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Abstract— An efficient, accurate and distributed metadata-
oriented prefetching scheme is critical to the overall perfor-
mance in large distributed storage systems. In this paper, we
present a novel weighted-graph-based prefetching technique,
built on successor relationship, to gain performance benefit
from prefetching specifically for clustered metadata servers, an
arrangement envisioned necessary for petabyte-scale distributed
storage systems. Extensive trace-driven simulations show that by
adopting our new prefetching algorithm, the hit rate for metadata
access on the client site can be increased by up to 13%, while the
average response time of metadata operations can be reduced by
up to 67%, compared with LRU and an existing state of the art
prefetching algorithm.

I. I NTRODUCTION

A novel decoupled storage architecture diverting actual file
data flows away from metadata traffics has emerged to be an
effective approach to alleviate the I/O bottleneck in modern
storage systems [1]–[4]. Unlike conventional storage systems,
these new storage architectures use separate servers for data
and metadata services, as shown in Fig 1. Accordingly, large
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Fig. 1. System architecture

volume of actual file data does not need to be transferred
through metadata servers, which significantly increases the
data throughput. Previous studies on this new storage architec-
ture mainly focus on optimizing the scalability and efficiency
of file data accesses by using a RAID style striping [5],
caching [6], scheduling [7] and networking [8] and very little
attention has been paid to the scalability of the metadata

management. However, the performance of metadata services
plays a critical role in achieving high I/O scalability and
throughput, especially in light of the rapidly increasing scale in
modern storage systems where the volume of data reaches and
even exceeds Peta bytes (1015 bytes) while metadata amounts
to Tera bytes (1012 bytes) or more [9]. In fact, more than 50%
of all I/O operations are to metadata [10], suggesting further
that multiple metadata servers are required for a petabyte-scale
storage system to avoid potential performance bottleneck on
a centralized metadata server. This paper takes advantages of
some unique characteristics of metadata and proposes a new
prefetching scheme for metadata access that is able to scale
up the performance of metadata services in large scale storage
systems.

By exploiting the access locality widely exhibited in most
I/O workloads, caching and prefetching have become an
effective approach to boost I/O performance by absorbing a
large number of I/O operations before they touch disk surfaces.
However, prefetching metadata for large metadata services
imposes two challenges. First, the prefetching operation has
to be conducted in a distributed environment. Due to the
skewed load toward metadata in most file systems [11], a
centralized metadata management system will not scale up
well with the I/O workload in a large scale storage system
[2], [9]. Accordingly, in a petabyte-scale storage system, the
load of metadata services is likely distributed among a group
of metadata servers. Second, existing caching and prefetching
algorithms may not work well for metadata. Most caching and
prefetching schemes are designed for and apply on actual file
data and ignore metadata characteristics. Those algorithms are
not specifically optimized for metadata accesses since usually
file data and metadata operations show different characteristics
and exhibit different access behaviors. For example, a file
might be read multiple times while its metadata is only
accessed once. A “ls -l” command touches the metadata of
multiple files but might not access their data. In addition, the
size of metadata is typically uniform and much smaller than
the size of file data in most file systems. In order to achieve
optimal performance, a new prefetching and caching algorithm
that considers the differences between data and metadata is
clearly desirable.



The most important characteristic of metadata is its relative
small size compared with typical file sizes. With a relatively
small data size, the mis-prefetching penalty for metadata on
both the disk side and the memory cache side is likely
much less than that for file data, allowing the opportunity
for exploring and adopting more aggressive prefetching algo-
rithms. In contrast, most of the previous prefetching algorithms
share the same characteristic in that they are conservative on
prefetching. That is, they prefetch at most one file upon each
cache miss. In addition, even when a cache miss happens,
certain rigid policies are applied before issuing a prefetching
in order to maintain a high level of prefetching accuracy.
Nevertheless, considering the huge number and the relatively
small size of metadata items, aggressive prefetching can be
profitable provided that a higher system performance and a
reasonable prediction accuracy is achieved.

In this paper, we develop a novel prefetching algorithm
named Nexus to perform more aggressive prefetching while
maintaining a reasonable prefetching accuracy. A looking
ahead history window is deployed to capture better locality and
to scrutinize the real successor relationship among interleaved
accesses sequence. Comprehensive simulation results indicate
that Nexus significantly improves the performance of metadata
retrieval in Peta-byte scale cluster storage system.

The outline of the rest of the paper is as follows: Related
work is discussed in Section II. Section III described our Nexus
algorithm in detail. Evaluation methodologies and results are
discussed in section IV. We conclude this paper in section V.

II. RELATED WORK

Previous research work on prefetching both at the disk level
and at the file level can be classified into three categories:
predictive prefetching [12], application-controlled prefetching
[13], and compiler-directed prefetching [14].

Among the latest advancement in the area of predictive
prefetching, in order to study the prefetching accuracy while
maintaining a reasonable performance gain, Darrell Long et al.
introduced several file access predictors including First Suc-
cessor, Last Successor, Noah (Stable Successor) [15], Recent
Popularity (also known as Bestj-out-of-k) and Probability-
based Successor Group Prediction [16], [17]. The differences
among these predictors are summarized as follows.

a) First Successor:The file that followed fileA the first
time A was accessed is always predicted to followA.

b) Last Successor:The file that followed fileA the last
time A was accessed is predicted to followA.

c) Noah (Stable Successor):Similar to Last Successor,
except that a current prediction is maintained; and the current
prediction is changed to last successor if last successor was
the same forS consecutive accesses whereS is a predefined
parameter.

d) Recent Popularity (Bestj-out-of-k): Based on last
k observations on fileA’s successors, ifj out of thosek
observations turn out to target the same fileB, then B will
be predicted to followA.

e) Probability-based Successor Group Prediction:Based
on file successor observations, a file relationship graph is built
to represent the probability of a given file following another.
Based on the relationship graph, the prefetch strategy builds
the prefetching group by following steps:

1) The missed item is first added into the group.
2) Add the items with the highest conditional probability

under the condition the items in the current prefetching
group were accessed together.

3) Repeat step 2 until the group size limitation is met.

III. N EXUS: A WEIGHTED-GRAPH-BASED PREFETCHING

ALGORITHM

As a more effective way for metadata prefetching, our
Nexus algorithm distinguishes itself in two aspects. First,
Nexus can more accurately capture the metadata access tempo-
ral locality exhibited in metadata access streams by observing
the affinity among both immediate and indirect successors.
Second, Nexus exploits the fact that metadata usually is small
in size and deploy an aggressive prefetching strategy.

A. Relationship graph overview

Our algorithm uses a metadata relationship graph to assist
prefetching decision making. The relationship graph is used
to dynamically represent the locality strength between prede-
cessors and successors in metadata access streams. Directed
graphs are chosen to represent the relationship since the rela-
tionship between a predecessor and a successor is essentially
unidirectional. Each metadata corresponding to a file or direc-
tory is represented as a vertex in our relationship graph. The lo-
cality strength between a pair of metadata items is represented
as a weighed edge. Figure 2 shows an example of relationship
graph consisting of metadata for six files/directories. From
this graph, we can observe that the predecessor-successor
relationship between/usr and/usr/bin is much stronger than
that between/usr and/usr/src.
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Fig. 2. Relationship graph demo

B. Relationship graph construction

To understand how this relationship graph works for im-
proved prefetching performance, it is necessary to first under-
stand how this graph is built. The relationship graph is built
on the fly while the MDS receives and serves requests from a
large number of clients. A history window with a predefined
capacity is used to keep the requests most recently received by
the MDS server. For example, if the history window capacity
is set to ten, only ten most recent requests are kept in the
window. Upon the arrival of a new request, the oldest request
in this history window is replaced by the new comer. In this



way the history window is dynamically updated and always
contains the current predecessor-successor relationship at any
time. The relationship information is then integrated into the
graph on a per-request basis, by either inserting a new edge
(if the predecessor-successor relationship is discovered for the
very first time) into the graph or adding an appropriate weight
to an existing edge (if this relationship has been observed
before). A pseudocode describing how a relationship graph
is built is presented below.
// Let G denote the graph to be built
BUILD -RELATIONSHIP-GRAPH(G)
1 G← ∅
2 for each new incoming metadata requestj
3 foreach metadata requesti (i 6= j) in history window
4 if edge(i, j) /∈ G
5 then add an edge(i, j) to G with appropriate weight
6 elseadd appropriate weight to edge(i, j)
7 replace the oldest item in history window withj

For example, if the history window size is two and a request
sequence of

ABCADCBA · · ·

is observed, the step-by-step graph construction from scratch
is shown in Figure 3(a) ( The weight assignment methodology
taken here is linear decremental, described later in Section III-
E.1 on page 4 ). In contrast, Figure 3(b) shows the same graph
construction procedure with a history window size of three.
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Fig. 3. Graph construction examples

C. Prefetching based on the relationship graph

Once the graph is built for the access sequence
ABCADCBA · · · as shown in Figure 3(a) and Figure 3(b),
it is possible to prefetch a successor group with an adjustable
size in the graph when a cache miss happens for an element in
that group. The prediction result depends on the order of the
outbound edge weights (represented by values associated with
arrows in the relationship graph) of the latest missed element.
A larger weight indicates a stronger relationship and a higher
prefetching priority. In the above sample access sequence,
supposing that the last requestA sees a miss, according to
the graph shown in Figure 3(a), the prediction result will be
{C} if the prefetching group size is one, or{C,D} if the
prefetching group size is two; similar results deduced from
Figure 3(b) will be{B} and{B,C}, respectively.

D. Major advantages of Nexus

1) The farther the sight, the wiser the decision:The key
difference between the relationship-based and probability-
based approaches lies in the ability to look farther than the
immediate successor. The shortcoming of the probability-
based prefetching model is obvious: it only considers the
immediate successors as candidates for future prediction. As a
consequence, any successors after the immediate successor are
ignored. This short-sighted method is incapable of identifying
the affinity of two references with some intervals, which
widely exists in many applications. For example, for the
pattern “A?B”, we can easily find two situations where this
pattern exhibits.

• Compiling programs: gcc compiler(“A”) is always first
launched; and then the source code(“?”) to be compiled
is loaded; at last the common header files or common
shared libraries (“B”) is loaded afterward.

• Multimedia application: initially media player application
(“A”) is launched; after that the media clip (“?”) to be
played is loaded; at last the decoder program (“B”) for
that type of media is loaded.

In addition to above mentioned applications, interleaved
application may create similar kinds of scenarios. The
probability-based model cannot detect such access patterns,
thus limiting its ability to make better predictions. However,
this omitted information is considered in our relationship-
based prefetching algorithm, which is able to look farther than
the immediate successor when we build our relationship graph.

We use a simple trace sequence mentioned before,
ABCADCBA · · · , to further illustrate the difference be-
tween the probability-based approach and our relationship-
based method. In the probability-based model, sinceC never
appears immediately afterA, C will never be predicted as
A’s successor. In fact, the reference stream shows thatC is a
good candidate asA’s successor because it always shows up
next nextto A. The rationale is that the pattern we observed
is a repetition of pattern “A?C” and we assume this pattern
will repeat in the near future. As discussed in III-C, should
our relationship-based prediction be applied, three out of four
prediction results will containC.

From the above example, we clearly see the advantages of
relationship-based prefetching over probability-based prefetch-
ing. The essential ability to look farther than the immediate
successor directly renders this advantage. In contrast, should
we apply the same idea to probability-based approach, the
complexity of the algorithm would increase exponentially. For
example, if looking ahead window size is set to increased from
1 to 2, using probability-based approach, we would have to
maintain the conditional probability for each tripleP (C|AB)
instead of for each two-tuplesP (B|A).

2) Aggressive prefetching is natural for metadata servers:
All previous prefetching algorithms tend to be conservative
due to the prohibitive mis-prefetch penalty and cache pollu-
tion. However, the penalty of an incorrect metadata prefetch
might be much less prohibitive than that of the file data



prefetch, and the cache pollution problem is not as severe
as in the case of file data caching. The evidence behind this
reasoning is the observation that while the average file size
is 22KB [18], the average size of a file’s metadata is only
1.375KB1. This observation encourages us to conduct more
aggressive prefetching on metadata.

E. Algorithm design considerations

In implementing our algorithms, several design factors need
to be considered to optimize the performance. Corresponding
sensitivity studies on those factors are carried out as follows.

1) Successor relationship strength:Assigning an appropri-
ate weight between the nodes to represent the strength of
their relationship as predecessor and successor is critical to
our algorithm because it affects the prediction accuracy of our
algorithm. A formulated description of this problem is: Given
an access sequence of lengthn:

M1M2M3 . . .Mn,

how much weight should be added to the predecessor-
successors edges,

(M1,M2), (M1,M3), . . . , (M1,Mn),

respectively. Four approaches are taken into consideration:

• Identical assignment
Assigning all the successors ofM1 the same importance.
This approach is very similar to the probability model
introduced by Griffioen and Appleton [19]. It may look
simple and straightforward, but it is indeed effective.
The key point is that at least the successor following
the immediate successors are taken into consideration.
However, the draw back of this approach is also obvious:
it cannot differentiate the importance of the immediate
successor and its followers, which might subsequently
skew the relationship strengths to some extend. This
approach is referred to asidentical assignment for later
discussions.

• Linear decremental assignmentThe assumption behind
this approach is that the closer the access distance in
the reference stream, the stronger the relationship. For
example, we may assign those edge weights mentioned
above in a linear decremental order, as10 for (M1,M2), 9
for (M1,M3), 8 for (M1,M4), and so on. (The weight in
the example shown in Figure 3(a) and 3(b) is calculated
this way.) This approach is referred to asdecremental
assignment in the rest of this paper.

• Polynomial decremental assignment
Another possibility is that, with increase in the successor
distance, the decrease in the relationship strength might
be more radical than the linear one. For example, poly-
nomial decrement assignment is a possible alternative

1The calculation is carried out as following: Since the average file size is
22KB, and an inode of 128 bytes is allocated for every 2KB of file data [18].
Thus the average size of inode for each file is22KB/2KB× 128Bytes =
1.375KB. It means that the size of metadata is roughly 6.25% of the
corresponding file data.

solution. This assumption is based on the observation of
the attenuation of radiation in the air in our real life.

• Exponential decremental assignment
The attenuation of edge weights might be even faster
than polynomial decrement. In this case, an exponential
decrement model is adopted. This approach is referred to
asexponentialdecremental assignment in the future.

To find out which assignment method can best reflect the
locality strength in the metadata reference streams, we conduct
experiments on the HP trace [10] to compare the hit rate
achieved by those four edge-weight assignment methods. To be
comprehensive, these experiments are conducted with different
configurations in three dimensions: cache size, number of
successors to look ahead (or history window size), and number
of successors to prefetch as a group (or prefetching group
size). Since the result for the polynomial assignment is very
close to that for the exponential assignment, we remove the
former results to show readers a clearer figure. The results for
the remaining three approaches are shown in Figure 4.
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Fig. 4. Edge weight assignment approaches comparison

In Figure 4, the 3D graphs on the left show the hit rate
achieved by those three approaches over three cache size (in
terms of cachelines) configurations (i.e. 250, 750 and 1250)
with both the look-ahead window size and prefetching group-
size varying from 1 to 5. (These values are carefully chosen
in order to be representative while non-exhaustive.) The three
2D graphs on the right show the corresponding planform (a
X-Y plane looking downward along the Z axis) of the same
measurements. These 2D graphs clearly show that the linear
decrementalassignment approach takes the lead most of the
time. We also notice that the identical assignment beats others
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Fig. 5. Sensitivity study: look ahead windows size and prefetch group size

in some cases even though this approach is very simple. The
linear decremental assignment approach consistently outper-
forms others. Thus, in the future experiments, we will deploy
this approach as our edge-weight-assignment scheme.

2) How far to look ahead and how many to prefetch:
To fully exploit the benefit of bulk prefetching, we need
to decide the distance to look ahead and the bulk size to
prefetch. Looking ahead too far may compromise the algo-
rithm’s effectiveness by introducing noises to the relationship
graph; and prefetching too much may result in a lot of
inaccurate prefetching, possible cache pollution, and cause
performance degradation. We compare the average response
time by performing a number of experiments on a combination
of these two key parameters, i.e., look ahead window size
and prefetching group size. The result is shown in Figure 5.
From Figure 5, we found that looking ahead5 successive
files’ metadata and prefetching 2 files’ metadata at a time
turned out to be the best combination. The results also seem
to suggest that the larger the looking ahead window size, the
better the hit rate achieved. This observation prompts us to
experiment on much larger look-ahead window sizes, with
sizes10, 50, and 100 respectively, and found contradicting
results to our conjecture: none of those three look-ahead
window size configurations achieves a better hit rate than the
windows size of5. The reason is that looking too far ahead
might overwhelm the prefetching algorithm by introducing
too much noise–those irrelevant future accesses are also taken
into consideration as successors, reducing the usefulness of
the relationships captured by the look-ahead window. Hit rate
comparison reveals consistent results but are omitted here due
to space limitation. In the rest of the paper’s experiments, the
look-ahead distance and the prefetching group size are fixed
to 5 and2 respectively for best performance gains.

3) Server-oriented grouping vs. client-oriented grouping:
One way to improve the effectiveness of the metadata re-
lationship graph is to enforce better locality. Since multiple
clients may access any given metadata server simultaneously,
most likely request streams from different clients will be
interleaved, making the pattern more difficult to observe. Thus
it may be a good idea to differentiate the different clients
when building the relationship graph. Thus there are two
different approaches to build the relationship graph: 1) Build a

relationship graph for all the requests received by a particular
metadata server; or 2) Build a relationship graph for requests
sent from each individual client and received by a particular
metadata server. In this paper, we refer to the former version
as server-oriented access grouping, and the latter as client-
oriented access grouping.

We have developed a client-oriented grouping algorithm
and compared it with the server-oriented grouping by running
them on the HP traces, as shown in Figure 6. r Figure 6
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clearly shows that client-oriented grouping algorithm always
outperforms the server-oriented one. Thus we adopt the client-
oriented grouping algorithm whenever possible.

IV. EVALUATION METHODOLOGY AND RESULTS

A. Workloads

We evaluate our design by running trace-driven simulations
over the LLNL trace collected at Lawrence Livermore National
Laboratory in July 2003 [20] and the HP file system trace
collected at the HP Lab in December 2001 [21]. These traces
gather I/O events of both file data and metadata. In our
simulations, we filter out the file data activities and feed only
metadata events to our simulator.

1) LLNL trace: One of the main reasons for petabyte-scale
storage systems is the need to accommodate scientific appli-
cations that are increasingly demanding on I/O and storage
capacities and capabilities. As a result, some of the best traces
to evaluate our prefetching algorithm are those generated by
scientific applications. To the best of our knowledge, the only
recent scientific application trace publicly available for large



clusters is the LLNL2003 file system trace. It was obtained
in the Lustre Lite [1] parallel file system on a large Linux
cluster with more than800 dual-processor nodes. It consists
of 6403 trace files with a total of46, 537, 033 I/O events.
In our simulations, we only consider the metadata activities,
described in Figure 7. The metadata operations are further

Name Count Description

access 16 check user’s access permissions
close 111,215 close a file descriptor

fstat64 81,663 retrieve file status
ftruncate64 198 truncate a file to a specified length

open 327,990 open or create a file
stat64 59,892 display file status
statfs 980 display file system status
unlink 8 delete a name and possibly the file

it refers to

Fig. 7. List of operations obtained bystrace in LLNL trace collection

classified into two categories: metadata read and metadata
write. Operations such asaccess, and stat fall into the
metadata read group, whileftruncate64 andunlink belong
to the metadata write group since they need to modify the
attributes of the file. However, the classification ofopen
and close remains ambiguous. Anopen operation cannot
be simply classified as metadata read since it may create
files according to its semantics in UNIX. Similarly, aclose
operation can be classified into both groups since it may incur
metadata update operations, depending on whether the file
attributes are dirty or not. Foropen requests, the situation
is easier since we can look at the parameter and return value
of the system call to determine its type. For example, if the
parameter is ORDONLY and the return value is a positive
number, then we know for sure that this is a metadata read
operation. Forclose, we can always treat it as a metadata write
assuming that thelast modify timefield is always updated upon
file closure.

2) HP trace: To provide a more comprehensive compari-
son, we also conduct our simulations on the HP trace [21], a
10-day trace of file system collected on a time-sharing server
with a total of 500 GB storage capacity and 236 users. Since
it is not a scientific application trace, we artificially scale it up
to emulate a multi-MDS multi-client application by merging
multiple trace files into one to increase the access density
while maintaining timing order of the access sequences. In
our simulations, any I/O operations not related to metadata
are also filtered out.

B. Simulation framework

A simulation framework was developed to simulate a
clustered-MDS based storage system consisting of multiple
MDSs and multiple clients with the ability to adopt flexible
caching/prefetching algorithms. In such a hierarchical storage
system, metadata consistency control becomes a prominent
problem for the designers. However, this is not the focus
of our current study, which is the design and evaluation of

a novel prefetching algorithm for metadata. To simplify our
simulation design, cooperative caching [22], a widely used
hierarchical cache design, together with its cache coherence
control mechanism, i.e. write-invalidate [23], is adopted in
our simulation framework to cope with the consistency issue.
However, it must be noted that the choice of cooperative
caching is pragmatic for its relative maturity and simplicity
and, as such, it does not necessarily imply that it is the only
or best choice for consistency control. In fact, we believe
that a metadata-oriented consistency protocol is needed to
optimize the performance, which is one of our future research
directions.

In our simulation framework, the storage system consists
of four layers: 1) client cache, 2) metadata server cache,
3) cooperative cache, and 4) hard disks. When the system
receives a metadata request, it first checks its local cache
(client cache); upon an cache miss, the client sends the request
to the corresponding MDS; if the MDS also sees a miss, the
MDS looks up the cooperative cache as a last resort before
sending the request to disks.

Thus the overall cache hit rate includes three components
from the client’s point of view: local hit (client cache hit),
remote hit (metadata server cache hit), and cooperative cache
hit. Obviously, local hit rate directly reflects the effectiveness
of the prefetching algorithm because grouping and prefetching
are done on the client site.

If, in the best case, a metadata request is satisfied by the
client cache, the response time for that request is estimated as
local main memory access latency. Otherwise, if that request is
sent to a MDS and satisfied by the server cache, the overhead
of network delay is included in the response time. In an even
worse case, the server cache does not contain the requested
metadata while the cooperative cache does, extra network
delay should be considered. In the worst case, the MDS has to
send the request to disks where the requested metadata resides,
extra disk access overhead contributes to the response time.

Prefetching happens when a client sees a local cache miss.
In this case the metadata request is sent to MDS. Upon arrival
of that request at the metadata server, the requested metadata
is retrieved (from server side cache, cooperative cache or hard
disk) by the MDS along with the entire prefetching group.

C. Trace-driven simulations

Trace-driven simulations based on the HP trace and the
LLNL trace were conducted to compare different caching-
prefetching algorithms, including conventional caching al-
gorithms such as LRU (Least Recently Used), LFU (Least
Frequently Used) and MRU (Most Recently Used), some
prefetching algorithms such as First Successor, Last Successor,
and state of the art prefetching algorithms such as Noah (Stable
Successor), Recent Popularity (also known as Bestj-out-of-
k), and Probability-Graph Based prefetching (referred to as
DL in the rest of this paper).

Most previous studies use only prediction accuracy to
evaluate the prefetching effectiveness. However, this measure-
ment is neither adequate nor sufficient. The ultimate goal



of prefetching is to reduce the average response time by
absorbing I/O requests before they reach disks. A higher
prediction accuracy does not necessarily indicate a higher hit
rate nor a lower average response time, since too conservative
prefetching, even with a high level of prefetching accuracy,
might not be as beneficial. Thus in our simulations, we not
only measure the cache hit rate, but also the average response
time by integrating a golden disk simulator, DiskSim 3.0 [24],
into our simulation framework.

We conduct experiments for all the caching/prefetching
algorithms mentioned above. Due to space limitation, we
remove the results for less representative algorithms, including
LFU, MRU (these two are always worse than LRU); First
Successor, Last Successor, Noah, Recent Popularity, since
these algorithms are consistently inferior to DL. In addition,
Optimal Caching [25], referred to as OPT in the rest of this
paper, is simulated as an ideal caching algorithm for theoretical
comparison purpose. In OPT, the item to be replaced is
always the farthest in the future access sequence. Since the
prefetching group size for Nexus is set to2, we have tried
both 1 and 2 for this parameter on DL, referred to as DL1
and DL2, respectively, in order to provide a fair comparison.
In sum, in this paper we will present the results for five
caching/prefetching algorithms including Nexus, DL1, DL2,
LRU and OPT.

In addition, we also conducted these experiments in a multi-
metadata-server multi-client environment in order to test the
scalability of our algorithm.

D. Hit rate comparison

We have collected the hit rate for all the three levels
of cache: client cache, server cache and cooperative cache.
Since a group of metadata are prefetched to a client cache
upon a cache miss, and the server cache and the cooperative
cache might offset the effect of the client cache hit rate,
the overall hit rate does not show fully and truly the merits
of our prefetching algorithm. Instead, it is the client cache
that enjoys the benefits from our prefetching algorithm. The
experimental results confirmed our suspicion. Figure 8 shows
that the client cache hit rate comparisons on the HP trace and
the LLNL trace. Due to space limitation, only the results
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Fig. 8. Hit rate comparison with 2 metadata servers and 200 clients

for 2 metadata servers and200 clients are presented in this
paper.Figure 8 shows that the client cache hit rate of Nexus
can outperform DL1 and DL2 by more than 8%. Furthermore,

Nexus even beats OPT2 by a small margin. These results
suggest that Nexus can effectively identify the locality strength
and make a judicious prefetching decision without noticeable
cache pollution side-effect.

E. Average response time comparison

To measure the prefetch overhead of Nexus, the average
response time is measured by incorporating disk simulators.
Figure 9 presents the results obtained from both HP trace
and LLNL trace. Again, Nexus achieves consistently better
performance than any other algorithms except OPT. Figure
9(b) indicates that the average response time is reduced by up
to 67% compared with DL2 and up to 22% compared with
DL1.

F. Impact of consistency control

The study on the impact of consistency control on the
algorithm is also carried out on the HP trace and the LLNL
trace. Since HP trace is essentially metadata read dominant,
its result is not as representative as LLNL trace. As the space
is limited, here we only show the average response time
comparison results collected on the LLNL trace, as in Figure
10. These results indicate that the average response time was
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not noticeably affected by the consistency control. It shows
that Nexus is not very sensitive to the write workload. A
possible explanation is the characteristic of the workloads in
which most of the metadata are either read-only or write-once
in this scientific application.

V. CONCLUSIONS

We introduced Nexus, a novel weighted-graph-based
prefetching algorithm specifically designed for clustered meta-
data servers. Aiming at the emerging MDS-cluster-based stor-
age system architecture and exploiting the characteristic of
metadata access, our prefetching algorithm distinguishes itself
in the following aspects.

• Nexus exploits the ability to look ahead farther than the
immediate successor to make wiser predictions. Sensitiv-
ity study shows that the best performance gain is achieved
when the looking ahead window size is set to5.

2Please note that OPT is the theoretical hit rate upper bound for pure
caching approaches, not for caching/prefetching approaches.
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Fig. 9. Average response time comparison

• Based on the wiser prediction decision, aggressive
prefetching is adopted in our Nexus prefetching algorithm
to take advantage of the relatively small metadata size.
Our study shows that prefetching2 as a group upon each
cache miss is optimal under the two particular traces
studied. Conservative prefetching lose the chance to max-
imize the advantage of prefetching, and too aggressive
but not so accurate prefetching might hurt the overall
performance by introducing extra burden to the disk and
polluting the cache.

• The relationship strengths of the successors are differ-
entiated in our relationship graph by assigning variant
edge weights. Four approaches for edge weight assign-
ment were studied in our sensitivity study. The results
show that the linear decremental assignment approach
represents the most accurate strength for the relationships.

• In addition to server-oriented grouping, we also explored
client-oriented grouping as a way to capture better meta-
data access locality by differentiating between the sources
of the metadata requests. Sensitivity study results show
the latter approach’s consistent performance gain over the
former approach, confirming our assumption.

Other than focusing on the prefetching accuracy — an
indirect performance measurement, we pay our attentions to
the more direct performance goal — cache hit rate improve-
ment and average response time reduction. Simulation results
show remarkable performance gains on both hit rate and
average response time over conventional and state of the art
caching/prefetching algorithms.
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