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Abstract

Indirect blocks, part of a file’s metadata used for locating
this file’s data blocks, are typically treated indistinguishably
from file’s data blocks in buffer cache. This paper shows
that this conventional approach will significantly detriment
the overall energy efficiency of memory systems. Scatter-
ing small but frequently accessed indirected blocks over all
memory chips reduce the energy saving opportunities. We
propose a new energy-efficient buffer cache management
scheme, named MEEP, which separates indirect and data
blocks into different memory chips. Our trace-driven simu-
lation results show that our new scheme can save memory
energy up to 16.8% and 15.4% in the I/O-intensive server
workloads TPC-R and TPC-H, respectively.

1 Introduction

As the computing capacity increases rapidly in large-
scale cluster computing platforms, power management be-
comes an increasingly important concern. For example,
the power density of Google clusters with low-tech com-
modity PCs exceeds 700 W/ft2, while the cooling ca-
pability in typical data servers lies between 70 and 120
W/ft2 [2], [17]. A large power consumption in a cluster
not only increases its running cost, but also raises its com-
ponents’ temperature through rapid heat dissipation, ac-
cordingly reducing the reliability and increasing the mainte-
nance cost. The recent trend towards very-large-scale clus-
ters, with tens of thousands of nodes [15], will only exacer-
bate the power consumption issue.

Many previous studies [11], [12], [18] have shown that
main memory is one of major sources of power consump-
tion. The energy breakdown measured on a real server
shows that the memory consumes 41% of the total energy
and is 50% more than the processors [12]. As the mem-
ory capacity continues to increase rapidly in order to bridge

the ever-widening gap between disk and processor speeds,
memory energy efficiency becomes an increasingly impor-
tant concern.

Specifically, the paper makes the following two contri-
butions. Our previous study [21] indicates that the replace-
ment algorithm’s ability to capture temporal locality of data
blocks is one of important factors to influence buffer cache
energy consumption behavior. In this study we investigate
the impacts of indirect blocks on the memory energy. In
a file system, a indirect block contains pointers to file data
blocks or to another indirect block. Through this hierar-
chical structure, disk storage space can be organized into
logic units, i.e., files. Thus, there are two types of buffer
cache traffic: data blocks and indirect blocks. However,
from the traces collected on real-world servers, we find that
the total working set and the total traffic volume of indirect
blocks can be 7.62%% and 18.6% of data blocks, respec-
tively. In spite of generating such large volume of traffic,
indirect blocks have received few attentions in the studies
of memory energy optimization.

Specifically, the paper makes the following contribu-
tions.

• Through simulations based on three I/O-intensive
server traces, we find that indirect block traffic can lead
to inferior memory energy efficiency. Compared with
data blocks, indirect blocks are relatively smaller but
are accessed much more frequently. In conventional
management scheme in most operating systems, data
blocks and indirect blocks are placed interleaved in the
buffer cache. The large volume of indirect accesses
results in fewer energy saving opportunities through
memory chip powerdown and DMA overlapping.

• This paper proposes a new energy-efficient buffer man-
agement scheme named MEEP. The key idea of MEEP
is to separate indirect and data blocks and place them
into disjointed sets of memory chips. Our simulation
results show that with only one memory chip dedicated
for storing indirect blocks, the buffer cache can have



16.8% memory energy saving, with little degradation
in hit rates.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes the background, including file in-
direct blocks, power-aware memory chips, and DMA trans-
fers. Section 3 describes our new energy-efficient buffer
management placement scheme MEEP. Section 4 presents
our evaluation methodology and simulation results. Sec-
tion 5 discusses prior related work. Section 6 concludes the
paper.

2 Background

2.1 File Indirect Block

File systems use indirect blocks to organize disk sectors
into logic files. The addresses of data blocks of a file are
stored in the inode or the indirect blocks of this file. In or-
der to efficiently utilize disk space, all indirect blocks of
a file are organized in a multi-level hierarchical tree as il-
lustrated in Fig. 1. In this paper, we assume that the level
of a child indirect block is higher than its parent indirect
block. While block addresses in the first level are directly
stored in the inode itself, addresses in the other levels are
organized into blocks and stored on disk in a similar way as
file data blocks. In order to obtain a block’s disk address,
one or more related indirect block(s) are needed to access.
For example, in the worst case, four indirect blocks may be
accessed in many Linux file systems.

In modern operating systems, indirect blocks share
buffer cache with data blocks. During a cache miss for an
indirect block, the requested indirect block will be fetched
from the disk and then placed in the buffer cache. When
a read miss happens to a data block, the corresponding in-
direct blocks needs to be accessed first to acquire the disk
addresses of the missed data block.
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Figure 1. File Data Indirect Block.

Table 1. Power states and transition delay of
a RDRAM chip

Power State/Transition Power (mW) Delay

Active 300 -
Standby 180 -
Nap 30 -
Powerdown 3 -
Active → Standby 240 1 memory cycle
Active → Nap 160 8 memory cycles
Active → Powerdown 15 8 memory cycles
Standby → Active 240 +6 ns
Nap → Active 160 +60 ns
Powerdown → Active 15 +6000 ns
Standby → Nap 160 +4 ns
Nap → Powerdown 15 ∼0 ns

2.2 RDRAM Memory Chips

In the RDRAM technology, each memory chip can be
independently set to a proper state: active, nap, standby and
powerdown. In the active state, a chip can perform reading
or writing and consumes full power. In the other states, the
chip powers off different components to conserve energy. In
these states, the chip can not service any read/write requests
before it becomes active. The transition from a lower power
state to a higher one requires some time delay. Table 1 sum-
marizes the power consumption rate of each state and the
time delay needed to transition among these states.

There are two classes of techniques to control the power
state of a memory chip: static and dynamic. Static tech-
niques always set a chip to a fixed low-power state. The
chip is transitioned back to full-power state only when it
needs to service a request. After the request is serviced,
the chip immediately goes back to the original state, unless
there is another request waiting. In contrast, dynamic tech-
niques change current power state to the next lower power
state only after being idle for a threshold amount of time.
The thresholds are dynamically adjusted according to the
variation of memory I/O workload. In this paper, we focus
on dynamic techniques in our energy evaluation.

2.3 Network and Disk DMA Operations

Direct Memory Access (DMA) has been widely used
to transfer data blocks between main memory and I/O de-
vices including disks and network. Fig. 2 gives an example
of disk-network datapath for two cache misses A and B,
following steps from 0 to 3. When a read request arrives
through a network interface (NIC), the server first performs
data address translation and then checks whether desired



data blocks are stored in the main-memory buffer cache.
If they are cached, the host processor on the storage server
initiates a network DMA operation to transfer the data out
directly from the main memory through NIC. If they are not,
the processor first performs a disk DMA transfer to copy the
data from disks to the main-memory buffer cache, and then
the processor conducts a network DMA transfer to send the
data out. For write requests, the datapaths are similar but
flow in the reverse direction.
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Figure 2. I/O path for two cache read misses
in A and B typical storage server, following
steps from 0 to 3. C is a cache line access
from CPU.

On a storage server, recent DMA controllers, such as In-
tel’s chipset E8870 and E7500 [9], allow multiple DMA
transfers on different buses to access the same memory
module simultaneously in a time multiplexing fashion. Typ-
ically, the peak transfer rate of a memory chip can be a
multiple factor of the bandwidth of the PCI bus. For ex-
ample, the transfer rate of most recent RDRAM chips [8]
and DDR SDRAM are up to 3.2GB/s and 2.1GB/s respec-
tively, while a typical PCI-X bus only gives a maximum rate
of 1.064GB/s and the second-generation SATA disk DMA
throughput is only 300 MB/s.

Multiplexing various slow disk and network I/Os to the
same memory chip can reduce the waste of active mem-
ory cycles and hence save memory energy. Most DMAs
move a large amount of data, usually containing multiple
512-byte disk sectors or 4-KByte memory pages. Without
multiplexing, a memory chip is periodically touched dur-
ing a DMA transfer and such access period is too short to
justify the transition to a low-power mode [11], [13], [18].
As a result, significant amount of active energy is wasted.
However, when DMAs on different I/O buses are coordi-
nated to access the same memory chip, such energy waste
can be reduced. For example, when the concurrent requests
A and B in Fig. 2 are directed to the same memory chip, the
DMA transfers A1 and B1 can overlap with each other in

time and accordingly one of them takes a “free ride” and
consumes zero energy, without causing any performance
penalty. Similarly, A2 and B2 can also overlap with each
other.

As mentioned previously, the processor accesses indirect
block from memory with size of L2 cache line. For exam-
ple, the transfer C from memory to processor is response to
the indirect block request illustrated in Fig. 2. In the context
of data server, the size of processes images are much smaller
than size of file data working set and they can be stored at
very smaller set of memory chips. As result, energy energy
incured by processes images accesses is ingored in our pa-
per, which is similarly treated in Ref. [18].

3 Memory Energy Efficient Placement
Scheme

Placing the data blocks with temporal locality at one
memory chip is a widely used approach to achieve memory
energy saving. The missed data block cause corresponding
indirect blocks accesses. In the case of large file, the missed
data block with large LBN incurs up to four indirect blocks
at different levels. Such indirect blocks have very strong
temporal locality. However, they often reside at different
memory chips and activate extra memory chips, resulting
more energy consumption. This is because that the indirect
blocks at difference levels are spread over several chips due
to the differences in their access frequencies.

In order to address the above issue, we propose a new
data placement scheme. In this scheme, indirect blocks
are artificially assigned a smaller set of memory chips,
one or two. In this way, the indirect block traffic is lim-
ited to a smaller set of memory chips. In order to limit
the indirect block traffic to a smaller set of memory chips,
the block allocation method before cache full and eviction
method are needed to be modified. The function getFree-
Block Chip(type) selects a free block from a specific mem-
ory chip set determined by parameter type and thus keeps
blocks residing at related chips sets. Additionally, two LRU
stacks are needed and each type of block has its indepen-
dent LUR stack. When replacement happens, the victim
block is selected from the bottom of related LUR stack and
thus the property of blocks residing at related chips sets is
maintained. We refer this algorithm as MEEP.

4 Energy Evaluation

This section compares the energy consumption of three
schemes: MEEP, conventional buffer cache with only data
block traffic, and conventional buffer cache with both data
block and indirect block traffic.



Algorithm 1 MEEP Algorithm
LBN is the block id of missed block
type is either data block or indirect block
stacks data block or indirect block Stacks
freeBlk the number of free data block or free indirect
blocks
entry block entry in the stack
if a cache miss occurs then

if freeBlks[type] then
entry ⇐ newEntry()
{ allocate block from corresponding chips}
entry.chip ⇐ getFreeBlock Chip(type)
entry.lbn ⇐ LBN
freeBlks[type]−−

else
{ evict block from corresponding chips}
entry ⇐ getBottomEntry(stacks[type])
entry.lbn ⇐ LBN

end if
return entry

else
entry ⇐ getEntry(stacks[type], LBN)
putTop( stacks[type], entry)
return entry

end if

4.1 Traces

In our experiments, we chose two real-life data server
traces: TPC-R and TPC-H [1]. Both TPC-R and TPC-H are
transaction processing work load. Fig. 3 shows data block
and indirect block virtual address diagrams as a function of
the virtual time that is defined as the number of references
issued so far and is incremented for each request. Since the
indirect block traffic is affected by the data blocks hit rate,
we collect indirect block traces with specified size of buffer
cache 512MB and 512MB respectively for TPC-R, TPC-
H. In order to make these diagrams readable, the traces are
plotted with a sampling rate of 1000 for data blocks and 100
for indirect blocks. In the term of working set, the ratio of
indirect blocks to data blocks are 7.57% and 7.62% respec-
tively for TPC-R and TPC-H. In the term of traffic volume,
the ratios of indirect blocks to data blocks are 18.6% and
18.1% for TPC-R and TPC-H, respectively. The above sta-
tistical results further show that the impact of indirect data
blocks on the energy efficiency of buffer cache can not be
ignored, which in fact motivates our study in this paper.

4.2 Simulation Environment

We have developed a detailed trace-driven simulator that
faithfully emulates network DMA and disk DMA oper-

ations and accurately records energy consumed by each
memory chip. On storage servers, both network and disk
DMAs are heavily involved in most cases. Through disk
DMAs, data missed in the cache or dirty blocks are ex-
changed between memory chips and disk drives. Through
network DMAs, requested data are sent to clients from
the memory through network interfaces. With new emerg-
ing technology, multiple DMA requests from different bus
channels but targeting to the same chip can be simultane-
ously serviced in a multiplexing way. The data sever sim-
ulated in this paper is configured with 6 network adaptors
and 12 disks. Each device, either disk or network adaptor,
is attached to one 133 MHz PCI-X bus. A DMA request
is performed on the corresponding PCI-X bus whose device
is the source or destination. Disksim [3], a well validated
disk array simulator, is incorporated into our simulator to
precisely emulate the timing of I/O traffic.

The simulator emulates RDRAM memory chips, whose
parameters are given in Table 1. Each chip has a capacity
of 32MB and a peak performance of 3.2GB/second. The
simulator precisely models power state transitions, DMA
contentions and queuing processes. The default sector size
is 512 Bytes, data block pointer size is 4 bytes and L2 cache
line size is 128 bytes. In the MEEP algorithm, our ex-
periment results show that MEEP energy consumption is
not sensitive to variation of size of indirect blocks memory
chips set and we only present data results with one memory
chip.

We simulate the traces by replaying all I/O events at pre-
determined times specified in the traces, independent of the
performance of memory hierarchy. This approach is used
mainly because all traces that we have access to do not
record the dependence among request completion and sub-
sequent I/O arrivals.

In the following energy efficiency evaluation, the con-
ventional method represent the scheme in which data blocks
and indirect blocks are placed in buffer cache interchange-
ably. This method is widely used in most modern oper-
ating systems. In order to investigate the impact of indi-
rect blocks, we present the buffer cache energy consump-
tion under only data block traffic and compare it against the
case with only data blocks. We also evaluate MEEP’s en-
ergy consumption, indirect block memory chip energy con-
sumption and data block memory chips energy consump-
tion. Lastly we present the indirect blocks hit rate and data
blocks hit rate.

4.3 TPC-R Workload

We have the following observations. Firstly, the energy
gap is large between the following two workloads (1) only
data blocks and (2) combined indirect and data blocks. For
example, at cache size of 128MB the difference is up to 37J
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(a) TPC-R Data Block Trace (sampling period: 1000)
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(b) TPC-R Indirect Block Trace (sampling period: 100)
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(c) TPC-H Data Block Trace (sampling period: 1000)
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(d) TPC-H Indirect Block (sampling period: 100)

Figure 3. Trace Data Block and Indirect Block Traffic.

and the average difference is 13.68J with the correspond-
ing rated values of 29.1% and 8.8%. Hence, the indirect
block traffic can not be ignored in designing energy effi-
cient buffer cache. Secondly, MEEP can greatly reduce
buffer cache energy consumption. In Fig. 4(a), the energy
difference between MEEP and the conventional method can
reach 28.4J, with an average energy saving 10.6J. The cor-
responding rated values are 16.8% and 6.28%. We also ob-
serve that MEEP’s energy saving decreases when the cache
size increases. This is because when the cache is large
enough to hold almost all data in buffer cache and replace-
ment seldom happens, a data block and its related indirect
blocks most likely reside in the memory chip. For exam-
ple, at the cache size of 1GB, in Fig. 4(b), the conventional
method hit rate approaches 95%. In Fig. 5(c) and Fig. 4(d),
we compare their energy and hit rate. The indirect blocks’
memory consumption is almost independent with cache size
changes. This is because a fixed number of memory chips
are used for indirect blocks. It is also noticed that indirect
block memory energy is not proportional to its working set.
This is because the total access to indirect block is one L2
cache line and one disk sector during a cache hit and a cache
miss,respectively. Both are smaller than the size of a data
block. However, the hit rate shows a different trend. When
the size of data block cache is increased, the data hit rate

is increased, resulting in less cache misses. Accordingly
the indirect block traffic is also reduced and this potentially
leads to the hit rate decrease for indirect blocks.

4.4 TPC-H Workload

The results of TPC-H are very similar to TPC-R work-
load. Firstly, at the cache size of 128MB, the difference of
energy consumption between the I/O traffic with and with-
out indirect blocks can reach up to 42J, with an average of
16J . Secondly, in Fig. 5(a), the energy difference between
MEEP and the conventional method is up to 32 J with an av-
erage energy saving 12.2J. The rated average energy saving
of MEEP is 15.4%.

5 Related Work

Power consumption has been an issue primarily in em-
bedded or portable computer systems. Until recently, en-
ergy efficiency is becoming an increasingly important con-
cern in high-end servers. On individual servers, many stud-
ies have been conducted to save memory energy. The most
important principle to conserve the memory energy is to
minimize the number of simultaneously accessed memory
chips. In order to achieve it, previous works [11, 7, 10, 16]
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Figure 4. Workload TPC-R.

propose to place data blocks with temporal locality at the
same memory chip by exploiting data block semantics such
as process, file and database table. Ref. [11, 18, 19, 16,
14] proposes to dynamically migrate hot data blocks to a
smaller set of memory chips. Typically these approaches
unavoidably pay fairly large performance and energy over-
head during both the bookmarking process for identifying
hot blocks and the migration course.

Ref. [5, 7, 20, 6] propose to adaptively control the mem-
ory power states, instead of relying on reactive threshold
mechanisms. Ref. [13, 4] aim to optimize the overall energy
efficiency of both memory chips and disk drives. While
these research work is designed for virtual memory, very
little has been done for buffer cache. Ref. [18] proposes two
schemes to save energy in data servers: temporally aligning
DAM transfers to the same memory chips through buffering
and migrating data among chips to minimize the number of
active chips. Ref. [22] proposes a new buffer cache replace-
ment algorithm to reduce the disk energy consumption.

6 Conclusion

Indirect blocks, used for locating file data blocks on
disks, are equally treated in buffer cache in conventional
buffer management systems in many modern operating sys-

tems. Our research results show this conventional scheme,
placing indirect blocks and data blocks interchangeably into
the same set of memory chips, is detrimental to the memory
energy efficiency. When the indirect blocks is scattered all
over the memory chips, these memory chips then have little
chance for entering lower-power modes and for DMA over-
lapping, since the access frequencies of indirect blocks are
typically much higher data blocks.

In this paper, we propose a new buffer management
scheme, named MEEP, which clusters indirect and data
blocks into separate sets of memory chips. Our simula-
tion results indicate that using one dedicated memory chip
for indirect blocks can result in 16.8% of energy saving
when compared against the conventional buffer manage-
ment scheme. Our immediate future work is to implement
MEEP in Linux systems and measure the energy efficiency
by running real application.
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