&t=19151, Oct. 2012.

[4] J. Corbet. Platform devices and device trees. Linuz
Weekly News, June 2011.

[5] T. Gleixner and I. Molnar. Performance counters for
Linux, 2009.

[6] V. Weaver. perf_event_open manual page. In

M. Kerrisk, editor, Linux Programmer’s Manual. Dec.
2013.

$ perf stat -e cycles,instructions ./temnbillion
Performance counter stats for ’./tembillion’:

20,583,314,948 cycles

10,067,266,891 instructions # 0.49

43.754711581 seconds time elapsed

insns per cycle

Figure 4: Results of a 10-billion instruction run

APPENDIX
A. ARCH LINUX AND RASP-PI KERNELS
A.1 Compiling the Linux Kernel

This section gives a brief overview of the process to compile
a Linux kernel on the Pi. This section expects at least a ba-
sic understanding of the Linux command line including how
to copy and move files, and edit text files. Command line
actions will be prefixed with a $ to indicate a user command
or a # to indicate a command that requires root privileges.

A.1.1 Arch Linux

All tests and compilations are done on Arch Linux on the lat-
est version running kernel 3.10.22. Arch Linux is a rolling re-
lease so version numbers have little meaning. Arch Linux is
freely available from http://archlinuxarm.org/platforms/
armv6/raspberry-pi. Installation instructions are readily
available at the given link. Software requirements can be
installed with Arch Linux’s package management tool pac-
man. Installing a dependency is as easy as,

pacman —S make

A non-exhaustive list of dependencies is given in Table 1.

Table 1: Software Dependencies

Dependencies Package Name
GNU Make make

gee gce

Arbitrary Precision Calculator bc

GNU Project Parser Generator bison
Fast Lexical Analyser Generator flex

Make, gce, and be are used to compile the main portion of
the Linux kernel. Bison and flex are small utilities used to
compile the perf tool from the source available in the Linux
kernel.

A.1.2 Getting the Latest Source

The second step after getting a functioning operating system
is to obtain the kernel source code. The latest source is avail-
able from http://kernel.org but in the case of the Rasp-
berry Pi, the source from here is unusable as it is missing a
number of device specific patches and drivers. The easiest
method of obtaining the source is to download an archive
from https://github.com/raspberrypi/linux/. Cloning

the git repository is difficult as the Raspberry Pi tends to
run out of memory while doing so and fails with some less-
than-helpful error messages.

A.1.3 Configuring the Source

The next step is to obtain a valid configuration file for the
Raspberry Pi. The configuration file has thousands of op-
tions and determines many things during the compilation
process including which modules to compile, which archi-
tecture to compile for, which drivers to include and many
more. A configuration file already resides in the Arch Linux
installation under /proc/config.gz. This file should be copied
to the top-level directory of the kernel source like such,

$ zcat /proc/config.gz > .config

Configure the kernel with make,

$ make oldconfig

A.1.4 Compiling

Next, compile the source code. This is done with the GNU
make utility. Because compilation can take upwards of nine
hours on the Pi it may be necessary to logout during the
process or the SSH session may timeout. An easy way to
continue the compilation in the background is to use the
tmux. It allows you to create, leave, and resume terminal
sessions. Simply type $§ tmuz to enter a tmux shell, leave
a session by typing <ctrl> + b and then d. Resume the
session by typing $ tmuzx attach. After compiling for the
first time, future calls to make will only recompile changed
files saving a great deal of time.

A.1.5 |Installing the New Kernel

After the compilation procedure is finished the kernel needs
to be installed. The compiled kernel is the file arch/ar-
m/boot/Image. Copy the newly compiled kernel image to
/boot/kernel.img.

A.1.6 Navigating the Kernel

Now that the kernel is successfully compiled, it is time to
dive into the source code. This can be daunting at first as
the kernel comprises more than 60,000 files. Some useful
utilities for navigating the kernel source include grep, find,

and http://lxr.free-electrons.com/. Grep can be used cp ./arch/arm/boot/dts/bcm2835-rpi-b.dtb /boot
to search the contents of files while find is used to search

for file names. The URL given is a useful web-based refer- B.7 Setup boot files

ence that allows quick and easy navigation by function or Add to /boot /config.txt

variable name. Clicking a function name will bring up a

list of all other usages of the given function. This is helpful

for traversing the long call chains that are common in the kernel=kernel_stock.img

kernel. device_tree=bcm2835-rpi-b.dtb
device_tree_address=0x100

Al7 TipS kernel _address=0x8000

Because the make utility depends on file modification times disable_commandline_tags=1

to determine whether a compiled file is up-to-date it is very
important not to manually change these modification times.
Doing something like moving the entire kernel source direc-
tory to a new backup directory will update the modification
times on all the files. This results in the make utility think-
ing that it has to recompile the entire kernel again from
scratch. If moving the kernel source use c¢p -p to preserve
all file attributes. Losing nine hours of work to recompile
due to a careless move command can be infuriating. Doing
it more than once even more so.

B. RASPIAN AND STOCK KERNELS
https://plus.google.com/101715070573995136397/posts/
gWkwrfNfYVm

install u-boot-tools

B.1 1Install Tools

Similar to above, install

apt-get install gcc bc

B.2 Get a kernel

Git won’t work well on a constrained system. Can get a tar-
ball from http://www.kernel.org/pub/linux/kernel/v3.
x/testing in our case, linux-3.13-rc6.tar.xz Uncompress with

tar xvf linux-3.13-rc6.tar.xz

B.3 Patch kernel

I applied patches 1-5 from https://github. com/notro/rpi-build/
blob/master/patches/bcm2835/

B.4 Build Kernel
make bcm2835_defconfig
make -j2

B.5 Install Kernel

Make sure running newest firmware on the pi.

cp arch/arm/boot/Image /boot/kernel_stock.img

B.6 Update and copy Device Tree
Modify to have the boot arguments

chosen {
bootargs = "dwc_otg.lpm_enable=0 console=ttyAMAO,115200 kgdboc=ttyAMAO,115200 console=ttyl root=/dev/mm
1

