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Abstract

Power minimization is a serious issue in wireless sensor
networks to extend the lifetime and minimize costs. How-
ever, in order to gain an accurate understanding of is-
sues regarding power minimization, modeling techniques
capable of accurately predicting energy consumption are
needed. This paper demonstrates that Petri nets are a viable
option of modeling a processor. In fact, this paper shows
that the Petri nets’ accuracy surpasses a Markov model uti-
lizing supplementary variables to account for constant de-
lays.

1 Motivations

Wireless sensor networks are becoming increasingly
prevalent in a wide range of areas from surveillance [6] to
monitoring temperature, humidity, and other environmental
parameters [12, 10].

Wireless sensor network are usually comprised of nodes
powered by batteries in locations where maintenance ac-
cess may be difficult. Minimizing energy consumption in
these networks would go a long ways toward extending the
lifetime of the network and increasing the usability. How-
ever, in order to obtain a thorough understanding of the en-
ergy consumption characteristics in these networks, accu-
rate modeling methods need to be developed.

Although the primary energy consumption in wireless
sensor networks is for communication [2], the processor
also serves a key role and there is a need to examine the
energy characteristics of the embedded processors of these
sensor nodes. A sound method of modeling provides a sta-
ble platform upon which the energy characteristics of inno-
vative technology can be analyzed. One example of this is
the capability of processors to power down to a low power
mode after some time of no activity, which we will refer
to as the Power Down Threshold. However, once powered
down, the processor requires time Power Up Delay to reach
operating mode again.

In this paper, we compare two different processor mod-
els: a Markov chain and a Petri net against software simu-

lation. We show that the Petri net model is more accurate
than the Markov chain. Section 2 introduces the use of both
Markov models and Petri nets. Section 3 presents related
work. Section 4 develops a model of a processor using a
Markov model and a Petri net. Section 5 compares the re-
sults obtained by the simulation, Markov model, and Petri
net, and Section 6 concludes this paper.

2 Introduction to the use of Markov Models,
Petri Nets, and Software Simulation

Markov models have long been used to model systems
dealing with exponentially distributed arrival and service
rates. Markov models are composed of event chains where
the likelihood of a system being in a particular state is in-
dependent of being in any other state. We can see how this
restriction limits the usefulness of this method. Petri nets,
on the other hand, are far more useful than Markov mod-
els. Initially Petri nets were based on Markov models, but
since then, features of Petri nets’ have been extended over
the years that has blurred these similarities. Unlike Markov
models, Petri nets are a simulation based approach. Petri
nets can be thought of as a directed graph of nodes and arcs
which are called places and transitions respectively. With
Markov models, closed form equations can be derived that
can be used to provide analysis about the modeled systems.
Petri nets require that the modeled system be simulated for
extended periods of time so that the steady state probabil-
ity of the system is reached. Computer program such as
TimeNet 4.0 [13] are available that can assist in creating
and simulating Petri nets.

Figure 1. Example of Petri Net

Figure 1 depicts a simple Petri net that contains two
places P0 and P1 and a transition T0. When a token exists
in the input place of a transition as shown in P0, this enables



the transition. When a transition is enabled, it fires accord-
ing to user specified timing characteristics for that transi-
tion. When a transition fires, the token in the input place is
removed and placed in the output place of the transition. In
this case, the token in place P0 is moved to place P1. In
this way, the operation of a system can be modeled and sim-
ulated. Statistical analysis of the average number of tokens
in a particular place determines the steady state probability
of the system being in that state. However, perhaps the most
accurate method of modeling is through the use of software
simulation where virtually anything can be programmati-
cally modeled. Like Petri nets, software simulations are
also repeated many times until the average behavior of the
system can be achieved. A Markov chain can be used to
construct analytical equations describing the average behav-
ior of the system. However, mathematical difficulties that
limit the usability of Markov models make simulation all
the more appealing. On the other hand, the problem with
simulation is that as the simulated system become more and
more complicated, so does the software model of the sys-
tem. This in turn results in increasing development, modi-
fication and testing time. Petri nets, on the other hand, can
be constructed easily due to their graphical nature. The pri-
mary difference between the simulation, Markov, and Petri
net model is that the Markov model utilizes a high level of
abstraction. Whereas, the simulation and Petri net can be
used to model at a much lower level closer to the actual
hardware implementation. This enables the simulation and
Petri net to account for the variations in the behavior of the
processor [9].

3 Related Work

There have been many methods that have been proposed
for modeling embedded systems to study energy character-
istics. For example, Lee et al in [9] use energy measure-
ments of instruction execution with regression analysis to
derive equation that model energy consumption. Although
this method achieves a high level of accuracy, this method
can only be applied to computing energy during instruction
execution. Energy consumption due to hardware interrupts
is not accounted for. For example, the power up energy
consumption is not linked with any instructions and hence
cannot be modeled using this method.

Coleri et al [3] have demonstrated the use of a Hybrid
Automata to model TinyOS and hence the resulting power
consumption of the nodes. Models based on finite state ma-
chines have been proposed in [8]. Although [11] discuss
the use of Petri nets to model a single processor utilizing
real-time scheduling, we have not found any literature that
discusses the use of Petri nets to model energy consump-
tion.

4 Evaluation of CPU with Markov and Petri
Net

4.1 Modeling Energy Consumption of
CPU using a Markov model

Intrinsically, embedded systems operating in a wireless
sensor network offer great potential for power minimiza-
tion. Generally the level of computation required is low,
and usually interspersed with communication between other
nodes in the network. The power consumption of the CPU
can be minimized by moving to a low power mode and con-
serving energy when it is not directly involved in any com-
putation.

There are two forms of workload generators that can be
used to simulate workload for an application. One type is
known as the closed workload model where a new task will
not arrive until the current task has been completed. The
other is known as the open workload model in which the
tasks arrive independent of the state of the current task.
Closed workload generators are best suited for modeling
tasks that occur at set intervals. Open workload genera-
tors, on the other hand, are suited for tasks that are interrupt
driven. Both workload generators are used depending upon
the application. We will implement an open workload gen-
erator.

In Figure 2 the CPU “powers up” (pu) from a low power
sleep mode when jobs begin arriving. The Markov model
depicts the various increasing states (p01, p02, p03, etc) the
CPU enters as the number of jobs increase as given by the
arrival rate λ. The CPU services the jobs at rate μ and
strives to move the CPU to lower states and eventually to
the idle state pi. If the processor remains in the “idle” state
for some time interval greater than some threshold (Power
Down Threshold), the CPU moves back to the standby
state.
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Figure 2. Birth-Death Process of CPU Jobs.

In this example, we make the following assumptions:

1. The request arrivals follow a Poisson process with
mean rate λ.

2. The service time is exponentially distributed with
mean 1

μ .

3. The CPU enters the standby state (ps) if there are no
more jobs to be serviced for a time interval longer than
T (Power Down Threshold).



4. The power up process takes a constant time D (Power
Up Delay).

The CPU transition process consists of a mix of deter-
ministic and exponential transitions. While all transitions
shown as solid lines in Fig. 2 follow exponential time distri-
butions, the transition from idle to standby is deterministic.
The CPU enters the standby state after idling for a constant
time threshold T . This power down transition depends on
its history and is not memoryless. Accordingly, the CPU
transitions can not be modeled directly as a Markov pro-
cess. Using the method of supplementary variables pro-
posed in [4], we derive an alterative set of state equations
to approximate the effects of constant delays in stationary
analysis. Let X = [x1, x2] denote two age variables, rep-
resenting how long a deterministic transition has become
enabled [5]. And let Pi(x1) and Pu(x2) be the age den-
sity functions with respect to x1 in the idle state and with
respect to x2 in the power up state, respectively.

The state equations for this mixed transition process can
be derived by the inclusion of the supplementary variable
X . The deterministic transition from the idle state to the
standby state can be modeled as below.

pi =
∫ T

0

Pi (x1)dx1 (1)

d

dx1
Pi(x1) = −λPi(x1) (2)

Pi(0) = μp01 (3)

Pi(T ) = λps (4)

where Pi is an exponential function with coefficient λ.
The deterministic power up process can be modeled as

below.

pu =
∫ D

0

Pu (x2)dx2 (5)

d

dx2
Pu(x2) = −λPu(x2) (6)

Pu(0) = λps (7)

In addition, when the system is stable, we have

(λ + μ)p01 = λpi + μp02 + e−λDPu(0) (8)

(λ + μ)p0n = λp0,n−1 + μp0,n+1 +

e−λD (λD)n−1

(n − 1)!
Pu(0) for n ≥ 2(9)

1 =
∞∑

n=1

p0,n + pi + ps + pu. (10)

From equations (1), (2), (3), and (4), we can get

p01 =
λ

μ
eλT ps (11)

pi = (eλT − 1)ps. (12)

From equations (5), (6), and (7), we have

pu = (1 − e−λD)ps. (13)

We define the generating function of p0,n (n = 1, 2, . . .)
as

G0(z) =
∞∑

n=1

p0,nzn. (14)

We multiply equation (8) by z and equation (9) by zn,
add from n = 1 to ∞, use equations (7), (11), (12) (14),
and get

G0(z) =
λzps

μ − λz

(
eλT +

eλD(z−1) − 1
z − 1

z

)
. (15)

Thus we get

G0(1) =
λps

μ − λ

(
eλT + λD

)
. (16)

Substituting equations (11), (12), (13), (14) and (16) into
the normalization equation (10) gives

ps =
1 − ρ

eλT + (1 − ρ)(1 − e−λD) + ρλD
(17)

where ρ = λ
μ .

Consequently,

pu =
(1 − ρ)(1 − e−λD)

eλT + (1 − ρ)(1 − e−λD) + ρλD
. (18)

And the utilization is

G0(1) =
ρ(eλT + λD)

eλT + (1 − ρ)(1 − e−λD) + ρλD
. (19)

Let L(z) =
∑∞

n=1 np0n zn, then L(1) is the total num-
ber of jobs in the system.

L(z) =
∞∑

n=1

np0n zn

= z
d

dz

( ∞∑
n=1

P0n zn

)

= z
d

dz
G0(z) (20)

Incorporating equation 15 into 20, we can get the total
number of jobs in the system as follows.

L(1) =
ρ

1 − ρ

eλT + 1
2 (1 − ρ)λ2D2 + (2 − ρ)λD

eλT + (1 − ρ)(1 − e−λD) + ρλD
(21)

According to Little’s Law, the average latency for each
job is

τ =
L(1)

λ
. (22)

The total running time is

T =
N

λ
+ L(1)τ

=
N + L(1)2

λ
(23)



where N is the total number of jobs.
Thus the total energy consumption is

E = (piPidle + psPstandby + puPpowerup

+ G0(1)Pactive)
N + L(1)2

λ
(24)

where Pidle, Pstandby , Ppowerup and Pactive are the power
consumption rate in the idle, standby, powerup and active
states (p01, p02, etc), respectively.

4.2 CPU Energy Modeling using a Petri
Net

As was shown in the last section, the development of a
Markov model for even a simple CPU is mathematically rig-
orous and cumbersome especially when dealing with deter-
ministic transitions. Any slight modifications to the model
will entail that the equations be re-derived again. Petri nets
on the other hand offer a more flexible approach.

Figure 3. Petri net model of CPU

Transition Firing Distribution Delay Priority
AR Exponential Arrivals NA
T1 Instantaneous − 4
T2 Instantaneous − 1
SR Exponential ServiceRate NA

PDT Deterministic PDD NA
T5 Instantaneous − 2
T6 Instantaneous − 3

PUT Deterministic PUD NA

Table 1. CPU Jobs Petri Net Transition Param-
eters

Fig. 3 shows an Extended Deterministic and Stochas-
tic Petri Net (EDSPN) [1] modeling a CPU as the Markov
model described earlier. The Petri net models a CPU that
starts from some “stand by” (Stand By) state and moves to
an “ON” state (CPU ON) when jobs are generated. The
CPU remains in the “ON” state so long as there are jobs in
the CPU buffer. If there are no jobs in the CPU buffer, after

some time interval the CPU moves to the “stand by” state to
conserve power.

The model uses an open workload generator be-
cause when transition T1 fires to deposit a task in the
CPU Buffer, a token is moved back to place P0 which
enables transition Arrival Rate and allows another task to
be generated. Table 1 lists the parameters of all the transi-
tions in the Petri net.

The CPU is simulated by executing the Petri net using
the following steps:

1) Jobs are generated in place P1, when transition
Arrival Rate fires randomly in the interval [0, 1] using
an exponential distribution. The token in the place P0 is
moved to P1 and enables T1.

2) Transition T1 is an immediate transition and fires as
soon as it is enabled. Also since, T1 has the highest priority,
it will fire before any other immediate transition if multiple
immediate transitions are enabled at once. When T1 fires,
the token is removed from P1 and three tokens are gener-
ated. One is deposited in place P0, one is deposited in place
P6, and one is deposited in the place CPU Buffer. Ini-
tially, the CPU is in the Stand By mode. However, when a
job arrives and a token is deposited in place P6, transition
T6 is enabled.

3) When T6 fires, the two tokens from Stand By and
P6 are removed and two tokens are then generated. One
is placed in place Power Up and one is placed in P6.
The CPU has now moved to a powering up state. Tran-
sition Power Up Delay is now enabled with a token in
Power Up and in P6.

4) Since transition Power Up Delay has a determinis-
tic delay, the transition fires after a fixed interval, and a to-
ken is deposited in place CPU ON . The CPU is now ON
and ready to process events.

5) Remember that when T1 fired, a token was placed in
the CPU Buffer, this token, the token in CPU ON , and
the token in place Idle enables transition T2. When it fires,
the system is now in the processing state. With a token in
Active, the transition Service Rate is enabled.

6) After Service Rate fires, the token is removed from
Active and placed in Idle.

7) In the event that another task arrives while the sys-
tem is still ON and processing other tasks, a token will be
deposited in P6 and CPU Buffer. When the CPU is
already ON, having a token in P6 will enable T5 which
will fire immediately, and a single token will be placed in
CPU ON . This is necessary because tokens cannot be al-
lowed to accumulate infinitely in any place.

8) The token that was added to the CPU Buffer will
remain there until the CPU is idle as determined by a token
in Idle. All jobs that arrive while the CPU is ON will cause
the Petri net to cycle through steps 7 and 8.

9) However, in the event that the job arrival rate is
very slow, the CPU will power down and move to the
Stand By state. Note that when there is a token in
CPU ON and no tokens in Active and CPU Buffer,
transition Power Down Threshold becomes enabled.



The small circle at the ends of the arcs from Active
and CPU Buffer specify this inverse logic. Since
Power Down Threshold is a transition with determin-
istic delay, it will fire after a specified period as given by
the value PDD, and the token from CPU ON will be re-
moved and transferred to Stand By.

By computing the average number of tokens in places
during the simulation time results in the “steady state per-
centage” of time the CPU spends in the corresponding state.
For example, the average number of tokens in CPU ON
will indicate the percentage of time the CPU was on. The
average number of tokens in P7 will indicate the steady
state percentage of time that the CPU was “powering up.”
The percentages are determined by the system parameters
Arrival Rate, Service Rate, Power Up Threshold,
and Power Down Threshold delays. Once the percent-
ages are obtained, they can be used to compute the total en-
ergy consumption of the system over time as given in Equa-
tion 25.

TotalEnergy = (PStandby × PWStandby

+ PTimePoweringUp × PWPoweringUp

+ PIdle × PWIdle

+ PTimeActive × PWActive) × Time

(25)

5 Comparison between Simulation, Markov
Models and Petri Net performance

In order to determine the feasibility of Markov models
and Petri nets for modeling the behavior of a CPU, this sec-
tion will compare them together. An event simulator writ-
ten in Matlab was used to simulate the CPU repeatedly over
multiple iterations until the steady state percentages for the
desired states was obtained. Equation 25 was used to com-
pute the total energy. The simulation will be used as a
benchmark against which the performance of the Markov
model and Petri net will be compared. The power param-
eters of the PXA271 Intel Processor as given in [7] were
used to provide realistic analysis.

Total Simulated Time 1000 sec
Arrival Rate 1 per sec
Service Rate .1 per sec

Table 2. Simulation Parameters

Figure 4 compares the behavior of the CPU as predicted
by the simulator, the Markov model, and the Petri net when
the Power Up Delay is fixed to 0.001 sec while the Power
Down Threshold is varied. The solid line represents the sim-
ulator, the dashes with squares the Markov model, and the
dashes with circles the Petri net.

Since an open workload generator is being used, jobs
arrive randomly in an interval. If the time between jobs ex-
ceeds the Power Down Threshold, then the CPU moves to

State Power Rate (mW)
Standby 17

Idle 88
Powering Up 192.442

Active 193

Table 3. Power Rate Parameters for the
PXA271 CPU (mW)

the Stand By state or “sleeps” to conserve power. When
this happens, when the next job arrives, the CPU must tran-
sition to the Power Up state where it spends time “waking
up” (in the process consuming more energy) before it is able
to service another job.

Figure 4 indicates that both the Markov model and Petri
net predict steady state percentages that are close to the sim-
ulation results. In fact, as Table 4 indicates, the difference
between the Markov model and simulation is less than the
difference between the Petri net and simulation. However,
as we can see from Table 4 that as the Power Up Delay be-
comes larger, the performance of the Markov model begins
to suffer.

Power Up Avg. Avg. Avg.
Delay (Sec) Sim-Markov Sim-PN Markov-PN

0.001 0.338 0.351 0.076
0.3 4.182 1.677 3.338

10.0 116.788 16.046 103.077

Table 4. Δ Steady State Percentages (%) Esti-
mates for Varying Power Up Delay

Figure 5 reveals the energy consumption characteristics
of the CPU as the Power Down Threshold increases. It
is obvious that as the CPU spends more time in the Idle
state which has a higher power consumption rate than the
Stand By mode, will result in increasing power consumed.
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Figure 4. Comparison between performance
of Simulation, Markov Models, and Petri Nets
for Power Up Delay of 0.001 sec.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

30

35

40

45

50

Power Down Threshold (Sec)

E
ne

rg
y 

(J
ou

le
s)

 

 

Simulation
Markov
Petri Net

Figure 5. Energy Consumption Comparison
between Simulation, Markov Model, and Petri
Net for Power Up Delay of 0.001 sec.

Power Up Avg. Avg. Avg.
Delay (Sec) Sim-Markov Sim-PN Markov-PN

0.001 0.154 0.166 0.037
0.3 1.558 0.298 1.401

10.0 24.866 1.285 25.411

Table 5. Δ Energy Consumption (Joules) Es-
timates for Varying Power Up Delay

Table 5 indicates that the difference in energy prediction
between the simulation, Markov model and Petri net is al-
most the same. However, as the Power Up Delay begins to
increase, we see that the effects of the deviating steady state
percentages negatively effect the energy predictions of the
Markov model.

The approximation made for the effects of the constant
delays in the Markov model is unable to account for the in-
creasing constant delays and results in erroneous prediction
for the Markov model.

6 Conclusion

The experimental results indicate that the Petri net is a
better method of modeling processors than using a Markov
model. This is due to the fact that a Markov model can only
account for arrival and service rates that follow an exponen-
tial distribution. Markov models cannot handle fixed deter-
ministic rates. Petri nets are also very easy to implement,
and the complicated derivations of Markov models can be
avoided. Any changes to the model can be made easily to a
Petri net, while the Markov model will require re-derivation
of the equations.

However, the drawbacks to Petri nets is their long simu-
lation time that is required before the percentages stabilize.
Evaluating a Markov models means just evaluating an ana-
lytical expression.

An interesting point to note is that when the constant
delays are small such as when the Power Down Delays is

0.001 sec in Table 4 and 5, the performance of the Markov
model is better than the Petri net. If an effective method
of modeling constant delays in Markov chains can be de-
rived, the Markov model may very well become the model-
ing method of choice.
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