
Accelerating Write by Exploiting PCM Asymmetries

Jianhui Yue, Yifeng Zhu

Electrical and Computer Engineering

University of Maine

{jianhui.yue, yifeng.zhu}@maine.edu

Abstract— To improve the write performance of PCM, this
paper proposes a new write scheme, called two-stage-write, which
leverages the speed and power difference between writing a zero
bit and writing a one bit. Writing a one takes longer time
but less electrical current than writing a zero. We propose to
divide a write into stages: in the write-0 stage all zeros are
written at an accelerated speed, and in the write-1 stage stage,
all ones are written with increased parallelism, without violating
power constraints. We also present a new coding scheme to
improve the speed of the write-1 stage by further increasing the
number of bits that can be written to PCM in parallel. Based on
simulation experiments of a multi-core processor under various
SPEC CPU 2006 workloads, our proposed techniques can reduce
the memory latency of standard PCM by 68.3% and improve
the system performance by 33.9% on average. In addition, the
proposed two-stage-write shows 16.5% latency reduction and
9.2% performance improvement over Flip-N-Write.

I. INTRODUCTION

Exascale computing will require 1000 times more memory

than available today [1]. However, today’s DRAM technology

is hitting the wall of energy efficiency and transistor scaling.

It is a great challenge to fabricate high density DRAM beyond

22nm [2] due to difficulties such as efficient charge placement

and capacitor control, and reliable charge sensing [3]. Energy

consumption and heat dissipation of DRAM with large ca-

pacities is a severe issue. In current generation technology,

DRAM power consumption can reach 40% of the server

energy consumption. The idle power consumption of DRAM

accounts for more than 40% of the DRAM power usage [4]. In

addition, DRAM’s leakage power increases with its capacity

and can be as much as its dynamic power [5].

Fortunately, phase-change memory (PCM) has better pro-

cess scalability and less leakage power. Applying vary-

ing levels of currents to phase-change material, such as

Ge2Sb2Te5(GST), can transform the material into either crys-

talline or amorphous states that have dramatically different

electrical resistances. This resistance-based memory proves

to be very scalable. Furthermore, PCM consumes much less

leakage current and requires no refresh operations due to its

non-volatile nature. These attractive properties make PCM a

viable alternative to DRAM in the near future.

PCM has two major weaknesses: slow write performance

and weak write endurance. A PCM chip circuit often limits

the maximum instantaneous power due to noise minimization,

and hence the number of bits that can be concurrently written

is limited to a predefined constant N . Typical values of N are

2, 4, 8 and 16. This constraint limits the number of bytes that

can be simultaneously written to a bank. N is referred to as a

write unit in this paper. Accordingly, writing a cache line of

64 bytes requires multiple serially executed write units, which

slows down the overall write performance dramatically. Beside

slow write, a PCM cell endures around 108−1010 write cycles

while a DRAM cell can support over 1015 writes. While many

researches are working on the write endurance [6]–[11], in this

paper we focus on addressing the issue of slow write.

Applying various amount of electrical current to a PCM cell

can make the cell have different resistances. This property is

used to store digital information in a PCM cell. In Single-

Level-Cell(SLC) technology, a cell with high resistance rep-

resents zero, and a cell with low resistance represents one. In

Multiple-Level-Cell(MLC) technology, a cell stores multiple

bits of information by encoding resistance into several levels.

In a SLC PCM, the response time and power requirement

of writing a zero and writing a one to a cell are drastically

different. Writing a zero takes much shorter time but requires

much larger electric current, compared to writing a one. Con-

ventional PCM systems are very conservative in scheduling

write requests. Regardless of data content to be written, it is

assumed that (1) the response time of writing a binary bit

to each cell is as much as required to write a one and (2)

the electric current of writing a bit to a cell is as large as

required to write a zero. When writing a data block with a

mix of ones and zeros, the write bandwidth is degraded due to

unnecessary blocking caused by the response time difference

between writing ones and zeros, and wasted parallelism caused

by under-utilization of electric current supply.

We propose a new PCM write scheme, called two-stage-

write, which leverages the asymmetric properties for writing

a one and a zero to speed up the write operations of zeros and

to increase the degree of parallelism for writing ones. The key

idea is to separate the write process of a cache line into two

separated stages: write-1 stage that writes all one bits of the

target cache line, and write-0 stage that writes all zero bits.

Since writing a zero is much faster than writing a one, all

writes in the write-0 stage can be performed at an accelerated

speed. In the write-1 stage, since writing a one takes much less

electric current than writing a zero, more PCM cells can be

written concurrently to increase the degree of write parallelism

without violating any instantaneous power constraints. Com-

pared with conventional writing schemes in PCM, our two-

stage-write can achieve better resource utilization and reduce

the service time of writing a cache line.

978-1-4673-5587-2/13/$31.00 ©2013 IEEE 282

��� ��� ��� ��� ��� ��� ��	 ��

������
�� ������
�� ������
�� �����	

�

�

������
�� ������

�

�� �� �
 ����

������

�

������

�

����
�� ����
�� ����
�� ���	

�

�� �� �� �	

������������ ��� �����

���������������

��������������� ���� ���������

"�� �$������

��� % ��� �
!#
����� &��� '���� % ��� �

!#
����� &��� �� ������' ����� � % ���(��((���

��)�

Fig. 1. Timing diagram for different PCM writing schemes

Figure 1 uses a simple example to highlight the difference

between the conventional PCM write scheme and our proposed

two-stage-write. Assume a cache line has 8 write units, i.e.,

it requires eight writes to store a cache line. Under the

conventional scheme, each write unit completes after a service

time required to write a one, regardless of the actual values

written. The conventional scheme completes eight write units

serially at the time instant t8. In two-stage-write all zeros are

written to PCM cells at a faster speed and the write-0 stage

completes at t2. During the following write-1 stage, the lower

current requirement of writing a one enables more ones to be

written concurrently under the same power budget. Therefore,

the number of serial writes in the write-1 stage is reduced.

Two-stage-write completes at t7.

In two-stage-write, we accurately estimate write current

requirements. At each stage, all bits to be written have the

same value and thus each bit takes the same amount of

electric current. Thus the total current required can be easily

calculated. Note that in reality not all bits of a data block to

be written are the same. As a result, we only consider bits

with a value of x at the write-x stage. In this way, we can

have an accurate estimate of electric current requirement for

each write.

In addition, we propose a very simple Flip-or-Not-Flip

coding scheme to further improve the performance of the

write-1 stage. Our goal is to guarantee that the number of bits

with the specified value, k, in each data block is no larger than

half of the size of this data block. Assuming k is 1, this coding

scheme examines whether the number of ones is greater than

the number of zeros in a given data block. If yes, it flips all bits

of this data block. In this way, we ensures that the number of

ones does not exceed half of the size of this data block. Under

the same electric current constraint, this coding scheme can

double the number of ones that can be written concurrently

to PCM cells, compared to conventional schemes. Since the

write-1 stage dominates the response time of writing a cache

line, we apply this coding scheme to the write-1 stage. We

call this write scheme two-stage-write-inv. The bit flip is very

similar to Flip-N-Write [12], which compares the new data

against the old data and writes the flipped new data if the

number of different bits is larger than half of the size of the

data block. Our inverse scheme differs from Flip-N-Write in

that we only need to count the number of ones and the zeros

in the new data. We do not need to compare against old data

and thus our scheme does not have the overhead of reading

old data. As a result, our two-stage-write-inv shows superior

performance than Flip-N-Write.

Figure 1 illustrates the difference between Flip-N-Write and

two-stage-write-inv. Flip-N-Write completes reading old data

at t1. After comparing the old data and its flipped data, Flip-

N-Write effectively reduces the number of bits to be written

by half of the data block size, and thus it allows writing two

write units concurrently without violating power budget. Flip-

N-Write completes the write of a cache line at t6. In two-stage-

write-inv, the write-0 stage finishes at t2, which is the same as

two-stage-write. Through selective inversion, the write-1 stage

reduces the number of bits to be written by half, and each

time it writes twice the amount of data in the two-stage-write.

Accordingly, the write-1 stage in two-stage-write-inv finishes

earlier at t4.

We evaluate our proposed techniques by simulating a multi-

core system under the SPEC CPU 2006 benchmark suite.

Experimental results under 13 multi-programmed workloads

show that two-stage-write and two-stage-write-inv reduce the

read latency of the standard PCM systems by 45.8% and

68.3% on average, and the total running time by 21.9%

and 33.9%, respectively. We also compare our design with

two state-of-the-art write-latency hidden technologies, includ-

ing Flip-N-Write and Write Cancellation. Two-stage-write-inv

achieves an average of 9.2% performance improvement over

Flip-N-Write and 48.1% over Write Cancellation.

The rest of paper is organized as follows. Section II

introduces the background of PCM technology. Section III

presents our two-stage-write architecture design and Sec-

tion IV presents two-stage-write-inv scheme. Section V dis-

cusses the experimental results. Related work is summarized

in Section VI and conclusions are given in Section VII.

283

II. BACKGROUND

A. Phase Change Memory

Phase Change Memory (PCM) is a one-transistor, one-

resistor (1T1R) device shown in Figure 2, while DRAM is

a one-transistor, one-capacitor (1T1C) device. PCM exploits

the remarkably different properties of phase change material

in a memory cell to store digital information. Phase change

material, such Ge2Sb2Te5(GST), has two phases: an amor-

phous phase that has high resistance in the MΩs range and

a crystalline phase that has lower resistance in the KΩs

range. PCM uses the resistance associated with a memory

cell to represent binary information. By exploiting the large

range of resistance and encoding the resistance into multiple

levels, a PCM cell can store multiple bits of information

called multiple-level-cell (MLC). On the other hand, a cell

storing only a single bit of information is a single-level-cell

(SLC). However, due to process variations, it is difficult to

accurately apply electric currents to induce the GST to the

target resistance, due to narrow spaces between neighbor cells.

During writes, various current values are tried until it reaches

the target resistance. In general, the larger the number of bits

stored in a cell, the greater the number of write attempts. As

a result, MLC is slower than SLC. In this paper, we focus on

SLC due to its relatively fast write speed.

A PCM cell is read by sensing the current flow from the

storage location, which is determined by the resistance of the

cell. For PCM, write latency is much larger than read latency

since GST needs to be heated up to change its phase during

a write, as shown in Figure 2.

*+,- ./**+01
2/34+

56768 ./**+01 2/34+

768 ./**+01 2/34+

9:
;<
;=
>?
@A

9<
;=
>?
@A

B
C
DD
E
F
G

HIJKLMNOHPJIJKLMNO HQRS

TUVWXUYZ

[\]^WXUYZ

_`abc
de``cfb

ghi

Fig. 2. Electric current required to write a zero and a one to a PCM cell

Writing a zero and writing a one to a PCM cell exhibit

remarkable differences in electric current and response time.

When a zero is written, a large current is applied to the cell for

a short duration in order to heat the GST abruptly and move

the GST to the amorphous phase. On the other hand, if a one is

written, a relatively smaller current is applied to the cell for a

longer duration. The GST is slowly heated and remains in the

crystalline phase after reaching a certain temperature. Besides

the difference in write currents, writing a one takes a longer

time than writing a zero. Writing a zero changes the GST to

have high resistance. Large currents induce the GST to high

resistance state easily despite the process variations. However,

writing a one is more challenging than writing a zero due to

process variations. In high density PCM cells, it is difficult

to control variations of cells during the fabrication process,

which makes it almost impossible to precisely program a PCM

cell. Typically a programming-verify (PV) technique is used

in industry and academic research. The micro-controller in the

PCM heuristically chooses an initial programming pulse for

the cell. After programming, the micro-controller reads this

cell’s resistance and compares it against the target resistance.

If the cell has not reached the target resistance, another pulse is

tried. This process is repeated until the cell achieves the target

resistance. These multiple iterations of verification further

increases write latency. This is why writing a one is much

slower than writing a zero.

Since zeros and ones are randomly distributed among mem-

ory cells, the memory controller chooses the slowest time,

i.e., the time to write a one, as the required waiting time

after writing a bit. Meanwhile, the conventional PCM also

conservatively assumes writing any bit needs the same amount

of electric current as required to write a zero.

B. PCM Division Write Modes

The write performance is also limited by the electronic

circuity inside a PCM chip. As discussed previously, writing

a zero bit requires a large amount of electric current to heat

GST. On a write, the bit line is raised to a voltage higher

than the phase change voltage, typically ranging from Vdd+1

to Vdd+3, resulting in a higher power draw. The Dickson

charge pump, widely used inside the PCM chip, provides

the current to the write driver. The noise on the power line

hinders the charge pump from providing the high level of

instantaneous current needed for writing PCM cells [13] inside

a chip. In addition, the low efficiency of the charge pump

further limits parallel writes [14]. This limitation of current

provision constrains the number of concurrent write bits to 2,

4, or 8 in a chip [13]. This writing scheme, referred to as

write division mode [14], results in increased latency when

writing large data. For example, writing 16 bits to a PCM

chip takes 8, 4 and 2 time units when writing under x2,

x4 and x8 write division modes, respectively. Conventional

write schemes conservatively assume that each bit of a data

block to be written is a current-consuming bit (i.e., a zero

bit) and thus overestimate the electric current requirement to

write a data block. This conservative estimate results in a loss

of opportunity to write more data in one write operation. In

this paper we propose two methods to accurately estimate the

write current and improve PCM write performance under the

same current delivery capacity as the conventional PCM write

scheme.

III. TWO-STAGE-WRITE SCHEME

A. Motivations and Design

Writing a zero and writing a one to a PCM cell have distinct

response times and electric current requirements. Compared

to writing a one, writing a zero takes much larger electric

current to the heat the GST but for a much shorter amount of

time. The maximum instantaneous electric current that a PCM

chip can provide often limits the number of bits that can be

284

concurrently written. When writing a data block with a mix

of zeros and ones into PCM cells concurrently, conventional

PCM controllers have to wait for the completion of the last bit.

Thus the PCM controller can not issue an outstanding request

even though all zeros in the current write request have been

successfully written. In addition, a conventional PCM con-

troller always prepares for the worst case instantaneous electric

current demand and assumes all bits written are zeros. Based

on this assumption, the number of bits that can be concurrently

written are fixed to a small number. Consequently, the system

resources tend to be under-utilized, leading to inferior write

performance.

We propose a two-stage-write scheme that fully exploits

the asymmetric properties between writing a zero and writing

a one to solve the under-utilization issue discussed above.

When writing a block of data (typically a cache line) our

write scheme takes two steps. In the first step, called write-

0 stage, all zeros are written to PCM cells at a high speed.

In the second step, called write-1 stage, all ones are written

with an increased write unit size. Like the conventional write

scheme, the write-0 stage still complies with the parallel write

limit and thus writing a cache line needs multiple serial write

operations. However, the write-0 stage is performed at a much

faster speed because no ones are written in this stage. The

write-1 stage can write more bits in parallel than conventional

PCM write schemes. We leverage the fact that writing a one

takes less current than writing a zero, and thus we can increase

the size of the write unit without violating instantaneous power

constraints. With a large write unit size, the number of serial

writes required to write a cache line is reduced accordingly.

Our novelty lies in exclusively writing ones and zeros

at two separated stages to fully leverage the shorter time

required to write a zero and less electric current required

to write a one. In conventional write schemes, ones and

zeros are mixed in each write request, and thus the controller

has to conservatively limit the number of bits that can be

concurrently written to the worst case scenario in which all

bits are ones, resulting in power supply under-utilization. For

example, as shown in Figure 1, the write operations of WU0,

WU1, . . ., and WU7 take exactly the same amount of time

under the conventional PCM write schemes. Compared with

conventional write schemes, our scheme can write all zeros

with a faster speed and write all ones with a larger degree of

parallelism, under the same power constraints. In this example,

the write-0 stage, including 0-WU(0 ˜7), completes at t2 and

it performs faster due to shorter time required to write zeros.

The write-1 stage, including 1-WU(0˜7), can write two data

blocks each time due to lesser power requirement for writing

a one, thus significantly reducing the overall time to write

data block WU(0 ˜7). In the two-stage-write, ones and zeros

are separated and thus the number of concurrently bits written

can be precisely determined in each stage. The advantage of

two-stage-write is that we can write all zeros with a tighter

schedule and all ones with a larger write bandwidth. While

the extra write-0 stage generates some performance overhead,

the accelerated write-1 stage achieves significant performance

gain compared with other write schemes. In essence, the 2-

stage write trades the larger write unit size during writing ones

for the shorter response time during writing zeros.

B. Analysis of Write Service Time

We analyze the response time of writing a cache line in our

two-stage-write and the conventional write scheme. Assume it

takes Treset time to write a zero bit, and Tset time to write a

one bit. Writing a one is much slower than writing a zero, and

we let Tset = K×Treset, where K is the time ratio and is set

to 8 in Ref. [15]. Assume the electric current required to write

a zero is L times of the current to write a one, and L is 2 in

Ref. [3]. The write unit size is M bytes and a cache line size

has N bytes. For simplicity, we let M = 8 and N = 64, and

assumes zeros and ones exist in a data block with an equal

probability. Time to write a cache line under the conventional

write scheme and two-stages-write scheme can be calculated

by the following two equations.

Tconventional =
N

M
KTreset (1)

T2stages =
N

M
Treset +

N

ML
KTreset

= (
1

K
+

1

L
)
N

M
KTreset

= (
1

K
+

1

L
)Tconventional (2)

As shown in Eqn. 2, the write-0 stage has N/M serial writes

and its total response time is N
M

Treset. The write-1 stage

increases the write unit size by a factor of L. Typically the

write-0 stage takes shorter time than the write-1 stage. Suppose

the power ratio L is 2 [3] and the time ratio K is 8 [15],

according to Eqn. 1 and 2, we have Tconventional = 64Treset

and T2stages = 40Treset. This simple calculation shows that

the time for writing a cache line in two-stage-write is only

62.5% of conventional write.

speedup =
Tconventional

T2stages

=
1

1

K
+ 1

L

(3)

Eqn. 3 indicates that the speedup of our two-stage-write

scheme over the conventional scheme is not sensitive to the

degree of write division mode, instead sensitive to the time

ratio K and the power ratio L if the write unit size is smaller

than a cache line. In Ref. [15], the largest degree of division

write mode is 16 and thus the corresponding write unit is 8

bytes, which is smaller than a cache line (typically 64 bytes).

If the write division mode increases, the speedup will not

be affected since the speedup is not sensitive to it when the

write unit is smaller than a cache line. Even if the write unit

increases in the future, we believe that the cache line will

also increase to reduce the tag overhead in ever larger cache

capacity and the cache line would be still larger than the write

unit. For example, the size of the last-level cache line has been

increased to 128 bytes in IBM POWER7 [16] and 256 bytes

in IBM zEnterprise [17].

285

2

3

4

5

468101214161820

1

1.5

2

2.5

3

3.5

4

Power Ratio L
Time Ratio K

S
pe

ed
up

 R
at

e

Fig. 3. Speedup of two-stage-write over the baseline

Figure 3 shows the speedup of two-stage-write over the

baseline as the time ratio K and the power ratio L vary in

their representative range. K is typically between 3.75 to 18.

L is typically between 2 and 3. For example, K is 15 in

Ref. [18], 3.75 in Ref. [19], 18 in Ref. [20], 6 in Ref. [21],

and 8 in Ref. [15]. L is 2 in Ref. [19], 3 in Ref. [20], and

2 in Ref. [21]. As K and L varies under their representative

range, we can see that the speedup is constantly larger than

one.

TFNW =
N

M
Tread +

N

2M
KTreset (4)

We also compare two-stage-write with Flip-N-Write

(FNW). In Eqn. 4, FNW needs to read data out first for bit-

wise comparison. On average, only half of the bits will be

written into PCM cells after comparison. Since Treset is very

close to Tread [15], we can have TFNW = 33Treset, which

is slightly better than two-stage-write (T2stages = 40Treset).

Our experimental results presented later will show that this

writing time gap causes 4.3% increase in read latency and

2.6% performance degradation on average in two-stage-write

under various 4-core SPEC 2006 CPU workloads. However,

our two-stage-write has no overhead of storing data inversion

flags used by Flip-N-Write, which needs 6.25% of the total

PCM storage capacity in a typical setting.

C. Implementation

Figure 4 presents our proposed implementation of two-

stage-write based on the product-grade PCM prototype from

Samsung [15], whose data path is illustrated in Figure 4.

This prototype supports eight-word prefetch by introducing

a buffer for reading requests and limits the maximum number

of parallel written bits to 16 for each chip. The buffer is

connected with multiple sense amplifiers and write drivers.

Our two-stage-write circuit sits in the data path between the

x128 buffer and these write drivers as shown in Figure 4. This

circuit can write 16 bits of 0; writing 128 bits needs 8 serial

writes in the write-0 stage. Since this PCM prototype does not

disclose the current ratio between writing a zero and a one in

Ref. [15], we assume this ratio is 2 according to other PCM

prototypes [3]. As a result, two-stage-write can write 32 ones

each time and it takes 4 serial writes to write 128 bits in the

jkl kmnn onpqr s

tuvwk

xyz { |}~�m v}~�m}

jkl kmnn onpqr �

tuvwk

xyz { |}~�m v}~�m}

���� ����m}

...

...

...

���

vl��

���

o���m}

������

��������

������

������

�����
� �¡�

������

¢£¤

¥¢

¥¢

¢£¤

¥¢

¥¢

¦§¨©ª«¬§­®¯©¬

°±«¯²

¥¢

¦§¨©ª«¬§­®¯©¬

°±«¯²
...

¥¢

³¤

³¤

Fig. 4. PCM data path

´µ¶¶·¸

¹º»¼½
¾¿

ÀÁÂÃÄ
ÅÁÂÆÄÁ

ÇÁÂÃÄ

ÈÉÊ

Ë

Ì

ÍÎÏÐ

ÑÒ

ÓÔ

Õ

Ö

×

ØÙ ÚÛ ÜÝ ØØÛÝÞ ßÙÙÜ

ÚÛ ÙÜ ßÙ

àÞ àØ àÛ àÚ àÜ àá àÙ àâ

ãÞ ãØ ãÛ ãÚ

äåæ çèèéêæ

äåæ çèèéêæ

×

ëìí×

ëìíî

ï

ç

ÍÎÏð

Fig. 5. Two-Stage-Write Control

write-1 stage. Each serial write has a corresponding region of

bits in the buffer, which can be specified by the offset. We

call this region the write-region.

Our two-stage-write circuit includes individual component

for each bit and a common component shared by all bits in the

buffer as shown in Figure 5. The shared finite state machine

(FSM) produces the output control signals for the write-stage

(s0), the specified serial write to write a zero (Z), and the

specified part of buffer to write a one (O). If s0 is 1, the write

is at the write-0 stage; otherwise, it is at the write-1 stage.

Since different write-regions are written at different stages (see

Figure 5), the O and Z produced by the FSM specify which

write-region is scheduled respectively at the write-1 stage and

write-0 stage. In our design, the write-1 stage writes 4 write-

regions and write-0 stage writes 8 write-regions. The O signal

has 3 bits and the Z signal has 2 bits. Each bit in the buffer

is an input of individual component shown in Figure 5. When

the buffer stores a zero, the write-0 stage sets s0 to be 1 and

signals the corresponding Zj , which means this buffer belongs

286

to the jth serial write in the stage-0, and enables the AND0

gate and passes this zero to the PCM cell. When the buffer

stores a one, the write-1 stage set s0 to be 0 and signals the

corresponding Oi, which means this buffer belongs to the ith

serial write in the stage-1, and enables the AND1 gate and

passes one to the PCM cell.

The input Zj and Oi for each bit specify whether this bit is

involved in the jth and ith serial write in the write-0 stage and

write-1 stage, respectively. For example, the first serial write in

the write-0 stage involves 16 bits whose offset ranges from 0 to

15 in the buffer under the x16 write division mode and each bit

in the jth write-region in the write-0 stage is associated with

its serial writing order Zj as shown in Figure 5. Since each

PCM has a 128-bit buffer, two-stage-write has 8 serial writes in

the write-0 stage. However, the write-1 stage only has 4 serial

writes. This is because the current for writing a one is half of

the current of writing a zero, and 32 ones can be concurrently

written without exceeding current supply budget under the x16

write division mode. As a result, the first write region in write-

1 ranges from 0 to 31 in the buffer as shown in Figure 5. Since

Z and O produced by the FSM can indicate the order of the

specified write at different write stages, MUX0 and MUX1 use

Z and O to specify the corresponding part of data in the buffer

for the specified write-0 and write-1 operation respectively.

Because the write operation is not in the performance critical

path, the overhead associated with two-stage-write circuits is

negligible. Note that this implementation only modifies the

write data path and keeps the read data path unchanged.

Integrating our 2-stage write logic into PCM chips has little

overhead. First of all, the control logic is not in the list of

the most cost sensitive components in DRAM [22] and PCM.

Second, the added components in our controller are much

less complicated than the components that are already widely

used. For example, the PCM chips program-and-verification

logic is much more complex than our logic, which handles

the process variations. In addition, the content-aware writing

logic is commonly used in NAND Flash memory. Third, our

experiment results show that our 2-stage write has negligible

performance overhead, very similar to Flip-N-Write.

We have analyzed the two-stage-write scheme and demon-

strated the two-stage-write scheme performance advantage

over the conventional scheme. However, this advantage is

limited by the write current ratio between writing a zero and

writing a one. For example, this ratio is reported to be 2 in

Ref. [3]. In the following, we introduce a new coding scheme

to further improve the performance of two-stage-write.

IV. TWO-STAGE WRITE WITH INVERSION

In two-stage-write, we make an accurate-yet-conservative

estimate of write current requirements. In our approach, each

stage assumes all bits of a write unit have the same value and

the electric current is estimated to write these bits. Each stage

of the two-stage-write only writes a portion of the data block

which consists of either zeros or ones. Thus, we could have

more accurate estimate of the electric current requirement.

However, the distribution of zeros and ones over a block of

data changes dynamically, it is difficult to predict how many

zeros and ones are actually written at each stage. In order to

address this issue, we introduce a simple data coding scheme

to guarantee the number of bits with the specified value, k, in

each data block is not larger than half the size of this data

block. Since the write-1 stage dominates the writing for a

cache line in the two-stage-write, we set k = 1.

We present our coding scheme in Algorithm 1. Before

writing a write unit, we count the number of bits that are

one (line 5). If the occurrences of ones are more than half

of the write unit size (line 6), all bits in this write unit are

inverted (line 7). Otherwise, the write unit is kept unchanged

(line 10). In this way, we can guarantee that the number of

ones to be written is less than half of the write-1 stage without

violating the instantaneous current constraints. Combined with

basic two-stage write introduced previously, this selective bit-

wise inversion can further improve the write performance.

We call this combined write scheme as two-stage-write-inv.

In addition, the two-stage-write-inv introduces an extra bit, I
shown in Alg. 1, to store inversion flag for the corresponding

sub-block in order to correctly read its data.

Algorithm 1 Data Inversion for two-stage-write

1: /* N : write unit size in bits */

2: /* I: data inversion flag */

3: /* D: data to write */

4: /*count the number of ones in D */

5: cnt = get Num Of Ones(D)
6: if cnt > N/2 then

7: D = ∼ D
8: I = 1

9: else

10: I = 0

11: end if

We use a simple example, as shown in Figure 6, to illustrate

how two-stage-write-inv works in the write-1 stage. Assume

a bank has a power budget of 16 and that writing a zero and

a one consume 2 and 1 power units respectively. A total of

4 bytes (D0, D1, D2, and D3) are to be written to the PCM.

In the first case, assume each byte has 2 ones. Then the two-

stage-write with no inversion can write 2 bytes each time even

though the bank has enough power balance to write more bits.

Since the number of ones in each byte in the first case is less

than 4, two-stage-write-inv can write 4 bytes without violating

the power budget. Now for the second case, assume each byte

has 6 ones. Thus 4 bytes cannot be written concurrently by the

two-stage-write without inversion. However, two-stage-write-

inv flips the original data first, and then each converted data

has only 2 ones. Accordingly, it can safely write 4 bytes to

PCM without violating the power constraint. Note that Fig. 6

does not show inversion flag in order to highlight the key idea

behind two-stage-write-inv.

T2stages inv =
N

M
Treset +

N

2ML
KTreset (5)

287

ñòóôõ ö÷ø÷ùúô ûñöüýþÿ ñö ý þÿ
ñö ý þ�

ñö ý � ñöýþ�

��� � ��

� � þ � � þ � �

�� �þ �ÿ ��

� � þ � � þ � � � � þ � � þ � � � � þ � � þ � �

� � þ � � þ � �

��� �þ� �ÿ� ���

� � þ � � þ � � � � þ � � þ � � � � þ � � þ � �

�÷�ô� ��	ô

þ þ � þ þ � þ þ þ þ � þ þ � þ þ þ þ � þ þ � þ þþ þ � þ þ � þ þ

�� �þ �ÿ ��

ñö ý � ñö ý þ�

��� �
��

� � þ � � þ � �

��� �þ� �ÿ� ���

� � þ � � þ � � � � þ � � þ � � � � þ � � þ � �

�÷�ô� ��	ô

ñö ý � ñö ý � ñö ý þ�

�
�� �� ������� ��
�� � �! �!"����#! $#�� !#� #%%&� '(���
�� ��# #!�� �! �
% ����� &!��)*

�
�� +� ������� ��
�� � �! �!"����#! #%%&�� '(���
�� ��, #!�� �! �
% ����� &!��)*

-./ -� -+/ -0

-.�/ -��/ -+�/ -0�

-./ -� -+/ -0

-.�/ -��/ -+�/ -0�

1234567 89:47

1234567289:472:;<

1234567 89:47

1234567289:472:;<

Fig. 6. Comparing the write-1 stage of two-stage-write inversion with two-
stage-write

Two-stage-write-inv takes less time to write a cache line

than Flip-N-Write [12], which is one of the state-of-the-art

PCM write schemes. Through comparison of old data, Flip-

N-Write uses a similar coding scheme to reduce the number

of bits to be written by half on average if the overhead is

ignored. Our two-stage-write-inv utilizes a different coding

scheme and it reduces the number of ones to be written by half

on average in the write-1 stage. Utilizing published parameters

in Eqn. 4 and Eqn. 5, we can compute the time for writing

a cache line under Flip-N-Write and two-stage-write-inv, with

an assumption of Tread = Treset [15]. Writing a cache line

takes 33Treset and 24Treset respectively for Flip-N-Write and

two-stage-write-inv. Such a back-of-the-envelope calculation

shows that two-stage-write-inv can be 27% faster than Flip-

N-Write.

A. Implementation

Two-stage-write-inv extends the implementation of two-

stage-write by adding an extra circuit to examine and perform

bit-wise inversion as shown in Figure 7. Since we selectively

invert data based on its number of ones, we use an extra cell

to store this inversion flag for a fixed number of data bits and

we need to accordingly augment the PCM chip with more bits,

as is demonstrated in Ref. [12]. The fixed number of bits is

16 in our design.

The inversion control circuit uses a counter to count the

number of ones and its output is an input to a subtractor. The

subtractor compares the counter and a constant of 8, which is

half of the maximal parallel bits in a chip. The subtractor’s

=>

?@A @BCC DCEFG H

IJKL@

MNO P QRSTB KRSUBR

?@A @BCC DCEFG V

IJKL@

MNO P QRSTB KRSUBR

WXVY Z[\\BR

...

...

...

WX] KA^W

WXY D[\\BR

_`abcd
ecfgfhij
dbklmn

o`abcd
pqnir
stcuh
dbklmn

vwv

=>

=>

vwv

=>

=>

xyz{|}~y���{~
��}��

=>

xyz{|}~y���{~
��}��...

�w

��

����������� ��������

�y����{~��

�S�� ��

��

Fig. 7. 2 Stage Write with Inversion

sign is used to control the inversion, and it is also an input to

the x17 DMUX to be written to PCM for an inversion flag.

Two-stage-write-inv reduces the number of write operations

for a cache line, and a FSM in the two-stage-write logic

is needed to record the write status. The selective inversion

coding algorithm reduces the number of bits to be written by

half on average and this reduction translates into a larger write

unit size at the write-1 stage. Accordingly we need to make

two minor changes to the two-stage-write logic. First, since the

number of write units is reduced, the FSM is reduced to the

number of write operation in the write-1 stage and its output

O. Second, the MUX1 is changed to direct data switching so

that two-stage-write-inv can write more bits than two-stage-

write as shown in Figure 8.

� ��

�

¡¢£ ¤¥¥¦§£

¨©ª«

¤

�¬

Fig. 8. Modification to MUX1 Logic

Our two-stage-write-inv uses selective data inversion similar

to Flip-N-Write to improve PCM write performance. However,

our motivations for using data inversion is different. While

the Flip-N-Write guarantees the number of modified bits to

be written is half of the write unit, our scheme ensures that

the number of one bits is less than half of the data size, which

is larger than one conventional write unit.

V. EVALUATION

A. Experimental Methodology

We evaluate the performance by using the execution-driven

processor simulator M5 [23] and the cycle-level memory

simulator DRAMsim [24], which is modified to simulate PCM.

Table I shows the parameters of simulated processor and

product grade PCM [15]. In order to accurately model memory

288

Parameter Value

System 4-core CMP, 4 GHz
Execution Core Alpha-like out-of-order processor
L1 Cache 32KB I-cache, 32KB D-cache
L2 Cache Latency 20ns, 2MB, 4-way, 64B cache line
L3 Cache Latency 50ns, 32MB, 8-way, 64B cache line
Memory Controller RIFF request scheduling algorithm, page

level interleaving address mapping
Width of data bus 64 bits
Number of Ranks 2
Number of Banks 16
Number of Chips per
Bank

4

Width of a PCM Chip 16 bits
Time to write a PCM cell a zero bit: 430ns, a one bit: 50 ns

Time to read a PCM cell 53ns

Ratio of current writing a
zero to a one

2

PCM write unit size 8 bytes

TABLE I

SIMULATION PARAMETERS

access, we use out-of-order cores because it produces more

parallel and independent memory accesses than in-order cores.

After passing through cache, memory accesses go directly to

PCM. The simulated processor has four cores with 32 MB L3

cache. The PCM read and write latency are set to 57ns and

430ns respectively [15].

We take PCM chip constrains into account, and model the

PCM write unit to be 8 bytes. As a result, in conventional

writing scheme, writing a cache line of 64 bytes to PCM takes

8×430ns = 3440ns while reading a cache line needs less than

100ns due to the chip-level prefetch. To tolerate slow PCM

write, we add a large off-chip L3 DRAM cache. In addition,

since the memory write back is not in the performance critical

path, we use the Read Instruction and Fetch First (RIFF)

scheduling algorithm to improve the performance [25].

The SPEC CPU 2006 benchmark suite is used to construct

13 multi-programmed workloads with intensive memory ac-

cesses. All test applications in each workload run in parallel

and each application is fast-forwarded 15 billion instructions

and 1 billion instructions are simulated. Table II summarizes

memory Read Per Kilo Instructions (RPKI), memory Write

Per Kilo Instructions (WPKI), Memory Level Parallelism

(MLP) [26] and Bank Level Parallelism (BLP) [27] for each

workload. RPKI and WPKI are indicators of memory access

intensity of a workload and most of them are larger than 1.

While our L3 cache has 32MB and is smaller than the one used

in other studies [25], [28], the intensity of memory accesses

measured in our workloads is very close to theirs and thus we

believe a larger L3 cache is unnecessary.

We compare our design with the baseline scheme that uses

the same parameters as listed in Table I but does not have

any PCM optimization. We also compare our designs against

two recently proposed PCM write optimization techniques

including Write Cancellation (WC) [25] and Flip-N-Write

(FNW) [12]. Flip-N-Write flips all bits if necessary to reduce

by half on average the number of bits actually written to the

PCM by comparing against the old data. Write cancellation

aborts an on-going write for a newly-arriving read request

targeted to the same bank if the write operation is not close

to completion. When there are no read requests, all cancelled

write requests will be re-executed. The static threshold value

for write cancellation is set to be 75%, which was reported

to be optimal under SPEC 2006 [25]. We also compare

these algorithms against an ideal PCM whose write latency

is very small (57ns, the same as read latency), which acts

as an theoretical upper bound for studying different write

optimization techniques for PCM.

We do not compare our designs with write pause [25] and

write truncation [28] used in MLC PCM since we focus only

on SLC PCM in this paper.

B. Two-Stage-Write

In the PCM simulated in this paper, the electric current to

write a zero is twice the current to write a one. Under the same

instantaneous power limitation, the number of ones that can be

written in parallel is twice the number of zeros. Accordingly,

we can double the size of a write unit in the write-1 stage,

and four extra write units are needed to write a cache line of

64 bytes.

The time to write a zero is only 1/8 of the time to write

a one. On average, the write-1 and write-0 stage take 4 ×
430 = 1720ns and 8 × 50 = 400ns respectively to write a

cache line under 2-stage write. As a result, it takes a total of

430+1720 = 2120ns in two-stage-write. Table III summarizes

the time required to write a cache line under different write

schemes.

1) Read Latency of Two-Stage-Write : Figure 9 presents

the read latency reduction of two-stage-write and the other

schemes, compared with the PCM baseline that does not have

any write optimization. In most of the 13 workloads studied,

two-stage-write can successfully reduce the read latency more

than Write Cancellation (WC). On average, the read latency

reduction of two-stage-write is 45.8% less than the baseline,

while Write Cancellation and Flip-N-Write(FNW) achieve

only 2.89% and 52.1% respectively.

Two-stage-write achieves a lower read latency than Write

Cancellation in 10 of 13 workloads. In Write Cancellation,

an on-going write still blocks read requests if it has finished

more than x% of the time while writing a cache line, where

x% is a predefined threshold. In our experiments, with a

threshold of 75%, Write Cancellation can block a read request

for up to 860ns. The possibility of blocking a read increases

as more re-executions of canceled writes occur. This increases

the possibility of read blocking for Write Cancellation and

results in larger read latency than two-stage-write, which has

no write re-executions. However, it is also noted that Write

Cancellation provides the lowest read latency in the workload

MIX1. This is because Write Cancellation works well if the

bank level parallelism (BLP) of a workload is close to its

memory level parallelism (MLP). For example, as shown in

Table II, BLP and MLP are 6.02 and 8.11 respectively in

MIX1. In workloads where requests are evenly distributed over

289

Benchmark Description RPKI WPKI MLP BLP

MIX1 astar, astar, astar, astar 7.56 4.73 8.11 6.02

MIX2 astar, cactusADM, libquantum, soplex 7.68 3.01 19.77 3.79

MIX3 cactusADM, cactusADM, gobmk, gobmk 3.80 3.58 71.49 2.85

MIX4 gobmk, gobmk, cactusADM, hmmer 0.97 0.58 22.99 1.45

MIX5 gobmk, leslie3d, mcf, libquantum 1.49 1.45 62.36 2.91

MIX6 gobmk, zeusmp, mcf, lbm 4.68 2.48 64.53 4.294

MIX7 leslie3d, bzip2, mcf, lbm 2.08 1.27 48.06 4.24

MIX8 leslie3d, gobmk, lbm, astar 7.07 5.08 64.62 5.62

MIX9 leslie3d, leslie3d, soplex, soplex 7.85 4.58 54.69 5.15

MIX10 leslie3d, soplex, bzip2, astar 2.10 1.29 28.19 5.22

MIX11 milc, libquantum, lbm, GemsFDTD 2.68 2.46 34.29 4.35

MIX12 soplex, soplex, sjeng, sjeng 1.61 1.01 31.70 4.92

MIX13 soplex, soplex, soplex, soplex 39.11 20.70 50.18 5.45

TABLE II

CHARACTERISTICS OF 13 FOUR-CORE WORKLOADS

Conventional Flip-N-Write Two-stage-write Two-stage-write-inv

3340ns 1773 ns 2120 ns 1260ns

TABLE III

SERVICE TIME FOR WRITING A CACHE LINE

−40

−20

0

20

40

60

80

100

L
a

te
n

c
y
 R

e
d

u
c
ti
o

n
(%

)

M
IX

1

M
IX

2

M
IX

3

M
IX

4

M
IX

5

M
IX

6

M
IX

7

M
IX

8

M
IX

9

M
IX

1
0

M
IX

1
1

M
IX

1
2

M
IX

1
3

m
e

a
n

WC

FNW

2StagesWrt

idealPCM

Fig. 9. Two-stage-write Read Latency Reduction

−40

−20

0

20

40

60

80

100
R

u
n

n
in

g
 T

im
e

 R
e

d
u

c
ti
o

n
(%

)

M
IX

1

M
IX

2

M
IX

3

M
IX

4

M
IX

5

M
IX

6

M
IX

7

M
IX

8

M
IX

9

M
IX

1
0

M
IX

1
1

M
IX

1
2

M
IX

1
3

m
e

a
n

WC

FNW

2StagesWrt

idealPCM

Fig. 10. Two-stage-write Running Time Reduction

different banks, Write Cancellation can reduce the possibility

of re-executing canceled writes and hence effectively reduce

read latency. We call these workloads Write Cancellation

friendly workloads.

However, Write Cancellation is less effective for unfriendly

workloads with remarkably different BLP and MLP. As a

result, in these unfriendly workloads, most requests are clus-

tered to a smaller number of banks, resulting in high frequent

occurrences of write cancellations. Most workloads in our

experiments are Write Cancellation unfriendly and accordingly

two-stage-write outperforms Write Cancellation in terms of

average read latency.

Two-stage-write read latency is close to Flip-N-Write. How-

ever, two-stage-write has no storage overhead. With flipping

bits, Flip-N-Write doubles the size of a write unit and reduces

read latency. Flip-N-Write’s performance overhead is reading

the old version of data from PCM and this overhead is smaller

than two-stage-write’s performance overhead because in two-

stage-write writing zeros is executed. So the write service time

for two-stage-write is 347ns longer than Flip-N-Write shown

in Table III. This is 10.39% inferior to Flip-N-Write and leads

to a 6.3% read latency increase on average. This is because

the introduction of large L3 DRAM cache can mitigate the

PCM slow write’s negative impact on performance. However,

Flip-N-Write’s needs 6.25% of the PCM storage space to store

flipping for bits for data blocks, unlike the two-stage-write.

290

2) Running Time of Two-Stage-Write: Figure 10 shows

the total running time reduction of two-stage-write and other

schemes when compared with the PCM baseline. Two-stage-

write’s reduced read latency is directly translated into per-

formance gain. On average, two-stage-write provides 21.9%

performance improvement over the baseline. The average

running time of two-stage-write is 2.6% longer than Flip-N-

Write due to its small overhead of reading old data. Note that

under some workloads Write Cancellation increases the total

running time but has a smaller read latency than the baseline.

For example in the workload MIX2, its read latency is reduced

by 44.9% whereas its running time is increased by 22.5% (see

Figure 9). This is because the re-execution of canceled writes

increases the possibility of blocking read request when an

executing write finishes more than 75%. On the other hand, by

canceling write requests, Write Cancellation can improve BLP.

For example, the BLP of MIX5 is 3.15 and 2.91 respectively

in Write Cancellation and the baseline. The performance of

MIX5 is influenced by both read latency and BLP. So this

explains why MIX5’s running time is reduced by 3.72% but

read latency is increased by 3.09% when compared with the

baseline.

C. Two-Stage-Write with Inversion

1) Read Latency of Two-Stage-Write with Inversion:

Figure 11 compares the read latency reduction against

the baseline for five schemes, including two-stage-write-

inv(2StageWrtInv), two-stage-write(2stageWrt), Write Cancel-

lation (WC), Flip-N-Write (FNW), and the ideal PCM case.

On average, the latency reduction for two-stage-write-inv is

68.4%, while Flip-N-Write and two-stage-write is 52.1% and

45.8% respectively. Compared with two-stage-write, the read

latency of two-stage-write-inv is 22.6% less. This is because

it can double the size of write unit in write-1 stage and spend

half the time in the write-1 stage, which has dominated in the

service time of writing a cache line. Overall, two-stage-write-

inv also outperforms Flip-N-Write’s read latency by 16.3% on

average. Since the write-1 stage dominates the write service

time, four folds reduction of this part can certainly help to

reduce read latency more than Flip-N-Write in which the

speed-up ratio is limited to 2. In summary, the two-stage-

write-inv consistently outperform Flip-N-Write and the basic

two-stage-write for all workloads in term of read latency.

2) Running Time of Two-Stage-Write with Inversion: The

running time reduction against the baseline is shown in

Figure 12. Since the two-stage-write-inv has a tighter write

current allocation than the other writing schemes due to our

new coding scheme, it fully utilizes the power supply without

violations, and thus can significantly reduce the time of writing

a cache line. Under the 13 workloads studied in this paper,

two-stage-write-inv achieves 33.9% running time reduction

against the baseline on average, and outperforms two-stage-

write and Flip-N-Write by 12.9% and 9.2% respectively.

VI. RELATED WORK

Due to the advantage of scalability, PCM has emerged

as a promising non-volatile memory technology which can

potentially replace DRAM. Most of the existing research

work focuses on solving issues of its write endurance and

slow writes in order to make it practical in real systems.

Write endurance has received extensive attentions recently.

Ref. [6] presents removing redundant data bits, row shifting,

and segment swapping to prolong the PCM lifetime. Ref. [7]

shows a start-gap wear leveling technique to improve the

PCM endurance with negligible overhead. Ref. [8] proposes

dynamically replicating memory write data to different pages

with disjoint failures and reading data from both pages in

case of data corruption based on the observation that it is

easy to find two pages with the same failure distribution

over storage space. Ref. [9] designs Error-Correcting Pointers

(ECP) that permanently encode the locations of failed bits into

a table and replaces failed bits with healthy ones in order to

correct corrupted bits. Ref. [10] proposes partitioning memory

into partitions with at most one failed bit and then uses

error correction codes to correct for each partition. Ref. [11]

exploits the healthy bits in a faulty block to store remapping

information without any storage overhead in PCM and extends

the PCM lifetime to over 7 years. These achievements have

led to the PCM being more reliable as main memory.

Several research projects have aimed to hide the long write

latency of PCM. Ref. [3] adds a buffer to each PCM bank

and exploits the data locality to mitigate the slow write. In

addition, Ref. [3] further proposes a partial write strategy for

a cache line to reduce the amount of data written to PCM.

Flip-N-Write [12] is a simple read-modify-write technique to

write either flipped or unflipped data to reduce write time.

During a write, Flip-N-Write first reads the old value out of

PCM and then calculates the number of different bits between

the new data and the old data, as well as the number of

different bits between the bit-flipped new data and old data,

and finally chooses to write either the flipped or unflipped

new data depending on which has more unmodified data. This

scheme requires an extra bit to record whether the associated

data has been flipped or not.

Recently proposed PreSet [29] relates to our work closely.

Although we share the same motivation to exploit the PCM

writing asymmetry to improve PCM performance, our work

significantly differs from PreSet. First, our work not only

exploits the asymmetry in time but also asymmetry in power.

Taking advantage of the difference in power needs between

writing a zero bit and a one bit, we can reduce the time

of writing a cache line by increasing the write unit size.

Second, while our work does not increase the write traffic

compared with the baseline, PreSet can potentially increase the

write traffic to the PCM significantly. PreSet issues the PreSet

write requests when a dirty cache line arrives at the last level

cache and then issues another write request when this dirty

cache line is evicted to the PCM. These PreSet requests can

generate large extra memory traffic and potentially degrades

291

−40

−20

0

20

40

60

80

100

L
a

te
n

c
y
 R

e
d

u
c
ti
o

n
(%

)

M
IX

1

M
IX

2

M
IX

3

M
IX

4

M
IX

5

M
IX

6

M
IX

7

M
IX

8

M
IX

9

M
IX

1
0

M
IX

1
1

M
IX

1
2

M
IX

1
3

m
e

a
n

WC

FNW

2StagesWrt

2StagesWrtInv

idealPCM

Fig. 11. Read Latency Reduction of Two-Stage-Write with Inversion

−40

−20

0

20

40

60

80

100

R
u

n
n

in
g

 T
im

e
 R

e
d

u
c
ti
o

n
(%

)

M
IX

1

M
IX

2

M
IX

3

M
IX

4

M
IX

5

M
IX

6

M
IX

7

M
IX

8

M
IX

9

M
IX

1
0

M
IX

1
1

M
IX

1
2

M
IX

1
3

m
e

a
n

WC

FNW

2StagesWrt

2StagesWrtInv

idealPCM

Fig. 12. Running Time Reduction of Two-Stage-Write with Inversion

the system performance under busy memory workloads. How-

ever, our method does not incur extra write traffic and can

work well under heavy memory workload. Third, the PreSet

implementation needs to modify both processors and PCM,

our work only needs to make modification to PCM. As a

result, our method is easier to deploy. Last, PreSet needs

more communication between the processor and PCM than

the baseline, our work has exactly the same communication

as the baseline. Accordingly, PreSet generates more traffic to

on-chip network with a potential negative impact to the overall

system performance.

Write cancellation and write pausing [25] are proposed to

indirectly improve the PCM read performance. Write can-

cellation aborts an on-going write for a newly-arriving read

request targeted to the same bank if the write operation is

not close to completion. When there are no read requests, the

cancelled write requests are re-executed. Write pausing is a

similar technique that pauses a PCM write at the end of a

PCM write iteration and starts to serve a waiting read request.

Recently, write truncation and form switch [28] were proposed

to improve write performance for the multiple-level-cell PCM.

Based on the observation that not all bits for a block of data

need the same number of write iterations, the write truncation

early terminates the write iteration when most bits have been

successfully written and then recovers the data with extra error

correction code during reading. The form switch compresses

data to reduce the storage space overhead of write truncation.

Besides the reliability and slow write, the PCM needs high

levels of electrical current to write to a PCM cell and thermally

change its state. Delivering such high levels of power is a

challenge for both the PCM chip and the system. A given

power budget supply limits the number of parallel write bits

in PCM. Ref. [30] proposes power tokens to manage the PCM

writes and specifies tight power allocation to increase the

number of parallel write bits under a given power budget.

Our proposal also estimates minimal power requirement for

writing a block and this estimate can efficiently write more

bits concurrently. While Ref. [30] minimizes the write power

requirement by tracking the number of modified bits in a

block, our two-stage-write takes into account the difference

between response times and power consumptions for writing

a zero and a one. Our two-stage-write proposal results in

efficient resource usage for data write to PCM memory.

Furthermore, since power token and our methods work at the

memory controller level and PCM level respectively, they can

work together to improve performance.

VII. CONCLUSION

This paper presents and evaluates two new optimization

techniques, the two-stage-write and two-stage-write-inv, to

better utilize hardware resource and speed up the write per-

formance of PCM. We aim to reduce the negative impact of

slow writes on time-critical reads in PCM. Motivated by the

PCM’s asymmetric properties of response time and electric

current when writing a zero and writing a one, we proposes

a two-stage-write strategy that writes all zeros first and then

writes all ones. Writing all zeros together allows the PCM

controller to schedule outstanding requests earlier and writing

all ones together allows more bits to be written concurrently

without violating instantaneous power constraints.

We propose a simple bit-inverse scheme to further improve

the performance of two-stage-writes by doubling the number

of ones that can be written in parallel. Specifically when the

number of ones in a data block exceeds half of the total

number of bits in the data block, then all bits are flipped before

performing two-stage-write.

By using the SPEC CPU 2006 benchmark suite to evaluate

a four-core system with PCM memory, our experiment results

292

based on 13 different multi-programmed workloads show

that two-stage-write and two-stage-write-inv can successfully

reduce the read latency by 45.8% and 68.3% on average

over a standard PCM baseline, respectively. The read latency

reduction directly translates to a running time reduction of

21.9% and 33.9%, respectively. In addition, two-stage-write

achieves a performance close to Flip-N-Write, but does not

have its storage overhead, which is 6.25% of the capacity

of the PCM for Flip-N-Write. Lastly, two-stage-write-inv is

superior to Flip-N-Write by 16.5% in latency reduction and

9.2% in running time reduction.

A. Acknowledgement

We would like thank our shepherd Daniel Sorin, anonymous

reviewers, and the program committee. We also thank Ali

Shareef and Vincent Weaver for their proofreading. This work

was supported by National Science Foundation under grants

IIS 091663, CNS 1117032, EAR 1027809, CCF 0937988,

CCF 0621493, and EPS 0904155.

REFERENCES

[1] K. Bergman, S. Borkar, D. Campbell, and etc, “ExaScale Computing
Study: Technology Challenges in Achieving Exascale Systems Peter
Kogge, Editor & Study Lead,” 2008.

[2] International Technology Roadmap for Semiconductors, 2009.

[3] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” in Proceedings of the 36th

Annual International Symposium on Computer Architecture, 2009, pp.
2–13.

[4] H. Zheng and Z. Zhu, “Power and Performance Trade-Offs in Contem-
porary DRAM System Designs for Multicore Processors,” Computers,

IEEE Transactions on, vol. 59, no. 8, pp. 1033 –1046, Aug. 2010.

[5] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi, “A Comprehensive Memory Modeling Tool and Its Applica-
tion to the Design and Analysis of Future Memory Hierarchies,” in
Proceedings of the 35th Annual International Symposium on Computer

Architecture, 2008, pp. 51–62.

[6] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy
Efficient Main Memory Using Phase Change Memory Technology,” in
Proceedings of the 36th Annual International Symposium on Computer

Architecture, 2009, pp. 14–23.

[7] M. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing Lifetime and Security of PCM-Based Main Mem-
ory with Start-Gap Wear Leveling,” in Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, 2009, pp. 14
–23.

[8] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda,
“Dynamically Replicated Memory: Building Reliable Systems from
Nanoscale Resistive Memories,” in Proceedings of the fifteenth edition

of ASPLOS on Architectural Support for Programming Languages and

Operating Systems, 2010, pp. 3–14.

[9] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not ECC,
for Hard Failures in Resistive Memories,” in Proceedings of the 37th

Annual International Symposium on Computer Architecture, 2010, pp.
141–152.

[10] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee,
“SAFER: Stuck-At-Fault Error Recovery for Memories,” in Proceedings

of the 43rd Annual IEEE/ACM International Symposium on Microarchi-

tecture, 2010, pp. 115–124.

[11] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P.
Jouppi, and M. Erez, “FREE-p: Protecting Non-Volatile Memory against
both Hard and Soft Errors,” in Proceedings of the 17th International

Conference on High-Performance Computer Architecture, 2011, pp.
466–477.

[12] S. Cho and H. Lee, “Flip-N-Write: A Simple Deterministic Technique
to Improve PRAM Write Performance, Energy and Endurance,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture, 2009, pp. 347–357.

[13] S. Kang, W. Y. Cho, and etc, “A 0.1-µm 1.8-V 256-Mb Phase-Change
Random Access Memory (PRAM) With 66-MHz Synchronous Burst-
Read Operation,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 1,
pp. 210 –218, Jan. 2007.

[14] S. Hanzawa, N. Kitai, and etc, “A 512kB Embedded Phase Change
Memory with 416kB/s Write Throughput at 100µA Cell Write Current,”
in IEEE International Solid-State Circuits Conference, 2007. ISSCC

2007. Digest of Technical Papers., 2007, pp. 474 –616.
[15] K.-J. Lee, B.-H. Cho, and etc, “A 90 nm 1.8 V 512 Mb Diode-Switch

PRAM With 266 MB/s Read Throughput,” Solid-State Circuits, IEEE

Journal of, vol. 43, no. 1, pp. 150 –162, Jan. 2008.
[16] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd, “Power7: IBM’s

Next-Generation Server Processor,” IEEE Micro, vol. 30, no. 2, pp. 7–
15, Mar. 2010.

[17] J. Warnock, Y. Chan, W. Huott, and etc, “A 5.2GHz Microprocessor
Chip for the IBM zEnterpriseTMSystem,” in IEEE International Solid-

State Circuits Conference, 2011. ISSCC 2011. Digest of Technical

Papers., 2011, pp. 70–72.
[18] S. Ahn, Y. Song, and etc, “Highly Manufacturable High Density Phase

Change Memory of 64Mb and Beyond,” in Electron Devices Meeting,

2004. IEDM Technical Digest. IEEE International, Dec. 2004, pp. 907
– 910.

[19] F. Bedeschi, C. Resta, O. Khouri, and etc, “An 8Mb Demonstrator for
High-Density 1.8V Phase-Change Memories,” in VLSI Circuits, 2004.

Digest of Technical Papers. 2004 Symposium on, June 2004, pp. 442 –
445.

[20] H.-R. Oh, B.-H. Cho, W. Y. Cho, and etc, “Enhanced Write Performance
of a 64-Mb Phase-Change Random Access Memory,” Solid-State Cir-

cuits, IEEE Journal of, vol. 41, no. 1, pp. 122 – 126, Jan. 2006.
[21] S. Kang, W. Cho, K.-J. Lee, and etc, “A 0.1µm 1.8V 256Mb 66MHz

Synchronous Burst PRAM,” in Solid-State Circuits Conference, 2006.

ISSCC 2006. Digest of Technical Papers. IEEE International, Feb. 2006,
pp. 487 –496.

[22] T. Vogelsang, “Understanding the Energy Consumption of Dynamic
Random Access Memories,” in Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, 2010, pp.
363 –374.

[23] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 Simulator: Modeling Networked Systems,”
IEEE Micro, vol. 26, no. 4, pp. 52–60, 2006.

[24] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Ja-
cob, “DRAMsim: A Memory System Simulator,” SIGARCH Comput.

Archit. News, vol. 33, no. 4, pp. 100–107, 2005.
[25] M. F. Moinuddin K. Qureshi and L. Lastras, “ Improving Read Perfor-

mance of Phase Change Memories via Write Cancellation and Write
Pausing,” in Proceedings of the 16th International Conference on High-

Performance Computer Architecture, 2010, pp. 1–11.
[26] A. Glew., “MLP yes! ILP no! In Wild and Crazy Ideas Session,” in

Proceeding of the 8th International Conference on Architectural Support

for Programming Languages and Operating Systems, 1998.
[27] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: En-

hancing both Performance and Fairness of Shared DRAM Systems,” in
Proceedings of the 35th Annual International Symposium on Computer

Architecture, 2008, pp. 63–74.
[28] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. Childers, “Improving Write

Operations in MLC Phase Change Memory,” in Proceedings of the 18th

International Conference on High-Performance Computer Architecture,
2012, pp. 201–210.

[29] M. Qureshi, M. Franceschini, A. Jagmohan, and L. Lastras, “PreSET:
Improving Performance of Phase Change Memories by Exploiting
Asymmetry in Write Times,” in Proceedings of the 39th Annual In-

ternational Symposium on Computer Architecture, 2012, pp. 380 –391.
[30] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger, “Preventing

PCM Banks from Seizing Too Much Power,” in Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitecture,
2011, pp. 186–195.

293

