

1

A Case Study of Parallel I/O for Biological Sequence Search on Linux Clusters

Yifeng Zhu, Hong Jiang, Xiao Qin and David Swanson
Department of Computer Science and Engineering

University of Nebraska - Lincoln
Lincoln, NE 68588-0115

{yzhu, jiang, xqin, dswanson}@cse.unl.edu

Abstract

In this paper we analyze the I/O access patterns of a
widely-used biological sequence search tool and
implement two variations that employ parallel-I/O for
data access based on PVFS (Parallel Virtual File System)
and CEFT-PVFS (Cost-Effective Fault-Tolerant PVFS).
Experiments show that the two variations outperform the
original tool when equal or even fewer storage devices
are used in the former. It is also found that although the
performance of the two variations improves consistently
when initially increasing the number of servers, this
performance gain from parallel I/O becomes insignificant
with further increase in server number.

We examine the effectiveness of two read performance
optimization techniques in CEFT-PVFS by using this tool
as a benchmark. Performance results indicate: (1)
Doubling the degree of parallelism boosts the read
performance to approach that of PVFS; (2) Skipping hot-
spots can substantially improve the I/O performance
when the load on data servers is highly imbalanced. The
I/O resource contention due to the sharing of server
nodes by multiple applications in a cluster has been
shown to degrade the performance of the original tool
and the variation based on PVFS by up to 10 and 21 folds,
respectively; whereas, the variation based on CEFT-
PVFS only suffered a two-fold performance degradation.

Keywords: parallel I/O, CEFT-PVFS, PVFS, BLAST

1. Introduction

Linux clusters have quickly gained popularity in the
bioinformatics community as a cost-effective, high-
performance computing platform in the past few years.
The development in molecular biology has led to an
unprecedented explosion in the volumes of generated
biological data. For example, among the dozens of
publicly accessible database centers, the European
Bioinformatics Institute (EBI) holds more than 120
biological databases [1] and the National Center for
Biotechnology Information (NCBI) stores approximately

31×109 base pairs in 24 million sequences [2]. In such
cases, Linux clusters usually need to input and output
large amounts of data from the storage subsystems.
Unfortunately, the performance of storage subsystems has
increasingly lagged behind the performance of
computation and communication subsystems. This
increasing performance disparity frequently prevents the
effective utilization of the teraflop-scale computing
capability that a modern cluster can offer.

To exploit the collective storage capacity existing
among the local storage devices on cluster nodes, a wide
variety of parallel I/O systems have been proposed and
developed. One notable example of such systems is
PVFS [3][4], which is a RAID-0 style high performance
file system providing parallel data access with cluster-
wide shared name space. While it addresses I/O issues for
the low-cost Linux clusters by aggregating the bandwidth
of the existing disks on cluster nodes, PVFS has two main
disadvantages. It does not provide any fault tolerance in
its current version and thus the failure of any single
cluster node renders the entire file system service
unavailable. In addition, the system resource contention
on data servers can significantly degrade the overall I/O
performance. A Cost-Effective, Fault-Tolerant Parallel
Virtual File System (CEFT-PVFS) [5][6][7], extends
PVFS from a RAID-0 to a RAID-10 style parallel file
system to meet the critical demands on reliability and to
minimize the performance degradation due to resource
contention by taking advantages of the data and device
redundancy.

In this work, we investigate the I/O access patterns of
the MPI-based implementation of a well-known
biological sequence search tool, called Basic Local
Alignment Search Tool (BLAST) [8][9]. This parallel
BLAST uses conventional I/O interfaces to access local
disks. We implemented two new variations that run on the
PVFS and CEFT-PVFS through their parallel I/O
interfaces. The performance of the original and the two
new implementations is measured and compared, based
on the results and measurements of executing the three
programs within the same environments. Through this
real application, we examine the relationship between the
degree of parallelism and the I/O performance. In addition,
we study the impact of the system resource utilization on

In Proc. of the 5th IEEE International Conference on Cluster Computing (Cluster 2003), Hong Kong, Dec. 1-4, 2003.

2

the I/O performance and point out some important issues
that must be addressed in parallel I/O designs.

Our experimental results indicate that the I/O
performance experienced by the parallel BLAST stops
increasing after the degree of parallelism in parallel I/O
accesses increases to a certain level, due in part to the
diminishing gains of I/O parallelism as computations (as
opposed to I/O accesses) on the worker nodes become
dominant. In addition, the parallel I/O performance is
heavily influenced by the system resource utilization on
all the data servers. When data server nodes are severely
unevenly utilized (e.g., with one node much more heavily
loaded than others), due to the sharing of resources by
multiple applications running simultaneously on server
nodes, our experiments showed that both the original
parallel BLAST and the PVFS-based parallel BLAST
suffered drastic performance degradations, by a factor of
10 and 21, respectively, because of their inabilities to
avoid any hot-spot node. On the other hand, it is found by
our experiments that the performance degradation caused
by such severe load imbalance can be minimized in
CEFT-PVFS by its ability to skip one or more hot-spot
nodes. We believe that these findings not only benefit the
bioinformatics research community, but also provide
useful insights into the parallel I/O research in modern
clusters.

The rest of this paper is organized as follows. Section 2
overviews some biological sequence search tools. Section
3 presents two parallel I/O implementations in a parallel
sequence search application. In Section 4, the
experimental performance results are discussed, along
with an evaluation and comparison of the three parallel
implementations of BLAST. Studies in the literature
related to the current work are briefly discussed in Section
5. Finally, Section 6 concludes the paper with comments
on current and future work.

2. Application Overview

The development of modern biological research has
created the need for intensive biological sequence
comparisons. When new biological sequences are
discovered, biomedical researchers would search the
existing databases of genes or proteins for similar or
related sequences. Such analyses have great scientific
value since the structure and function of new sequences
may be implied from the known characteristics of similar
or related sequences. The following introduces several
powerful software tools for similarity searches.

2.1 BLAST

BLAST [2] has been continuously developed and
refined since its initial release by NCBI in 1990 and is
now the mostly widely used tool for a sequence similarity

search. Given a query sequence and a sequence database
as inputs, BLAST searches all entities in the database for
those with high-scoring gapped alignment to the query,
where the deletion, insertion and substitution are allowed
in sequence comparison and the alignment scores are
determined statistically and heuristically based on expert-
specified scoring matrix.

The BLAST search tool contains a set of five programs:
blastn, blastp, blastx, tblastn and tblastx. blastn and
blastp perform a nucleotide or peptide sequence search in
a sequence database of the same type respectively. In
contrast, the blastx and tblastn can perform a sequence
search of one type with a database of the other type by
taking advantage of the fact that nucleotide and peptide
sequences can be translated into each other in living cells.
Specifically a nucleotide sequence can be translated into a
peptide sequence and then compared with a database of
peptide sequences, and vice versa. Finally, the tblastx
differs from all four programs above in that it conducts
six-frame translations on both the query and the database
entities before comparing them. NCBI provides blastall as
a single interface allowing the access to the five different
comparison programs.

2.2 Parallel BLAST

Much work has been done to parallelize the BLAST
programs in two approaches: query segmentation and
database segmentation. In the first approach, the entire
database is replicated to all worker nodes but the query
sequence is split into several pieces. Each worker searches
the entire database using one query piece. In the latter
approach, the whole query sequence is copied to all
workers while the database is divided into multiple
segments. Each worker searches one database fragment
using the entire query.

With the explosion of the database size, the first
approach becomes less attractive due to large I/O
overhead. Nowadays the size of sequence databases is
exploding and can easily exceed the available memory
capacity. If the sequence databases cannot fit into the
physical memory, BLAST is forced to page into disks,
forcing the CPU to sit idle while waiting for the memory
page in and page out [10][11].

WU-BLAST [12] implemented both parallel
approaches, but it runs on its own libraries. This causes a
difficulty to keep up with new versions of BLAST
distributed by NCBI. TurboBLAST [11] and mpiBLAST
[10] implemented the second approach. They both
directly deploy NCBI BLAST library without any
modification. Since TurboBLAST is a commercial
program and its source code is not publicly accessible, we
choose the open-source mpiBLAST for our study.

The mpiBLAST algorithm involves a master and a
number of workers. The master is responsible for

3

assigning the search tasks to the idle workers and for
merging the results from all workers according to their
alignment scores. Each worker copies the assigned
database fragments to its local storage device and then
executes the NCBI blastall to search through the database
fragments.

3. Parallel I/O Implementations

The mpiBLAST does not employ any parallel I/O
facilities and each worker accesses its own local disk. We
implemented two parallel I/O variations over PVFS and
CEFT-PVFS. Figure 1 shows the software stack of our
implementation, with the mpiBLAST being a parallel
wrapper around the BLAST library. While the original
BLAST uses the conventional memory mapped I/O access,
we intrusively modified the I/O subcomponent of BLAST
and replaced its conventional I/O system calls with the
PVFS and CEFT-PVFS native interfaces. As a result, the
databases are striped on all data servers in a round robin
fashion and each worker accesses the data servers in
parallel. In our implementation, the stripe size is set at
64KB.

mpiBLAST

BLAST library

Parallel I/O library

Figure 1. Software stack of mpiBLAST utilizing
parallel I/O

To fairly compare the performance of the original
mpiBLAST and the two new implementations with
parallel I/O, we designed our experiment under the
condition that they use equal amounts of hardware
resources whenever possible. To achieve this, we
artificially place the mpiBLAST master node and the
metadata server of PVFS or CEFT-PVFS on the same
node, and all mpiBLAST workers and the data servers on
the same nodes if they are equal, as shown in Figure 2. If
the data server number is not equal to the worker number,
we make them overlap to the maximum degree.

 Metadata
Server

Disk

CPU

Disk

CPU

Disk Disk

Switch

Physical connection
Logical data flow

CPUCPU

Data
Server

Data
Server

 Data
Server

Disk

CPU

 Data
Server

mpiBLAST
Worker

mpiBLAST
Worker

mpiBLAST
Worker

mpiBLAST
Worker

mpiBLAST
Master

Figure 2. mpiBLAST over PVFS or CEFT-PVFS

CEFT-PVFS is a RAID-10 style parallel file system,

which combines striping with mirroring by first striping
among the primary group of server nodes and then
duplicating all the data in the primary group to the mirror
group to provide fault tolerance. The read operations in
CEFT-PVFS have been designed to double the degree of
parallelism: reading the first half of a file from one
storage group and the second half from the other group in
parallel if the desired data has already taken residence on
both groups. In this way, for a single read operation, all
data servers are involved. In addition, the metadata server
is not only responsible for providing the striping
information to the client nodes for parallel accesses; it
also periodically collects the system resource utilization
information from all data servers and determines the I/O
service schemes. Figure 3 shows an example where the
disk of one data server has already been extremely loaded
by other applications running on the cluster. The metadata
server detects the hot spot and informs the clients to skip
that server node and read the whole data from its mirror
node. Section 4 will further explain this in detail.

Disk

CPU

Disk

CPU

Disk Disk

Switch

Physical connection
Logical data flow

CPUCPU

Primary
Metadata

Server

Mirror Data
Server

1'

Primary
Data Server

1

Primary
Data Server

2

Disk

CPU

Mirror Data
Server

2'

mpiBLAST
Worker

mpiBLAST
Worker

mpiBLAST
Worker

mpiBLAST
Worker

mpiBLAST
Master

Hot
Spot

Figure 3. mpiBLAST over CEFT-PVFS with one

hot spot disk skipped.

4

4. Performance Measurement and
Evaluation

4.1 System Environments

In this work, we run the original mpiBLAST and its
two new parallel-I/O based implementations on the
PrairieFire cluster [14] at the University of Nebraska-
Lincoln. At the time of our experiment, each cluster node
was equipped with two AMD Athlon MP 2200+
processors, 2 GByte of RAM, a 2 gigabits/s full-duplex
Myrinet [15] card, and a 20GB IDE (ATA100) hard drive.
The Netperf [16] benchmark reports a TCP bandwidth
over Myrinet of 126.51 MBytes/s with 47% CPU
utilization. The disk write and read bandwidth is 32 and
26 MBytes/s respectively, as measured by Bonnie [17].

We used the sequence database nt, a nucleotide
sequence database in non-redundant form, freely available
for download at NCBI web site. Currently the nt database
is the largest database available at NCBI and it has 1.76
million sequences, with a total file size of 2.7 GB. Our
experiments are designed to model and measure the
typical I/O behaviors of BLAST. Previous research has
shown that the length of 90% of the query sequences used
by biologists is within the range of 300-600 characters
[13]. Thus in this work, a nucleotide sequence with a
length of 568 characters, extracted from ecoli.nt database,
is chosen as the query sequence.

We only performed the blastn search in our
experiments, which compares a nucleotide sequence
against a nucleotide database, although the experiments
can also be carried out with other BLAST programs
without any modification.

4.2 I/O Access Patterns

We instrumented the source code of NCBI BLAST

library and collected the I/O traces at the application level.
To eliminate the influence of the trace collection facilities
on the completion time, this trace collection function is
turned off during other measurements.

While the I/O access pattern of mpiBLAST constitutes
both small and large reads with small writes, it is
dominated by large reads with large variations in the
temporal and spatial accesses. Figure 4 shows an example
of the traces of the original mpiBLAST when 8 workers
searched against 8 nt database fragments simultaneously.
Among 144 I/O operations, 89% were reads ranging in
data size from 13 bytes to 220 MB, with a mean of 31.29
MB. The remaining I/O operations were 16 small write
operations for recording temporary results and
synchronizing the multithreads on the same nodes. The
data size for write operations has a minimum of 50 bytes
and a maximum of 778 bytes, with a mean of 690 bytes.

0 20 40 60 80 100 120 140 160 180
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

time (seconds)

da
ta

 s
iz

e
(b

yt
es

)

write
read

Figure 4. The overall I/O access pattern of

mpiBLAST with 8 workers at the application level
(master not included). A query sequence of 568
bytes from ecoli.nt is searched against the nt
database with 8 fragments by using blastn.

4.3 Parallel I/O Comparisons

Recall that mpiBLAST utilizes the distributed storage
devices and it needs to take two steps. Each worker first
copies the database fragments to its local disks and then
performs similarity searching independently. Since PVFS
and CEFT-PVFS provide cluster-wide shared name space
and mpiBLAST runs directly on them through parallel I/O
interfaces, the worker does not need the copying
procedure in the parallel I/O implementations. To fairly
evaluate the parallel I/O performance, we measured the
times for the database copying and subtracted the average
copying time from the total execution time of the original
mpiBLAST in each measurement.

The performance of the original mpiBLAST and
mpiBLAST-over-PVFS is compared under the condition
that they use the same number of cluster nodes. Since
cluster nodes serve both as workers and as data servers in
the mpiBLAST-over-PVFS, the amount of resources that
the original and new mpiBLAST programs used is exactly
identical. As Figure 5 shows, when the number of worker
nodes is 1, mpiBLAST-over-PVFS performs worse than
the original approach. This is not surprising since all the
BLAST workers carry the overhead of an additional layer,
the TCP/IP stack, that all data has to go through, and of
the need for the workers (or clients in PVFS) to access the
metadata server. When the number of cluster nodes
increases to 2, PVFS starts to show advantage over the
original mpiBLAST. Its advantage persists as the number
of cluster nodes increases to 4 and 8. However, the
amount of gains of PVFS over the original mpiBLAST

5

tends to be smaller as the number of cluster nodes
becomes larger.

1 2 4 8
0

200

400

600

800

1000

1200

1400

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of worker nodes

original mpiBLAST
mpiBLAST over PVFS

Figure 5. Performance comparison between
original mpiBLAST and mpiBLAST-over-PVFS
under the same amount resources. In
mpiBLAST-over-PVFS, nodes are both data
servers and mpiBLAST workers.

The performance of mpiBLAST-over-PVFS is also
compared with that of the original mpiBLAST when
allowing the number of data servers to vary. Figure 6
shows execution time with different number of workers (1,
2, 4, 8) and different number of PVFS data servers (1, 2, 4,
6, 8, 12, 16). Noticeably, PVFS does not perform as well
as mpiBLAST under any of the four worker group sizes
when it has only one data server. When the number of
PVFS servers increases to 2, it outperforms the original
mpiBLAST when the worker group size is 1, 2, and 4.
The performance of PVFS improves further as the number
of data servers becomes 4 and starts to show advantage
over that of the original mpiBLAST under all four sizes of
worker group. This advantage, while persistent, does not
increase any further as the number of data servers
continues to increase. In fact, the performance of
mpiBLAST-over-PVFS does not consistently follow a
continuous growth curve. When the number of data
servers changes from 12 to 16, PVFS performance has no
significant gain or even slight deterioration. We observed
that the utilization of CPU on the worker node is kept
close to 99% most of the time and the I/O time only
occupy a very small portion of the overall execution time
when the number of data servers is large, suggesting that
computations (for sequence comparison), as opposed to
I/O accesses, have become the absolute dominating factor
in execution time. For example, when the number of
worker nodes was 2, the time spent on I/O operations was
measured to be around 11% of the total execution time on
one worker node when running the original mpiBLAST.

This, according to Amdahl’s Law, implies that improving
the I/O performance will have little influence on the
overall execution time. Although we used the largest
database available at NCBI during our experiments, its
size is only serveral GBs, only twice or three times larger
than the size of the RAM on any server node of the cluster
used for the experiments. With the rapid increase of the
biological database, it is highly likely that when the size
of the database is in the order of hundreds of GBs or
several TBs, the performance gain due to the increase of
the number of data servers will be much more significant.

 1 2 4 8 12 16
0

200

400

600

800

1000

1200

1400

Number of PVFS data servers

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

1 mpiBLAST workers
2 mpiBLAST workers
4 mpiBLAST workers
8 mpiBLAST workers

mpiBLAST over PVFSoriginal
mpiBLAST

original
mpiBLAST

Figure 6. Performance comparisons between
the original mpiBLAST and the mpiBLAST-over-
PVFS under different number of workers with
multiple server configurations.

4.4 Comparisons between PVFS and CEFT-

PVFS

In the previous section, the experimental

measurements of mpiBLAST-over-PVFS clearly showed
the efficiency of parallel I/O. In this section, we compare
the performances of PVFS and CEFT-PVFS. Recall that
mpiBLAST is a read-dominated application, thus the
performance can be significantly influenced by read
performance of the I/O subsystem. In CEFT-PVFS, the
read operations are designed to read the partitioned data
both from the primary group and mirror group
simultaneously. Thus when using the same number of
cluster nodes as data servers, CEFT-PVFS and PVFS
have the same degree of parallelism for read operations.
In Figure 7, the PVFS is configured with 8 data servers
while CEFT-PVFS is configured with 4 mirroring 4 data
servers. In these measurements, all these cluster nodes are
dedicated and there is no other application running on
them. The performance of mpiBLAST-over-CEFT-PVFS
is slightly worse than the mpiBLAST-over-PVFS. This

6

Figure 8. Program to stress the disks

1. M = allocate(1 MBytes);
2. Create a file named F;
3. While(1)
4. If(size(F) > 2 GB)
5. Truncate F to zero byte;
6. Else
7. Synchronously append the
8. data in M to the end of F;
9. End of if
10.End of while

performance degradation is acceptable since CEFT-PVFS
needs to manage slightly larger amount of metadata.

1 2 4 8
0

100

200

300

400

500

600

700

800

Number of workers

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

mpiBLAST over PVFS with 8 data servers
mpiBLAST over CEFT−PVFS with 4 mirroring 4 data servers

Figure 7. Performance comparisons between the
mpiBLAST over CEFT-PVFS and the mpiBLAST
over PVFS when the total number of data servers
is 8 and the number of mpiBLAST workers varies.

4.5 Avoiding Hot Spot in CEFT-PVFS

As an integral part of a cluster, all the server nodes

usually serve as computational nodes, too. The system
resources of these nodes, such as CPU, memory, disk and
network, can be heavily stressed by different scientific
applications running on these nodes, thus potentially
degrading the overall I/O performance of the parallel file
system. This degradation cannot be avoided in the original
PVFS since there is only one copy of any data stored in
the system. However, in the CEFT-PVFS, where each
piece of desired data is eventually stored on two different
nodes, the redundancy provides an opportunity for the
clients to skip the hot-spot node that is heavily loaded and
read the target data from its mirroring node. This is not
only possible for a single-node hot spot, but also possible
for multi-node hot spots as long as no two nodes of any
mirroring pair become hot spots.

In our experiments, we artificially stress the disk on
one data server by a simple program, shown in Figure 8,
to simulate a scenario where other I/O-intensive
applications sharing the same node are running
simultaneously (thus overloading the local disk). In this
program, the synchronous write is guaranteed to always
have a disk access. As we have measured, when only this
program is running, both CPUs on the stressed node are
nearly 95% idle and therefore will likely have little or no
negative impact on the write performance. All three
mpiBLAST implementations were executed under exactly
the same workload, namely, the disk of one of the server
nodes was artificially stressed using the program in Figure

8 while the rest of the nodes were evenly loaded by the
mpiBLAST programs.

Figure 9 shows the performance results of the three

implementations, with and without disk stressing,
respectively. In CEFT-PVFS, all the clients skipped the
hot spot node whose disk was being stressed by using our
program and read all the desired data from its mirror node.
While the performance of the original mpiBLAST and
mpiBLAST-over-PVFS degraded by a factor of 10 and 21,
respectively, under the disk stress, the mpiBLAST-over-
CEFT-PVFS degraded only by a factor of 2.

original mpiBLAST mpiBLAST over PVFS mpiBLAST over CEFT−PVFS
0

500

1000

1500

2000

2500

3000

3500

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

no disk stressed
one disk stressed

Figure 9. Performance comparisons between the
original mpiBLAST, the mpiBLAST over PVFS
and the mpiBLAST over CEFT-PVFS under 8 data
servers and 8 mpiBLAST workers when
stressing the disk on one node

5. Related Work

In the field of parallel I/O, most applications use

micro-benchmarks to evaluate the overall performance of
parallel I/O system [3][6][18][19][20][21][22][23]. In
these benchmarks, multiple clients write or read
simultaneously in a simple pattern. They aim to measure

7

the peak I/O performance. These benchmarks provide
useful insights into the parallel I/O systems. However, in
real scientific applications, the I/O access patterns are
much more complicated and these applications rarely
achieve the peak performance.

Ross et al. [24] studied the I/O characteristics of the
FLASH astrophysics, a parallel scientific application on
Linux clusters and simulated its checkpoint and plotfile
that were basically write-only operations. One important
observation made in that study suggests that the existence
of recursion in the interfaces of parallel file systems
substantially degrades the overall I/O performance,
pointing to the extreme importance of the efficiency of
high-level I/O interfaces.

Li et al. [25] studied the I/O behavior of an AMR
cosmology application and compared the performance of
MPI-IO with parallel HDF version 5. They discussed the
advantages and disadvantages of both systems and
concluded that there was a mismatch between the user
access pattern and the file distribution and striping pattern.
Some of their experiments are conducted on a cluster
connected by a slow communication network that limited
the scope of their observation.

Purakayastha et al. [26] measured file system
workloads of some scientific applications on MPPs,
particularly on the CM-5 architecture. They observed that
small I/O requests dominated I/O operations, that the
write traffic was consistently higher than read traffic, and
that files were not shared between jobs. Smirni et al.
[27][28] showed that there were significant variations in
temporal and spatial I/O patterns across applications.
They optimized the I/O performance by applying
qualitative access pattern classification based on trained
neural networks and hidden Markov models, flexible
policy selection using fuzzy techniques and adaptive
storage formats based on redundant representations [29].
Bennett et al. [30] improved the parallel I/O performance
by using collective I/O that aggregates multiple I/O
requests from different processors into one request.

6. Conclusions

In this paper, we study the I/O behavior of the parallel
BLAST tools with three different I/O access schemes: 1.
using conventional I/O interfaces on local disks, 2. using
parallel I/O interfaces on PVFS, and 3. using parallel I/O
interfaces on CEFT-PVFS. Based on our extensive
experiments, we investigated the performance impacts of
the degree of I/O parallelism and the contention of the I/O
resource on parallel BLAST.

While the incorporation of the parallel I/O interfaces
substantially improves the performance of parallel
BLAST, we found that a higher degree of I/O parallelism
may not lead to better performance, depending on whether
I/O accesses remain dominant in execution time and how

big the data set is. The performance of the parallel
BLAST improves consistently in the initial growth in the
number of data servers in PVFS. However, this
improvement becomes insignificant when this growth
continues beyond a certain level. The seemingly counter-
intuitive result is due to the fact that the I/O time
gradually becomes a very small portion of the overall
execution time so that the improvement in I/O
performance becomes very insignificant relative to the
overall performance, a conclusion consistent with
Amdahl’s Law. In the case of CEFT-PVFS, doubling the
degree of I/O parallelism for read operations provides a
comparable read performance with respect to that of
PVFS when the same number of data servers is used for
both systems.

It is found that skipping the server node with a
heavily loaded disk improves the parallel I/O performance
in CEFT-PVFS. In a cluster, most nodes are typically time
and space shared by multiple applications and thus the
local disks of some nodes can be much more heavily
loaded than those on others. The existence of the I/O
resource contention can substantially deteriorate the
performance of the original parallel BLAST and the one
based on PVFS. While mirroring of disks provides data
redundancy for fault tolerance in CEFT-PVFS, this
redundancy can be exploited to improve the I/O
performance by skipping one or more hot-spot server
nodes and accessing the desired data from their mirror
nodes. Our experiments showed that, with the existence of
an artificially generated hot-spot data server, the parallel
BLAST-over-CEFT-PVFS greatly outperformed the
original parallel BLAST and the one based-on PVFS.

In this work, we only examined the impact of I/O
resource contention. Clearly, the load conditions of the
memory, network and CPU can also influence the I/O
performance. We will further study the impact of
contention of these resources in related ongoing work.

7. Acknowledgment

This work is supported by an NSF Grant (EPS-
0091900), a Nebraska University Foundation Grant (26-
0511-0019) and an Academic Priority Grant of University
of Nebraska – Lincoln (UNL). Work was completed using
the Research Computing Facility at UNL. We are grateful
to our anonymous reviewers.

REFERENCES
[1] E. M. Zdobnov, R. Lopez, R. Apweiler, and T. Etzold,

“The EBI SRS server − new features,” Bioinformatics,
18(8):1149-1150, Aug. 2002.

[2] National Center for Biotechnology Information (NCBI),
ftp://ftp.ncbi.nih.gov/, 2003.

[3] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur,
“PVFS: A parallel file system for Linux clusters,” in

8

Proceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, Oct. 2000, pp. 317-327.

[4] W. B. Ligon III, “Research directions in parallel I/O for
clusters,” keynote speech, in Proceedings of 2002 IEEE
International Conference on Cluster Computing, Sept.
2002.

[5] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson,
"Design, implementation, and performance evaluation of a
cost-effective fault-tolerant parallel virtual file system,"
International Workshop on Storage Network Architecture
and Parallel I/Os, in conjunctions with 12th IEEE
International Conference on Parallel Architectures and
Compilation Techniques, New Orleans, LA, Sept. 2003.

[6] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson,
“Improved read performance in a cost-effective, fault-
tolerant parallel virtual file system (CEFT-PVFS),” in
Proceedings of the 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid, Parallel I/O in Cluster
Computing and Computational Grids Workshop, May 2003,
pp. 730-735.

[7] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson,
“Scheduling for improved write performance in a cost-
effective, fault-tolerant parallel virtual file system (CEFT-
PVFS),” in Proceedings of Cluster World Conference &
Expo, San Jose, California, June 2003.

[8] S. F. Altschul, W. Gish, W. Miller, E. Myers, and D.
Lipman, “Basic local alignment search tool,” Journal of
Molecular Biology, 215:403-410, 1990.

[9] S. F. Altschul, T.L. Madden, A. A. Schaffer, J. Zhang, Z.
Zhang, W. Miller, and D. J. Lipman, “Gapped BLAST and
PSI-BLAST: a new generation of protein database search
programs,” Nucleic Acids Res., 25:3389-3402, 1997.

[10] A. E. Darling, L. Carey, and W. Feng, “The design,
implementation, and evaluation of mpiBLAST,” in
Proceedings of Cluster World Conference & Expo, San
Jose, California, June 2003.

[11] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J.
Wing, “Turboblast: A parallel implementation of blast
based on the turbohub process integration architecture,” in
IPDPS 2002 Workshops, April 2002.

[12] WU-BLAST, http://blast.wustl.edu/, 2003.
[13] K. T. Pedretti, T. L. Casavant, R. C. Braun, T. E. Scheetz,

C. L. Birkett, and C. A. Roberts, “Three complementary
approaches to parallelization of local BLAST service on
workstation clusters,” in Proceeding of Fifth International
Conference on Parallel Computing Technologies, 1999,
Springer Verlag in Lecture Notes in Computer Science
Series, Vol. 1662.

[14] Prairiefire Cluster at University of Nebraska - Lincoln,
http://rcf.unl.edu, 2003.

[15] Myrinet, http://www.myrinet.com, 2003.
[16] Netperf, http://www.netperf.org, 2003.
[17] Bonnie, http://www.textuality.com/bonnie, 2003.
[18] H. Taki and G. Utard, “MPI-IO on a parallel file system for

cluster of workstations,” in Proceedings of the IEEE
Computer Society International Workshop on Cluster
Computing, Melbourne, Australia, 1999, pp. 150-157.

[19] R. Cristaldi, G. Iannello, and F. Delfino, “The cluster file
system: Integration of high performance communication
and I/O in clusters,” in Proceeding of the 2nd IEEE/ACM
international symposium on Cluster computing and the grid,
Berlin, Germany, May 2002.

[20] S. A. Moyer and V. S. Sunderam, “PIOUS: A scalable
parallel I/O system for distributed computing
environments,” in Proceedings of the Scalable High-
Performance Computing Conference, 1994, pp. 71-78.

[21] F. Isaila and W. F. Tichy, “Clusterfile: A flexible physical
layout parallel file system,” in Proceedings of 2001 IEEE
International Conference on Cluster Computing, 2001, pp.
37-44.

[22] S. Garg and J. Mache, “Performance evaluation of parallel
file systems for PC clusters and ASCI red,” in Proceedings
of 2001 IEEE International Conference on Cluster
Computing, 2001, pp 172-177.

[23] M. Vilayannur, M. Kandemir, and A. Sivasubramaniam,
“Kernel-level caching for optimizing I/O by exploiting
inter-application data sharing,” in Proceedings of 2002
IEEE International Conference on Cluster Computing,
2002, pp. 425-432.

[24] R. Ross, D. Nurmi, A. Cheng, and M. Zingale, “A case
study in application I/O on Linux clusters,” in Proceeding
of Supercomputer, Denver, Nov. 2001.

[25] J. Li, W. Liao, A. Choudhary, and V. Taylor, “I/O analysis
and optimization for an AMR cosmology application,” in
Proceedings of IEEE International Conference on Cluster
Computing, pp. 119-126, 2002.

[26] A. Purakayastha, C. S. Ellis, D. Kotz, N. Nieuwejaar, and
M. Best, “Characterizing Parallel File-Access Patterns on a
Large-Scale Multiprocessor,” in Proceedings of the Ninth
International Parallel Processing Symposium, April, 1995,
pp. 165-172.

[27] E. Smirni and D. A. Reed, "Lessons from characterizing the
input/output behavior of parallel scientific applications,"
Performance Evaluation, 1998, Vol. 33, pp. 27-44.

[28] E. Smirni and D. A. Reed, "Workload characterization of
input/output intensive parallel applications," in Proceedings
of the Conference on Modeling Techniques and Tools for
Computer Performance Evaluation, Springer-Verlag
Lecture Notes in Computer Science, June 1997, Vol. 1245,
pp. 169-180.

[29] H. Simitci and D. A. Reed, "A comparison of logical and
physical parallel I/O patterns," International Journal of
High Performance Computing Applications, special issue
(I/O in Parallel Applications), 1998, Vol. 12, No. 3, pp.
364-380.

[30] R. Bennett, K. Bryant, A. Sussman, R. Das, and J. S. Jovian,
“A framework for optimizing parallel I/O,” in Proceedings
of the Scalable Parallel Libraries Conference, 1994.

