Chapter 34

Efficient Update Control
of Bloom Filter Replicas
in Distributed Systems

Yifeng Zhu
University of Maine, USA

Hong Jiang
University of Nebraska — Lincoln, USA

ABSTRACT

This chapter discusses the false rates of Bloom filters in a distributed environment. A Bloom filter (BF)
is a space-efficient data structure to support probabilistic membership query. In distributed systems, a
Bloom filter is often used to summarize local services or objects and this Bloom filter is replicated to
remote hosts. This allows remote hosts to perform fast membership query without contacting the original
host. However, when the services or objects are changed, the remote Bloom replica may become stale.
This chapter analyzes the impact of staleness on the false positive and false negative for membership
queries on a Bloom filter replica. An efficient update control mechanism is then proposed based on the
analytical results to minimize the updating overhead. This chapter validates the analytical models and
the update control mechanism through simulation experiments.

1. INTRODUCTION TO BLOOM FILTERS

A standard Bloom filter (BF) (Bloom, 1970) is a lossy but space-efficient data structure to support
membership queries within a constant delay. As shown in Figure 1, a BF includes & independent random
hash functions and a vector B of a length of m bits. It is assumed that the BF represents a finite set S =
{x,,x,,....x } of n elements from a universe U . The hash functions h(x), 1 <i <k, map the universe U
to the bit address space [1,m], shown as follows,

Hx)= {h(x)| 1 <h(x)<mfor 1 <i<k} (1)

DOI: 10.4018/978-1-60566-661-7.ch034

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 1. A Bloom filter with a bit vector of m bits, and k independent hash functions. When an element
x is added into the set represented, all bits indexed by those hash functions are set to 1.

Bit Vector B

1 2 3 4 5 6 7 m-1

Definition 1. For all x € U, B[H(x)] = {B[h(x)] | | <i<k}.

This notation facilitates the description of operations on the subset of B addressed by the hash func-
tions. For example, B[H(x)] = 1 represents the condition in which all the bits in B at the positions of
h(x),..., and A (x) are 1. “Setting B[H(x)]” means that the bits at these positions in B are set to 1.

Representing the set S using a BF B is fast and simple. Initially, all the bits in B are set to 0. Then for
each x € §, an operation of setting B[H(x)] is performed. Given an element x, to check whether 7 is in
S, one only needs to test whether B[H(x)] = 1. If no, then x is not a member of S; If yes, x is conjectured
to be in S. Figure 1 shows the results after the element x is inserted into the Bloom filter.

A standard BF has two well-known properties that are described by the following two theorems.

Theorem 1.Zero false negative

For Vx € U, if 3i, Blh(x)] # 1, then * 9 .

For a static set S whose elements are not dynamically deleted, the bit vector indexed by those hash func-
tions always never returns a false negative. The proof is easy and is not given in this chapter.

Theorem 2.Possible false positive

For Vx e U, if B[H(x)] = 1, then there is a small probability /* that * ¢S . This probability is called the
false positive rate and f* =~ (1 — e*"™)". Given a specific ratio of m/n, f* is minimized when k = (m/n)In2

+ m/n
g o = (0.6185)

Proof: The proof is based on the mathematical model proposed in (James, 1983; Mcllroy, 1982).
Detailed proof can be found in (Li et al., 2000; Michael, 2002). For the convenience of the reader, the
proof is briefly presented here.

After inserting n elements into a BF, the probability that a bit is zero is given by:

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 2. Expected false positive rate in a standard Bloom filter. A false positive is due to the collision
of hash functions, where all indexed bits happen to be set by other elements.

False positive rate

Umbp .
€I of hagp, functiong git ratio

2)

Thus the probability that ¥ bits are set to 1 is

k
kn
P(k bits set) = [1 — [1 _ l]] ~(1— efkn/m)k,‘
m

3)
Assuming each element is equally likely to be accessed and |S||U], then the false positive rate is

_15]

ft= [1 U |]P(k bits set) ~ (1 —e /™).

4)

Given a specific ratio of n , 1.e., the number of bits per element, it can be proved that the false posi-

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

. S k= 2In2
tive rate f* is minimized when n

(Michael, 2002)

and the minimal false positive rate is, as has been shown

£ = 0.5 = (0.6185)"" (5)

The key advantage of a Bloom filter is that its storage requirement falls several orders of magnitude
below the lower bounds of error-free encoding structures. This space efficiency is achieved at the cost
of allowing a certain (typically none-zero) probability of false positives, that is, it may incorrectly return
an “yes” although x is actually not in S. Appropriately adjusting m and k can minimize this probability
of false-positive to a sufficiently small value so that benefits from the space and time efficiency far out-
weigh the penalty incurred by false positives in many applications. For example, when the bit-element
ratio is 8 and the number of hash functions is 6, the expected false positive rate is only 0.0216. Figure
2 shows the false positive rate under different configurations.

In order to represent a dynamic set that is changing over time, (Li et al., 2000) proposes a variant
named counting BF. A counting BF includes an array in which each entry is not a bit but rather a counter
consisted of several bits. Counting Bloom filters can support element deletion operations. Let C = {c]_
| 1 <j < m} denote the counter vector and the counter ¢, represents the difference between the number
of settings and the number of unsetting operations made to the bit B[;]. All counters ¢ for | <j<mare
initialized to zero. When an element x is inserted or deleted, the counters C[H(x)] are incremented or
decreased by one, respectively. If ¢ changes its value from one to zero, B[] is reset to zero. While this
counter array consumes some memory space, (Li ez al., 2000) shows that 4 bits per counter will guarantee
the probability of overflow minuscule even with several hundred million elements in a BF.

2. APPLICATIONS OF BLOOM FILTERS IN DISTRIBUTED SYSTEMS

Bloom filters have been extensively used in many distributed systems where information dispersed
across the entire system needs to be shared. For example, to reduce the message traffic, (Li et al, 2000)
propose a web cache sharing protocol that employs a BF to represent the content of a web proxy cache
and then periodically propagates that filter to other proxies. If a cache miss occurs on a proxy, that proxy
checks the BFs replicated from other proxies to see whether they have the desired web objects in their
caches. (Hong & Tao, 2003; Hua et al., 2008; Ledlie et al., 2002; Matei & lan, 2002; Zhu et al., 2004;
Zhu et al., 2008) use BFs to implement the function of mapping logical data identities to their physical
locations in distributed storage systems. In these schemes, each storage node constructs a Bloom filter
that summarizes the identities of data stored locally and broadcasts the Bloom filter to other nodes.
By checking all filters collected locally, a node can locate the requested data without sending massive
query messages to other nodes. Similar deployments of BFs have been found in geographic routing in
wireless mobile systems (Pai-Hsiang, 2001), peer-to-peer systems (Hailong & Jun, 2004; John et al.,
2000; Mohan & Kalogeraki, 2003; Rhea & Kubiatowicz, 2002), naming services (Little et al., 2002),
and wireless sensor networks (Ghose et al. 2003; Luk et al. 2007).

A common characteristic of distributed applications of BFs, including all those described above, is that
a BF at a local host is replicated to other remote hosts to efficiently support distributed queries. In such
dynamical distributed applications, the information that a BF represents evolves over time. However, the

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

updating processes are usually delayed due to the network latency or the delay necessary in aggregating
small changes into single updating message in order to reduce the updating overhead. Accordingly the
contents of the remote replicas may become partially outdated. This possible staleness in the remote
replicas not only changes the probability of false positive answers to membership queries on the remote
hosts, but also brings forth the possibility of false negatives. A false negative occurs when a BF replica
answers “no” to the membership query for an element while that element actually exists in its host. It
is generated when a new element is added to a host while the changes of the BF of this host, including
the addition of this new element, have not been propagated to its replicas on other hosts. In addition,
this staleness also changes the probability of false positives, an event in which an element is incorrectly
identified as a member. Throughout the rest of this chapter, the probabilities of false negatives and false
positives are referred to as the false negative rate and false positive rate, respectively.

While the false negative and false positive rates for a BF at a local host have been well studied in
the context of non-replicated BF (Bloom, 1970; Broder & Mitzenmacher, 2003; James, 1983; Li et al.,
2000; Michael, 2002), very little attention has been paid to the false rates in the Bloom filter replicas
in a distributed environment. In the distributed systems considered in this chapter, the false rates of the
replicas are more important since most membership queries are performed on these replicas. A good
understanding of the impact of the false negatives and false positives can provide the system designers
with important and useful insights into the development and deployment of distributed BFs in such im-
portant applications as distributed file, database, and web server management systems in super-scales.
Therefore, the first objective of this chapter is to analyze the false rates by developing analytical models
and considering the staleness.

Since different application may desire a different tradeoff between false rate (e.g, miss/fault penalty)
and update overhead (e.g., network traffic and processing due to broadcasting of updates), it is very
important and significant for the systems overall performance to be able to control such a tradeoff for
a given application adaptively and efficiently. The second objective is to develop an adaptive control
algorithm that can accurately and efficiently maintain a desirable level of false rate for any given ap-
plication by dynamically and judiciously adjusting the update frequency.

The primary contribution of this chapter is its developments of accurate closed-form expressions for the
false negative and false positive rates in BF replicas, and the development of an adaptive replica-update
control, based on our analytical model, that accurately and efficiently maintains a desirable level of false
rate for any given application. To the best of our knowledge, this study is the first of its kind that has
considered the impact of staleness of replicated BF contents in a distributed environment, and developed
a mechanism to adaptively minimize such an impact so as to optimize systems performance.

The rest of the chapter is organized as follows. Section 3 presents our analytical models that theo-
retically derive false negative and false positive rates of a BF replica, as well as the overall false rates
in distributed systems. Section 4 validates our theoretical results by comparing them against results
obtained from extensive experiments. The adaptive updating protocols based on our theoretical analysis
models are presented in Section 5. Section 6 gives related work and Section 7 concludes the chapter.
The chapter is extended from our previous publication (Zhu & Jiang, 2000).

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 3. An example application of Bloom filters in a distributed system with 3 hosts.

>

f}%[l:l:l E‘

—_—
[y

32 82 . Wy Ez
E3 B3 33 o
Host 1 Host 2 Host 3
Network

BI_ Original Bloom Filter BI_ Bloom Filter Replica

3. FALSE RATES IN THEORY

In many distributed systems, the information about what data objects can be accessed through a host or
where data objects are located usually needs to be shared to facilitate the lookup. To provide high scal-
ability, this information sharing usually takes a decentralized approach, to avoid potential performance
bottleneck and vulnerability of a centralized architecture such as a dedicated server. While BFs were
initially used in non-distributed systems to save the memory space in the 1980’s when memory was
considered a precious resource (Lee, 1982; Mcllroy, 1982), they have recently been extensively used
in many distributed systems as a scalable and efficient scheme for information sharing, due to their low
network traffic overhead.

The inherent nature of such information sharing in almost all these distributed systems, if not all,
can be abstracted as a location identification, or mapping problem, which is described next. Without
loss of generality, the distributed system considered throughout this chapter is assumed to consist of
a collection of y autonomous data-storing host computers dispersed across a communication network.
These hosts partition a universe U of data objects into y subsets S, S,,,.. .,Sy, with each subset stored on
one of these hosts. Given an arbitrary object x in U, the problem is how to efficiently identify the host
that stores x from any one of the hosts.

BFs are useful to solve this kind of problems. In a typical approach, each host constructs a BF rep-
resenting the subset of objects stored in it, and then broadcasts that filter to all the other hosts. Thus
each host keeps vy — 1 additional BFs, one for every other host. Figure 3 shows an example of a system

with three hosts. Note that a filter B is a replica of B, from Host i and Bi may become outdated if the
changes to B, are not propagated instantaneously. While the solution to the above information sharing
problem can implemented somewhat differently giving rise to a number of solution variants (Hua et al.,
2008; Ledlie et al., 2002; Zhu et al., 2004), the analysis of false rates presented in this chapter can be
easily applied to these variants.

The detailed procedures of the operations of insertion, deletion and query of data objects are shown
in Figure 4. When an object x is deleted from or inserted into Host 7, the values of the counting filters
C[H(x)] and bits B[H(x)] are adjusted accordingly. When the fraction of modified bits in B, exceeds

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 4. Procedures of adding, deleting and querying object x at host i

AddObject(Object x, Host i)

L. Set (B[H(x)]) to1L;
2. Increase C |H(x)] by 1;
3. if(the changed portion of B, is larger than some threshold)

4, Multicast B, to the other hosts;
DeleteObject(Object x, Host 1)

Decrease C [H (x)] by 1;
for(j=1; j<k, j++)
if(C [, (x)]=0)
Unset bit 5[/, (x)] to 0
QueryObject(Object x, Host 7)

BN =

1. w=4,

2. /* check the BF of the local host */
3. if(B[H()]=1)

4, yw={i};

5. /* check all BF replicas */

6. for(j=1:j7<y.j++)

7 if{ j#7and g [H(x)]=1)

8 W=y Ui}

9

return i

some threshold, B, is broadcast to all the other hosts to update Bi To look up x, Host i performs the
membership tests on all the BFs kept locally. If a test on B, is positive, then x can potentially be accessed

locally. If a test in the filter B for any j # i is positive, then x is conjectured to be on Host j with high
probability. Finally, if none of the tests is positive, x is considered nonexistent in the system.

In the following, we begin the analysis by examining the false negative and false positive rate of a
single BF replica and then present the analysis of the overall false rates of all BFs kept locally on a host.
The experimental validations of the analytical models are presented in the next section.

3.1. False Rates of Bloom Filter Replicas

Let B be a BF with m bits and B a replica of B. Let n and 7 be the number of objects in the set rep-

A~

resented by B and by B, respectively. We denote A, (A,) as the set of all one (zero) bits in B that are

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 5. An example of a BF B and its replica B where bits are reordered such that bits in A ,and A,
are placed together.

B-A A, A A,
110111011]1]0/1 1111111 0|00
B-A, -A, A, Ao
1101110111101 O/0|0|0 1111

different than (i.e., complement of) the corresponding bits in B . More specifically,

A ={B[i]| Bli] =1, B[i] = 0,Vi € [1,m]}

1

A, ={B[i]| Bli] = 0,B[i] = 1,Vi € [l m]}.

0

N

Thus, A, + A, represent the set of changed bits in B that have not been propagated to B The number
of bits in this set is affected by the update threshold and update latency. Furthermore, if a nonempty A

is hit by least one hash function of a membership test on B while all other hash functions of the same

test hit bits in ! 0 with a value of one, then a false negative occurs in B . Similarly, a false
positive occurs if the nonempty A, is replaced by a nonempty A in the exact membership test scenario

ona B described above.

Lemma 1. Suppose that the numbers of bits in A and in A are md, and m3 , respectively. Then n
is a random variable following a normal distribution with an extremely small variance (i.e., extremely
highly concentrated around its mean), that is,

m
E(h)=——1In(e ™™ +6 —6).
k 1 0 (6)

Proof: In a given BF representing a set of 1 objects, each bit is zero with probability P (n), given in
Equation 2, or one with probability P (n) = 1 — P (n). Thus the average fractions of zero and one bits
are P (n) and P (n), respectively. Ref. (Michael, 2002) shows formally that the fractions of zero and one
bits are random variables that are highly concentrated on P (1) and P (n) respectively.

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 6. Expected false negative rate of a Bloom filter replica when the configuration of its original
Bloom filter is optimal.

0.025 | | | | | | | |
T
o T S : : i |
g 0013 min=8 k=6
g —*—m/n=12,k=8
H —e—min =16,k =11
£ ootf frooe S e e SR e SR R
00055/ e S T e e e T]
= '_._|." = q = q = q = q = £]
0 0.05 01 0.15 0.2 0525 03 0.35 04 045 0.5
1
B—n—b, A A,
oo of1] [o]o][o]
B—n—n, A, A,
ARAANARAA lojofolo]]l

Figure 5 shows an example of B and B where bits in A and A are extracted out and placed together.
B-A —

1

The expected numbers of zero bits in B — A, — A and in % should be equal since the bits in

them are always identical for any given B and B . Thus for any given n, 9, and 6, we have
! (7)
Substituting Equation 2 into the above equation, we have

e—kn/m —kE(R)/m 6

“h e : ®)

After solving Equation 8, we obtain Equation 6.

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 7. Expected false positive rate of a Bloom filter replica when the configuration of its original
Bloom filter is optimal.

-

o
®

o
=]

False positive rate
o
o

e
[

=
Vv

0.5

Pragmatically, in any given BF with n objects, the values of 8, and 3, which represent the prob-
abilities of a bit falling in A| and A respectively, are relatively small. Theoretically, the number of bits
in A is less than the total number of one bits in B, thus we have §, <1 — e In a similar way, we can
conclude that 5, < e .

Theorem 3.False Negative Rate

The expected false negative rate ! in the BF replica B is P (n)* — (P (n) — 9,)", where P,(n) =1 —
e—kn/m'

Proof: As mentioned earlier, a false negative in B occurs when at least one hash function hits the

bits in A, in B while the others hit the bits in B-A -A

tive rate 1s

0 with a value of one. Hence, the false nega-

=2 H 5P 5, =P -5 +8] —(P0)-6

1- B (i)

Since P (n) =1 - P (n) and Fy(7) = , Equation 7 can be rewritten as:

10

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

1)
Hence

B(}) =|E(B(#) ~ 6, + 8| — [BE@® @) -6,

= A (R -5 (10

Figure 6 shows the expected false negative rate when the false positive of the original BF is minimized.
The minimal false positive rate is 0.0214, 0.0031 and 0.00046 when the bit-element ratio is 8, 12 and 16
respectively. Figure 6 shows that the false negative rates of a BF replica are more than 50% of the false
positive rates of the original BF when 3, is 5%, and more than 75% when 3, is 10%. This proves that
the false negative may be significant and should not be neglected in distributed applications.

Theorem 4.False Positive Rate

A4 ~
The expected false positive rate f for the Bloom filter replica B is (P(n)+8,-9,), where P (n) =
1 _ e*kn/m.

Proof: If B confirms positively the membership of an object while this object actually does not be-

long to B, then a false positive occurs. More specifically, a false positive occurs in B if for any * ¢ B

A

B—A -A

, all hit bits by hash functions of the membership test for x are ones in ¢ or forany x € U,

all hit bits are ones in B but at least one hit bit is in A, Thus, we find that

. n . k LR A ki
P == fir-af 2 i@ -a
U | (11)

E(f') = (BE(P(1))" — ﬁw(a(ﬁ)) —6,)
— [Pl(n) +6,— 51] - m(Pl(n) —6)

11

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 8. Comparisons of estimated and experimental f of B when k is 6, 8 and 11 respectively. The
initial object number in both B and B is 25 75, 150 and 300 (m = 1200).

False negative rate (percentage)

k=8

— Estmalsd 1
« Experimarial

L
07 0.8 2.9

a0
40-
3o-

20- !
s/ m=1200
k=8

— Estimated 1
- Experimental

o ad 02 03 04 as 08 a7 1.3 08

False negative rate {percentage)

3 B

2

False negative rate (percentage)
a

3

. n ' I L
[[:A] 02 [k} 04 05 [} o7 %]

12

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Table 1. False positive rates comparisons when k is 6 and 8 respectively (m = 1200).

At
f (percentage)

k A 3, 3, Estimated Experimental
6 25 0.0942 0.2042 0.0002 0

6 25 0.0800 0.3650 0.0002 0

6 25 0.0600 0.4875 0.0001 0

6 75 0.0800 0.1608 0.0934 0.1090
6 75 0.0600 0.2833 0.0794 0.1090
6 75 0.0483 0.3758 0.0799 0.1090
6 150 0.0533 0.1042 2.2749 2.6510
6 150 0.0400 0.1800 2.3540 2.6510
6 150 0.0325 0.2508 2.1872 2.6530
6 300 0.0250 0.0417 23.6555 25.4790
6 300 0.0183 0.0692 25.4016 25.4710
6 300 0.0117 0.1000 24.7241 25.4750
8 25 0.1083 0.2425 0.00002 0

8 25 0.0792 0.4192 0.00002 0

8 25 0.0550 0.5425 0.00002 0

8 75 0.0792 0.1767 0.0525 0.0540
8 75 0.0550 0.3000 0.0504 0.0540
8 75 0.0425 0.3917 0.0506 0.0540
8 150 0.0475 0.1050 2.5163 2.5770
8 150 0.0350 0.1758 2.6783 2.5780
8 150 0.0283 0.2367 2.5384 2.5790
8 300 0.0192 0.0333 33.2078 33.2580
8 300 0.0133 0.0558 34.4915 33.2550
8 300 0.0083 0.0817 32.1779 33.2550

k
~|P(n)+ 6, — 6] .

3.2. Overall False Rates

In the distributed system considered in this study, there are a total of y hosts and each host has y BFs,
with y—1 of them replicated from the other hosts. To look up an object, a host performs the membership
tests in all the BFs kept locally. This section analyzes the overall false rates on each BF replica and
each host.

Give any BF replica B, the events of a false positive and a false negative are exclusive. Thus it is

13

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Figure 9. Comparisons of estimated and experimental f, . in a distributed system with 5 hosts when k
is 6, 8, and 11 respectively. The initial object number n on each host is 25, 75, 150 and 300 respectively.
Then each host adds a set of new objects. The number of new objects on each host increases from 50 to

300 with a step size of 50. (m = 1200)

100 —w T
S
-
%l
- % n= 300
o %
k|
=R
g
8 «r
S
[}
& oul
B
8w
£
1 30
5
> m = 1200
Q k=8
10- — Estimated
» Experimental
% o 02 03 Iy os 08 07
81
(13
O wof
8
g 70t
L o
St
[]
- 50f
8
L Y]
@ a0
8
= 00
5
2 200 -
() k=8
10F Estimated
= FExpermental
) o1 0z 03 04 s 08 07 04
81
]
T
Ew
2
gm0
E]
Ew
a
2%
20
10

14

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Table 2. Overall false rate comparisons under optimum initial operation state when k is 6 and 8 respec-
tively. 100 new objects are added on each host and then a set of existing objects are deleted from each
host. The number of deleted objects increases from 10 to 100 with a step size of 10. (m = 1200) In the first
group, initially Initially n = 150 and m/n = 8; in the second group, n = 100 and m/n = 12 initially.

P (percentage)
k 3, 3, Estimated Experimental
6 0.0100 0.1705 46.2259 45.2200
6 0.0227 0.1657 42.4850 40.6880
6 0.0347 0.1627 38.7101 37.2420
6 0.0458 0.1582 34.9268 33.8460
6 0.0593 0.1545 31.3748 30.4540
6 0.0715 0.1497 27.8831 27.3700
6 0.0837 0.1445 24.5657 24.8000
6 0.0938 0.1392 21.2719 22.5560
6 0.1045 0.1340 18.2490 20.4520
6 0.1165 0.1300 15.5103 18.7540
8 0.0123 0.2375 30.9531 29.6280
8 0.0255 0.2275 25.7946 23.6280
8 0.0413 0.2180 21.0943 18.0000
8 0.0552 0.2123 16.7982 14.6720
8 0.0658 0.2043 12.9800 12.0040
8 0.0772 0.1965 9.7307 9.7320
8 0.0920 0.1900 7.1016 7.7520
8 0.1075 0.1848 4.9936 6.1280
8 0.1237 0.1788 3.4031 4.8400
8 0.1377 0.1732 2.2034 3.8160
easy to find that the overall false rate of B is
E(JZUW,,)=E(f_)+E(f+) (13)

where £ (/) and E(f") are given in Equation 10 and 12 respectively.
On Host 7, BF B, represents all the objects stored locally. While only false positives occur in B, both

false positives and false negatives can occur in the replicas B for any j # i. Since the failed member-
ship test in any BF leads to a lookup failure, the overall false positive and false negative rates on Host
i are therefore

15

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

j=1,j=i (14)

j=1,j=i (15)

A

At
where 7 and /; are given in Theorem 2, 3 and 4 respectively.
The probability that Host i fails a membership lookup can be expressed as follows:

E(f;wst) = E(htst + h;st B hist'f;L;st) (16)

In practice, we can use the overall false rate of a BF replica to trigger updating process and use the
overall false rate of all BFs on a host to evaluate the whole systems. In a typical distributed environment

with many nodes, the updating of a Bloom filter replica Bi stored on node j can be triggered by either
the home node i or the node ;. Since many nodes hold the replica of B,, it is more efficient to let the
home node i to initiate the updating process of all replicas of B, Otherwise, the procedure of checking
whether an updating is needed would be performed by all other nodes, wasting both network and CPU
resources. Accordingly, we can only use the overall false rate of a BF replica E(f,) as the updating

criteria. On the other hand, E(f,) can be used to evaluate the overall efficiency of all BFs stored on
the same host.

4. EXPERIMENTAL VALIDATION

This section validates our theoretical framework developed in this chapter by comparing the analytical
results produced by our models with experimental results obtained through real experiments.

We begin by examining a single BF replica. Initially the Bloom filter replica B is exactly the same as
B. Then we artificially change B by randomly inserting new objects into B or randomly deleting existing
objects from B repeatedly. For each specific modification made to B, we calculate the corresponding

9, and 9, and use 100,000 randomly generated objects to test the memberships against B | Since the
actual objects represented in B are known in the experiments, the false negative and positive rates can
be easily measured.

Figure 8 compares analytical and real false negative rates, obtained from the theoretic models and

from experiments respectively, by plotting the false negative rate in B as a function of d,, a measure of
update threshold, for different numbers of hashing functions (k£ = 6 and k£ = 8) when the initial number
of objects in B are 25, 75, 150 and 300 respectively. Since the false negative rates are independent of

16

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

d,, only object deletions are performed in B.

Table 1 compares the analytical and real false positive rates of B when £ is 6 and 8 respectively. In

Figure 10. In an environment of two servers, the figures show the overall false rate on one server when
the initial number of elements in one server are 25 and 150 respectively. The ratio of bits per element
is 8 and 6 hash functions are used. The rate for element addition and deletion are respectively 5 and 2

per time unit on each server.

16

12

-
=]

false rate (%)

Initial element #: 25

14~ Addition rate: &1 SR e

Deletipn rate: 2

—— Simulation *
—— Estimation |...... |

120 140 160

18

14

12

-
=]

false rate (%)

Initial elément # 1550 : :
-Addition-rate: 5. i SIRIEEEERE s
Deletion rate:2 : :

—+— Simulation |:
| I_Esiimation ----------

100 120 140

17

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

these experiments, both object deletions and additions are performed in B while B remains unaltered.

It is interesting that the false positive rates of B is kept around some constant for a specific 7 although
the objects in B changes in the real experiments. It is true that if the number of objects in B increases

or decreases, the false positive rate in B should decrease or increase accordingly before the changes
of B is propagated to B . However, due to the fact that # is far less than the total object number in the

universe U, the change of the false positive rate in B s too small to be perceptible. These tests are made
accordant with the real scenarios of BF applications in distributed systems. In such real applications,
the number of possible objects is usually very large and thus BFs are deployed to efficiently reduce the
network and network communication requirements. Hence, in these experiments the number of objects

used to test B is much larger than the number of objects in B or B (100,000 random objects are tested).
Under such large size of testing samples, the influence of the modification in B on the false positive rate

of B is difficult to be observed.

We also simulated the lookup problem in a distributed system with 5 hosts. Figure 9 shows the com-
parisons of the analytical and experimental average overall false rates on each host. In these experiments,
we only added new objects without deleting any existing items so that 8, is kept zero. The experiments
presented in Table 2 considers both the deletion and addition of objects on each host when the initial
state of BF on each host is optimized, this is, the number of hash functions is the optimal under the ratio
between m and the initial number of objects n. This specific setting aims to emulate the real application
where m/n and k are usually optimally or sub-optimally matched by dynamically adjusting the BF length
m (Hong & Tao, 2003) or designing the BF length according to the average number of objects (Ledlie
et al., 2002; Li et al., 2000; Little et al., 2002; Matei & lan, 2002; Zhu et al., 2004). All the analytical
results have been very closely matched by their real (experimental) counterparts consistently, strongly
validating our theoretical models.

5. REPLICA UPDATE PROTOCOL

To reduce the false rate caused by staleness, the remote Bloom filter replica needs to be periodically
updated. An update process is typically triggered if the percentage of dirty bits in a local BF exceeds
some threshold. While a small threshold causes large network traffic and a large threshold increases the
false rate, this tradeoff is usually reached by a trial-and-error approach that runs numerous (typically a
large number of) trials in real experiments or simulations. For example, in the summery cache study (Li
et al., 2000), it is recommended that if 10 percent of bits in a BF are dirty, then the BF propagates its
changes to all replicas. However, this approach has the following disadvantages.

1. Itcannot directly control the false rate. To keep the false rate under some target value, complicated
simulations or experiments have to be conducted to adjust the threshold for dirty bits. If the target
fal