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Abstract Load balancing in a workstation-based cluster sys-
tem has been investigated extensively, mainly focusing on the
effective usage of global CPU and memory resources. How-
ever, if a significant portion of applications running in the
system is I/O-intensive, traditional load balancing policies
can cause system performance to decrease substantially. In
this paper, two I/O-aware load-balancing schemes, referred to
as IOCM and WAL-PM, are presented to improve the overall
performance of a cluster system with a general and practi-
cal workload including I/O activities. The proposed schemes
dynamically detect I/O load imbalance of nodes in a clus-
ter, and determine whether to migrate some I/O load from
overloaded nodes to other less- or under-loaded nodes. The
current running jobs are eligible to be migrated in WAL-PM
only if overall performance improves. Besides balancing I/O
load, the scheme judiciously takes into account both CPU and
memory load sharing in the system, thereby maintaining the
same level of performance as existing schemes when I/O load
is low or well balanced. Extensive trace-driven simulations
for both synthetic and real I/O-intensive applications show
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that: (1) Compared with existing schemes that only consider
CPU and memory, the proposed schemes improve the per-
formance with respect to mean slowdown by up to a factor
of 20; (2) When compared to the existing approaches that
only consider I/O with non-preemptive job migrations, the
proposed schemes achieve improvements in mean slowdown
by up to a factor of 10; (3) Under CPU-memory intensive
workloads, our scheme improves the performance over the
existing approaches that only consider I/O by up to 47.5%.
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1 Introduction

In a cluster of workstations, load balancing schemes can im-
prove system performance by assigning work, at run time,
to machines with idle or under-utilized resources. Figure 1
illustrates the architecture of a workstation-based cluster sys-
tem, where each node has a combination of multiple types of
resources, such as CPU, memory, network connectivity, and
disks. In the recent past, some efforts have focused on stor-
ing data for I/O-intensive applications in a huge disk array
or storage area network.

However, in this study we choose to utilize the commodity
IDE disks that already exist as an integral part of each cluster
node. This is because by August 2003, the average price of
commodity IDE disks has decreased below US$0.5/GB. Our
approach is a desirable way to develop cost-effective clusters
in the sense that the approach provides high performance stor-
age services without requiring any additional hardware up-
grades. Furthermore, our approach can potentially sustain the
high bandwidth requirements of I/O-intensive applications,
thereby making clusters more scalable. In contrast, cluster-
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Fig. 1 Architecture of a cluster
system

attached disk arrays or storage area networks rely on single
node servers, where all the disks are connected with one
node. However, the snigle node servers tend to become per-
formance bottlenecks for large-scale clusters. Although such
a bottleneck can be alleviated by a variety of techniques such
as prefeching and collective I/O, these techniques are beyond
the scope of this paper.

Several distributed load-balancing schemes based on this
architecture have been presented in the literature, consider-
ing CPU [10, 12], memory [1, 29], network [7], a combina-
tion of CPU and memory [33, 34], or a combination of CPU
and network [3]. Although these policies have been effec-
tive in increasing the utilization of resources in distributed
systems, they have ignored disk I/O. The impact of disk
I/O on overall system performance becomes significant as
more and more data-intensive and/or I/O-intensive applica-
tions are running on clusters. The speed gap between CPU
and disk I/O is fast widening [35, 36], which makes stor-
age devices a likely performance bottleneck. Therefore, dy-
namic load balancing schemes have to “I/O-aware” to achieve
high performance in this new application environment
[20, 22].

Typical examples of I/O-intensive applications include
long running simulations of time-dependent phenomena that
periodically generate snapshots of their state [27], archives
of raw and processed remote sensing data [5], and out-of-
core applications [4], to name just a few. These applications
share a common feature in that their disk I/O requirements are
extremely high. For example, out-of-core applications have
high demands to access data sets that exceed the capacity of
physical memory, and it has become conventional wisdom to
develop out-of-core applications in a way to explicitly handle
data movement in and out of core memory avoiding the use
of virtual memory [6]. Load balancing with I/O-awareness,
when appropriately designed, is potentially capable of de-
livering high-performance storage, in addition to the high
utilization of I/O buffers.

This paper studies two schemes, referred to as IOCM
(load balancing for I/O, CPU, and Memory) and WAL-
PM (Weighted Average Load balancing with Preemptive
Migration). Each balances load in a cluster environment in
such a way that CPU, memory, and I/O resources at each node
can be simultaneously well utilized. Extensive simulations

for both synthetic and real I/O-intensive applications were
performed to compare existing load balancing schemes with
IOCM and WAL-PM. Both IOCM and WAL-PM achieve
improvement in mean slowdown, informally defined to be
the performance degradation of a job due to resource shar-
ing by other jobs, by up to a factor of 20 under I/O-intensive
workloads. Compared with existing approaches that consider
I/O with non-preemptive migration, the WAL-PM scheme
improves performance by up to a factor of 10. In addition,
when the workload is CPU-memory intensive, the proposed
scheme improves the performance over existing approaches
that only consider I/O by 24.4–47.5%.

The rest of the paper is organized as follows. In the section
that follows related work in the literature is briefly reviewed.
Section 3 presents the IOCM and WAL-PM schemes, and
Section 4 evaluates the performances of these schemes. Fi-
nally, Section 5 concludes the paper by summarizing the main
contributions of this paper.

2 Related work

The issue of distributed load balancing for CPU and memory
resources has been extensively studied and reported in the lit-
erature in recent years. Harchol-Balter et al. [10] proposed a
CPU-based preemptive migration policy that was more effec-
tive than non-preemptive migration policies. Zhang et al. [34]
focused on load sharing policies that consider both CPU and
memory services among the nodes. The experimental results
showed that their policies not only improve performance
of memory-intensive jobs, but also maintain the same load
sharing quality of CPU-based policies for CPU-intensive
jobs [34].

A large body of work can be found in the literature
that addresses the issue of balancing the load of disk sys-
tems [13, 16, 35]. Lee et al. [16] proposed two file assign-
ment algorithms that balance the load across all disks. Isert
and Schwan studied the runtime adaptation of data streams
achieved by migrating objects across machines [13]. The I/O
load balancing policies in these studies have been shown
to be effective in improving overall system performance by
fully utilizing the available hard drives. However, not all of
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them can be directly applied for a complex cluster computing
environment where I/O-intensive jobs may share resources
with many other memory-intensive and CPU-intensive jobs.
Communication-sensitive load balancing has been proposed
by Cruz and Park [7]. Although the approaches proposed in
our paper take into account communication load as a measure
to determine migration overheads, balancing network load is
beyond the scope of this paper.

Very recently, a dynamic load-balancing scheme, tailored
for the specific requirements of the Question/Answer appli-
cation, was developed to consider I/O, CPU and memory
resources [26]. The migration scheme studied in [26], re-
ferred to as WAL-RE (Weighted Average Load with Remote
Execution), prohibits remote I/O execution. In contrast, the
IOCM scheme in this study allows a job’s I/O operations to
be conducted by a node that is different from the one in which
the job’s computation is assigned, thereby permitting a job
to access remote I/O.

Zhang et al. also studied the performance of WAL-RE,
a non-preemptive load-balancing policy. The new WAL-PM
scheme presented in this paper, however, permits a currently
running job to be preempted and migrated if its migration is
expected to improve overall performance.

Besides WAL-RE, Zhang et al. [32] also proposed a WAL-
based preemptive migration policy, which has worse per-
formance than that of WAL-RE under memory-intensive
workload. Data migration cost in [32] only considers mem-
ory migration, thereby ignoring I/O migration cost as an im-
portant component of the migration cost in load-balancing.
In contrast, WAL-PM proposed in this study considers both
memory and I/O migration cost as a criterion to determine
jobs that are eligible for migration. Ranganathan and Fos-
ter studied a scheduling framework to improve the perfor-
mance of data-intensive applications running in Data Grid
systems [23]. Our approaches are different from theirs as our
performance gain relies on remote I/O access and preemp-
tive migrations rather than data replication algorithms [23].
Complememting the replication algorithms, our load balanc-
ing schemes could achieve additional performance improve-
ments by reducing migration cost.

Many researchers showed that I/O cache and buffer are
useful mechanisms to optimize storage systems [8, 17, 19].
Ma et al. implemented active buffering to alleviate the I/O
burden imposed by I/O-intensive applications by using local
idle memory and overlapping I/O with computation [17].
We developed a feedback control mechanism to improve
the performance of a cluster by manipulating the I/O buffer
size [19]. Forney et al. investigated storage-aware caching
algorithms that partition caches and explicitly account for
differences in performance across devices in heterogeneous
clusters [8]. Although we focus solely on balancing disk I/O
load in this paper, the approach proposed here is capable
of improving the buffer utilization of each node, which in

turn increases the buffer hit rate and reduces disk I/O ac-
cess frequency. The load-balancing schemes presented in this
paper is orthogonal to the existing caching/buffering tech-
niques and, thus, integrating our proposed schemes into the
caching/buffering techniques can provide additional perfor-
mance improvements.

In our previous work, we developed two I/O-aware load-
balancing schemes, which consider system heterogeneity in
addition to I/O load balancing [20]. However, the preemp-
tive migration technique was not incorporated into these
two schemes. Furthermore, we proposed a simple yet ef-
fective I/O-aware load-balancing scheme, which assigns I/O
intensive sequential and parallel jobs to nodes with light I/O
loads [22]. Although this scheme leverages the preemptive
migration technique as an efficient means to improve the sys-
tem performance, it is assumed that remote I/O accesses are
prohibited by employing a local disk based file system. The
work presented in this paper extends our previous work in
load balancing strategies [20, 22] by considering both pre-
emptive migrations and remote I/O accesses.

3 IO-aware load balancing policies

In this section, we discuss the problem of dynamic load bal-
ancing among a cluster of workstations(the terms workstation
and node are used interchangeably), connected by a high-
speed network. Each node in the cluster is able to migrate a
newly arrived job or a currently running job preemptively to
another node if needed, and maintain reasonably up-to-date
global load information by periodically exchanging load sta-
tus with other nodes [21].

We assume that in a realistic cluster structure, every job
has a “home” workstation that it prefers for execution [15].
The rationale behind this home model is two-fold: (1) the
input data of a job has been stored in the home node and, (2)
the job was created on its home node. An implication of this
model is that data initially retrieved by a task is available on
the task’s home node. It is assumed in many load-balancing
schemes [10, 26, 34] that no two or more jobs arrive at dif-
ferent nodes at the same time. We also assume the network
in our model is fully connected and homogenous in the sense
that communication delay between any pair of nodes is the
same. This simplification of the network is commonly used
in many load-balancing models [10, 12, 26, 34].

3.1 IO-CPU-memory (IOCM) based load-balancing policy

In this section, we present IOCM, a dynamic I/O-aware
load-balancing scheme. Each job is described by its require-
ments for CPU, memory, and I/O, which are measured by the
number of jobs running in the nodes, Mbytes, and number of
disk accesses per ms, respectively.
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Fig. 2 IO-CPU-Memory based
load balancing (IOCM)

For a job j , arriving in a local node i , the IOCM scheme
attempts to balance three different resources simultaneously
following five main steps. First, if node i’s I/O load is over-
loaded, a candidate node, MIO( j), that processes the I/O op-
erations issued by the job, is chosen in accordance with the
I/O load status. Node i is I/O-overloaded, if: (1) its I/O load
is the highest; and (2) the ratio between the I/O load and the
average I/O load across the system is greater than a thresh-
old, which is set to 1.25 in our experiments. This optimal
value, which is consistent with the result reported in [31],
is obtained from an experiment where the threshold is var-
ied from 1.0 to 2.0. Second, when the memory of node i is
overloaded, IOCM judiciously determines another candidate
node, MCM( j), the one with the lightest memory load, to ex-
ecute the job. When the node has sufficient memory space,
a CPU-base policy is applied to make the load sharing deci-
sion. Third, compute migration cost and remote I/O access
cost, and finalize the load balancing decision. Fourth, data
migration from node i to MIO( j) is invoked if the migration is
helpful in boosting the performance and the data accessed by

job j is not initially available in node MIO( j). Likewise, the
job is migrated to node MCM( j) if such migration improves
the expected performance. Fifth and finally, the network load
and the load status in nodes MIO( j) and MCM( j) are updated.
A detailed pseudo code of the IOCM scheme is presented in
Fig. 2.

In this scheme, three load indices for CPU, memory and
I/O resources are described below (see Table 1 for a summary
of notation):

(1) The CPU load index of node i is characterized by the
number of jobs running on the node [33, 34], denoted as
loadCPU(i).

(2) The memory load index of node i , denoted loadmem(i),
is the sum of the memory space allocated to those jobs with
their computational tasks assigned to node i . Thus,

loadmem(i) =
∑
j∈Mi

lmem( j) (1)

Table 1 A summary of notation
Symbol Definition

t j computation time of job j
a j age of job j
lpage(i, j) implicit I/O load of job j assigned to node i
lI O explicit I/O load of job j assigned to node i
rmem ( j) memory space requested by job j
nmem (i) available memory space to running jobs on node i
μi page fault rate of node i
λ j I/O access rate of job j assigned to node i
dbu f (i, j) buffer size allocated to job j
ddata( j) amount of data job j retrieves from or stores to the disk
d RW

j average data size of I/O accesses of job j
dW

j amount of disk (I/O) data generated at the runtime by job j
w j percentage of I/O operations that store data to the local disk
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where lmem( j) represents the memory requirement of job j ,
and Mi is a set containing all the jobs that are assigned to
node i .

(3) The I/O load index measures two types of I/O accesses:
implicit I/O requests induced by page faults and explicit I/O
requests resulting from I/O tasks. Let lpage(i, j) and lIO(i, j)
denote the implicit and explicit I/O load of job j assigned to
node i , respectively, then, the I/O load index of node i can
be defined as:

loadIO(i) =
∑
j∈Mi

lpage(i, j) +
∑
j∈Mi

lIO(i, j) (2)

where lmem( j) represents the memory requirement of job j .
The calculation of I/O load is more complicated because

of the need to determine the implicit and explicit I/O loads.
Let rmem( j) denote the memory space requested by job j , and
nmem(i) represent the memory space in bytes that is available
to all jobs running on node i . When the node’s available mem-
ory space is larger than or equal to the memory demand, there
is no implicit I/O load imposed on the disk. Conversely, when
the memory space is unable to meet the memory require-
ments of the jobs, the node encounters a large number of page
faults. The load of implicit I/O largely depends on programs
behaviors and buffer replacement policies. The implicit I/O
load can be measured by monitoring the inter-page fault in-
terval or an analytical model. For simplicity, we choose to
use the following model which has been used by other re-
searchers [33, 34] to approximately determine the implicit
I/O load of a job. Note that implicit I/O load is inversely pro-
portional to available user memory space and proportional
to the page fault rates and memory space requirements of
running jobs. Thus, lpage(i, j) is defined as follows,

lpage(i, j)=
⎧⎨
⎩

0 if loadmem(i) ≤ nmem(i),

μi
∑

k∈Mi
rmem(k)

nmem(i)
otherwise.

(3)

Job j’s explicit I/O load, lIO(i, j), can be expressed as a
function of I/O access rate λ j and I/O buffer hit rate h(i, j).
The explicit I/O load can be approximately measured by the
following expression:

lIO(i, j) = λ j [1 − h(i, j)] (4)

The buffer hit rate h(i, j) can be affected by the re-access
rate r j (defined to be the average number of times the same
data is repeatedly accessed by job j), the buffer size dbu f (i, j)
allocated to job j , and the amount of data ddata( j) job j re-
trieves from or stores to the disk, given a buffer with infinite

size. We will discuss the impact of re-access rate on the pro-
posed load-balancing schemes in Section 4.7. The buffer hit
rate is approximated by the following formula:

h(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

r j

r j + 1
if dbuf (i, j) ≥ ddata( j),

r j dbuf (i, j)

(r j + 1)ddata( j)
otherwise,

(5)

The I/O buffer in a node is a resource shared by multi-
ple jobs in the node, and the buffer size a job can obtain in
node i at run time heavily depends on running jobs’ access
patterns, characterized by I/O access rates and average data
sizes of I/O accesses. ddata( j) linearly depends on access
rate, computation time and average data size of I/O accesses
d RW

j , and ddata( j) is inversely proportional to I/O re-access
rate. dbuf (i, j) and ddata( j) are estimated using the following
two equations, where t j is the computation time of job j :

dbuf (i, j) = λ j d RW
j dbuf (i)∑

k∈Mi

(
λkd RW

j

) (6a)

ddata( j) = λ j t j d RW
j

r j + 1
(6b)

In practice, I/O access rate and I/O buffer hit rate used in
Expression 4 can be dynamically obtained by maintaining
a running average for λ j and h(i, j). We now turn to the
calculation of the response time of a job with local/remote
I/O accesses and the migration cost, which will be utilized in
Step (3) to decide if migration can improve the performance.
When a job j accesses I/O locally on node i , its expected
response time can be computed as follows:

r (i, j) = t j E(Li ) + t jλ j

{
E

(
si

disk

) + �i
disk E

[(
si

disk

)2]
2
(
1 − ρi

disk

)
}
,

(7)

where λ j is the I/O access rate of job j . E(si
disk) and E[(si

disk)2]
are the mean and mean-square I/O service time in node i , and
ρi

disk is the utilization of the disk in node i . E(Li ) represents
the mean CPU queue length Li , and �i

disk denotes the aggre-
gate I/O access rate in node i .

The two terms on the right hand side of Eq. (7) represent
the CPU execution time and the I/O processing time, respec-
tively. It is assumed in our model that all I/O operations are
blocking [26]. In other words, computations and I/O opera-
tions are not overlapped. Thus, the response time of a job is
the summation of CPU and I/O reponse time. This simplifi-
cation is conservative in the sense that it makes the proposed
I/O-aware load-balancing schemes less effective.
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Round-robin scheduling (time-sharing) is employed as the
CPU scheduling policy, and the disk of each node is modeled
as a single M/G/1 queue [16]. The aggregate I/O access rate,
�i

disk, is defined as: �i
disk = ∑

k∈Mi
λ′

k , where λ′
k = λk

E(Li )
, and

λ′
k is the effective I/O access rate imposed on the disk by job k,

taking the effect of time-sharing into account. To accurately
estimate the effective I/O access rate, λk , measured in a non-
shared environment, must be deflated by the time-sharing
factor, which is E(Li ). Based on λ′

k , the disk utilization can
be expressed as: ρi

disk = ∑
k∈Mi

(λksk
disk).

Let pk
disk be the probability of an I/O access being from

job k on node i , we then have pk
disk = λ′

k/�i . Therefore, the
mean I/O service time, used in Eq. (7), can be calculated as
follows:

E
(
si

disk

)=
∑
k∈Mi

(
ρk

disksk
disk

)= 1

�i

∑
k∈Mi

(
λ′

ksk
disk

)= ρi
disk

�i
disk

(8a)

E
[(

si
disk

)2]=
∑
k∈Mi

(
ρk

disk

(
sk

disk

)2)= 1

�i

∑
k∈Mi

(
λ′

k

(
sk

disk

)2)

(8b)

Let pk
CPU denote the probability of a job k being executed

by CPU or waiting in the CPU queue, as opposed to waiting
for I/O access. We have pk

CPU = tk/(tk + tkλksk
disk) = 1/(1 +

λksk
disk). Thus, the mean CPU queue length, used in Eq. (7),

becomes: E(Li ) = ∑
k∈Mi

pk
CPU = ∑

k∈Mi

1
1+λk sk

disk
.

We now turn our attention to the response time of a job
with remote I/O accesses. The network links are modeled as
a single M/G/1 queue [24]. Let r (i, k, j) be the response time
of job j on node i remotely accessing data on node k (k �= i).
Thus we have:

r (i, k, j) = t j E(Li ) + t jλ j

{
E

(
sk

disk

) + �k
disk E

[(
sk

disk

)2]
2
(
1 − ρk

disk

)
}

+ t jλ j

{
E

(
sik

net

) + �ik
net E

[(
sik

net

)2]
2
(
1 − ρik

net

)
}
, (9)

where E(sik
net ) and E[(si

net )
2] are the mean and mean-square

network service time, ρik
net denotes the utilization of the net-

work link, and �ik
net is the aggregate communication request

rate. The three terms on the right hand side of Eq. (9) rerepre-
sent the CPU execution time, the I/O processing time, and the
network communication time, respectively. For simplicity,
we assume that, for a remote I/O operation, there is no over-
lap in time between I/O processing and communication [26].
This simplification is conservative in nature, thereby making
the proposed schemes less effective.

Given a job j submitted to node i , the expected migration
cost is estimated as follows,

c j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e if MCM( j) = k, MIO( j) = i ,

dINIT
j

(
1

bil
net

+ 1

bi
disk

+ 1

bl
disk

)

if MCM( j) = i, MIO( j) = l,

e + dINIT
j

(
1

bil
net

+ 1

bi
disk

+ 1

bl
disk

)

if MCM( j) = k, MIO( j) = l.

(10)

where k �= i, l �= i , and k �= l. e is the fixed cost of migrat-
ing the job, bkl

net is the available bandwidth of the link be-
tween node k and l, bk

disk is the available disk bandwidth in
node k. In practice, bkl

net and bk
disk can be measured by a per-

formance monitor [3]. dINIT
j represents the amount of data

initially stored on disk to be processed by job j , and this
amount of data is referred to as initial data throughout this
paper. Thus, the second line of Eq. (10) represents the migra-
tion time spent on transmitting data over the network and on
accessing source and destination disks. In real world appli-
cations, there is no need to migrate all the initial data, since
some data will be only read once. However, IOCM might not
be able to know which portion of initial data will be read only
once. We assume that the initial data of a job is transmitted
if the job encounters a migration. This assumption is conser-
vative, since IOCM can be further improved if the amount of
initial data that must be migrated can be accurately predicted
by a monitor at run time.

The memory pressure placed by migrating data is not con-
sidered in our model. The reason is that in many real systems,
data movement can be handled by storage controllers and
network interface controllers without being processed by the
CPU and buffered in main memory. This technique, referred
to as Off-Processor I/O, is comprehensively studied in [9].

In Step (4), IOCM guarantees that the response time of the
candidate migrant is less in expectation than it would be with-
out migration. This guarantee is implemented by checking
the following criterion based on Eqs. (7), (9), and (10).

r (i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r (k, i, j) + c j if MCM( j) = k, MIO( j) = i ,

r (i, l, j) + c j if MCM( j) = i, MIO( j) = l,

r (k, l, j) + c j if MCM( j) = k, MIO( j) = l,

r (k, j) + c j if MCM( j) = k, MIO( j) = k.

(11)

where k �= i, l �= i , and k �= l. Four migration cases in Ex-
pression 11 are: (1) the job is migrated without its I/O portion;
(2) the job is executed locally, while its I/O portion is serviced
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in another node; (3) both the job and its I/O portion are mi-
grated, but to two different nodes; (4) both the job and its I/O
portion are migrated to the same node, while I/O operations
can still be processed locally in another node.

3.2 Weighted average load-balancing with preemptive
migration

We are now in a position to study WAL-PM that improves
performance by considering not only incoming jobs but also
currently running jobs. For a newly arrived job j at a node i ,
WAL-PM balances the load in the following six steps. First,
the load of node i is updated by adding j’s load, assigning
the newborn job to the local node. Second, a migration is
to be initiated, if node i has the highest load and the ratio
between node i’s load and the average load across the system
is greater than 1.25. Third, a candidate node k with the lowest
load is chosen. If a candidate node is not available, WAL-
PM will be terminated and no migration will be carried out.
Fourth, WAL-PM determines a set EM of jobs eligible for
migration such that the migration of each job in EM is able to
potentially reduce the slowdown of the job. Fifth, a job q from
EM is judiciously selected in such a way that the migration
benefit is maximized. In fact, this step substantially improves
the performance over the WAL-based load-balancing scheme
with non-preemptive migration. Finally, job q is migrated to
the remote node k, and the load of nodes i and k is updated
in accordance with job q’s load. An outline of the WAL-PM
scheme is presented in Fig. 3 below.

WAL-PM estimates the weighted average load index in
Step (1). Since there are three primary resources considered,
the load index of each node i is the weighted average of CPU,
memory and I/O load, thus:

loadW AL (i) = WCPU
loadCPU(i)

M AXn
j=1loadCPU( j)

(12)

+ Wmem
loadmem(i)

M AXn
j=1loadmem( j)

+ WIO
loadIO(i)

M AXn
j=1loadIO( j)

where loadCPU(i) is the number of running jobs, loadmem(i)
is expressed in Eq. (1), and the derivation of loadIO(i) can be
found in Eq. (2). Each weight indicating the significance of
one resource is automatically configured by the load monitor.
In practice, three weights are measured by the percentage of
time spent on CPU, paging, and I/O accessing, respectively.

The WAL-PM scheme judiciously selects an eligible job in
EM from the overloaded node to migrate, and the expected
response time of an eligible migrant on the source node,
by design, is greater than the sum of its expected response
time on the destination node and the migration cost. In what
follows, the expected response time of a candidate migrant j
on node i is given in the following equation, where a j is the
age of job j and other variables assume the same meanings
as in Eqs. (7) and (9).

rPM(i, j) = (t j − a j )E(Li ) + (t j − a j )λ j

×
{

E
(
si

disk

) + �i
disk E

[(
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disk

)2]
2
(
1 − ρi

disk

)
}
.

Based on Eq. (13), the set of eligible migrant jobs be-
comes:

EM(i, k) = { j ∈ Mi |rPM(i, j) > rPM(k, j) + c j }, (13)

where k represents a destination node, and c j is the migration
cost (time) of job j . In other words, each eligible migrant’s
expected response time on the source node is greater than the
sum of its expected response time on the destination node and
the expected migration cost. This is modeled as follows:

c j =

⎧⎪⎪⎪⎪⎪⎪⎨
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e + dINIT
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(
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)

preemptive migration

(14)

Fig. 3 Pseudo code of the
weighted-average-load based
policy with preemptive
migration
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where f is the fixed cost for preemptive migration and m j

is the memory size of the migrant job. Like Eq. (10), the
last three terms of both the upper and the bottom line of
Eq. (14) represent the migration time spent on transmitting
data over the network and on accessing source and destination
disks, respectively. The second term of the bottom line of
Eq. (14) is the memory transfer cost. dW

j and m j in Eq. (14)
denote the amount of disk (I/O) data and of main memory
data generated at the runtime by the job, respectively. Disk
data dW

j is proportional to the number of write operations
that has been issued by the job at the runtime and the average
amount of data d RW

j stored by the write operations. dW
j is

inversely proportional to the data re-access rate r j . Thus, dW
j

is defined by:

dW
j = a jλ jw j d

RW
j /(r j + 1), (15)

where w j is the percentage of I/O operations that store
data to the local disk, and the number of write opera-
tions is a product of a j , λ j , and w j in the numerator. In
some I/O-intensive applications, numerous snapshots are
spawned by write-only operations. Since the permanent
data of snapshots will not be read again by the same job,
there is no need to move such write-only data when the
job is migrated. Hence, w j does not consider write-only
operations.

In Step (2.4), WAL-PM chooses one job q from set
EM(i, k) in such a way that the benefit of migration is max-
imized. To find a maximizing factor, we define an objec-
tive function, called migration cost-effectiveness (MCE),
which measures the amount of I/O load migrated per unit
migration cost. More specifically, for job j , MCE( j) =
a jλ j/c j , since the numerator represents the I/O load of
job j , while the denominator indicates migration cost of
the job. Thus, the best job in EM to choose for migra-
tion is the one with the maximum MCE value, as shown in
Eq. (16),

MCE(q) = MAX j∈EM(i,k){MCE( j)},
where q ∈ EM(i, k). (16)

4 Experimental results

In this section, we compare the performance of IOCM, IO-
PM, and WAL-PM with four existing schemes, namely, CM-
RE, CM-PM, IO-RE and WAL-RE. In what follows, we give
a brief description of these policies. (1) CPU-Memory-based
load balancing schemes CM-RE (with non-preemptive mi-
gration) and CM-PM (with preemptive migration) were in-
troduced in [34]. When a node has sufficient memory space,
the CM schemes balance the system using CPU load index.

When the system encounters a large number of page faults
due to insufficient memory space for the running jobs, mem-
ory load index loadmem(i) is used by CM to balance the sys-
tem. (2) The IO-based load balancing with non-preemptive
migration (IO-RE) [16] uses a load index that represents
only I/O load. For a job arriving in node i , the IO-RE
scheme greedily assigns the computational and I/O tasks of
the job to the node that has the least accumulated I/O load.
(3) The Weighted-Average-Load-based balancing with non-
preemptive migration (WAL-RE), proposed in [26], assigns
jobs to a node that is not overloaded. If such a node is not
available, WAL-RE dispatches the job to a node with the
smallest value of the load index. The performance metric
used in our simulations is slowdown. Since the definition of
slowdown in [10, 33, 34] does not consider time spent on I/O
accesses, it has to be extended by incorporating I/O access
time. The definition of slowdown for a job j is given as:

slowdown( j) = timewall( j)/(timeCPU( j) + timeIO( j)),

(17)

where timewall( j) is the total time job j spends executing,
accessing I/O, waiting, or migrating in a resource-shared set-
ting, and timeCPU( j) and timeIO( j) are the times spent by job
j on CPU and IO, respectively, without any resource sharing.

4.1 Simulation parameters

To study dynamic load balancing, Harchol-Balter and
Downey [10] implemented a trace-driven simulator for a dis-
tributed system with six nodes in which round-robin schedul-
ing is employed. The load balancing policy studied in that
simulator is CPU-based. Zhang et al. [34] extended the sim-
ulator, incorporating memory resources into the simulation
system. Based on the simulator presented in [34], our simu-
lator incorporates three new features: (1) The IOCM, IO-RE,
IO-PM, WAL-RE and WAL-PM schemes are implemented;
(2) a simple disk model is added; and (3) an I/O buffer is
implemented. In all experiments, the simulated system is
configured with parameters listed in Table 2.

Disk I/O accesses from each job are modeled as a Poisson
Process with a mean I/O access rate λ. Although the durations
and memory requirements of the jobs come from trace files,
the I/O access rate of each job is randomly generated accord-
ing to a uniform distribution between 0 and AR, where AR
represents the maximal I/O access rate. This simplification
deflates any correlations between I/O requirement and other
job characteristics, but we are able to control the maximal
I/O access rate as a parameter and examine its impact on sys-
tem performance. Data sizes of the I/O requests are randomly
generated based on a Gamma distribution with the mean size
of 256KByte and the standard deviation of 128Kbyte. The

Springer



Cluster Comput (2006) 9:297–311 305

Table 2 System parameters
Parameters Value (fixed) (varied)

CPU speed (800 MIPS-Millions Instruction Per Second)-
RAM size (640 MB)-
Buffer size (160 MB)-
Page fault service time (8.1 ms)-
Mean page fault rate (0.1 No./ms)-
Disk seek and rotation time (8.0 ms)-
Disk transfer rate (40 MB/s)-
Data re-access rate, r (5)-(1, 2, 3, 4)
Average data size (256 KB)-(100, 150, 200, 250, 300, 350, 400 KB)
Average initial data size (60 MB)-(50, 100, 150, 200, 250, 300, 350 MB)
Network bandwidth (100 Mbps)-(50, 100, 250, 750, 1000 Mbps)

sizes chosen in this way reflect typical data characteristics
for many data-intensive applications, such as a fine-grained
regional atmospheric climate model [25] and an ocean global
circulation model, where the vast majority of I/O requests are
small [14, 18].

4.2 Performance on I/O-intensive workload

To stress the I/O-intensive workload in this experiment, the
page fault rate is fixed at a low value of 0.5 No./ms. This
workload reflects a scenario where memory-intensive jobs
exhibit high temporal and spatial locality of access. A real-
istic system is likely to have a mixed workload, where some
jobs are I/O-intensive and other jobs are either CPU or mem-
ory intensive. Therefore, we randomly choose 10% of jobs
from the trace to be non-I/O-intensive by setting their I/O ac-
cess rate to be 0. Among these non-I/O-intensive jobs, 50%
of jobs are made to be CPU-intensive by scaling their execu-
tion time by a factor of 10, and other jobs are modified to be
memory-intensive with page fault rate set to 8 No./ms.

Figure 4(a) plots slowdown as a function of the maxi-
mal I/O access rate in the range between 2.4 No./ms and
2.9 No./ms in increments of 0.1 No./ms. The mean slow-
downs of IO-RE, IO-PM, and CM-RE are almost identical
to those of WAL-RE, WAL-PM, and CM-PM respectively,
and therefore are omitted from Fig. 4(a). Four observations
were made from this experiment.

First, Fig. 4(a) reveals that the mean slowdowns of the
five policies all increase with the I/O load. This is because
as CPU load and memory demands are fixed, high I/O load
leads to a high utilization of disks, causing longer waiting
time on I/O processing.

Second, the results show that the WAL-RE scheme signif-
icantly outperforms the CM-RE and CM-PM policies, sug-
gesting that the CM-RE and CM-PM policies are not suit-
able for I/O intensive workload. This is because CM-RE and
CM-PM only balance CPU and memory load, ignoring the
imbalanced I/O load under the I/O intensive workload.

Third, the results further reveal that the IOCM scheme
outperforms CM-RE, CM-PM, IO-RE, and WAL-RE. This is
because IOCM partitions each job into a computational task
and an I/O task, and individually improves the utilizations of
three resources by allowing the computational and I/O tasks
of each job to be assigned to different nodes.

Finally, the proposed WAL-PM policy improves the
performance even over WAL-RE by virtue of preemptive
migration strategy, suggesting that preemptive migration
outperforms remote execution for I/O-based schemes un-
der I/O-intensive workload. Consequently, the slowdowns
of CM-RE, CM-PM and WAL-RE are more sensitive to I/O
access rate than WAL-PM. This performance improvement
of WAL-PM over WAL-RE can be explained by the follow-
ing reasons. First, one problem encountered in the WAL-RE
policy is that the I/O demand of a newly arrived job may not
be high enough to offset the migration overhead. However,
WAL-PM provides better migratory opportunities by con-
sidering all existing jobs on a node, in addition to the newly
arrived job. Second, unlike the preemptive scheme, in the
non-preemptive scheme, once a job with high I/O demand
misses the opportunity to migrate it will never have a second
chance.

4.3 Performance on CPU-memory intensive workload

This section shows the worst-case scenario for IOCM
and WAL-PM, namely, subjecting them to a highly
CPU-memory-intensive workload. To simulate a memory in-
tensive workload, the maximal I/O access rate is fixed at a
low value of 0.1 No./ms, keeping the I/O demands of all jobs
at a low level. Again, to simulate a mixed workload, we ran-
domly choose 10 percent jobs to be I/O intensive by setting
their I/O access rate to 2.8 No./ms. In [34], the page fault-rate
is scaled according to the upper limit vertical axis presenting
the mean slowdown. Similarly, we set the upper limit of the
mean slowdown at 60, and scale the page fault rate from 7.2 to
8.8 No./ms in increments of 0.2 No./ms. In practice, the page
fault rates of applications range from 1 to 10 No./ms [34].
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The results of the mean slowdown as a function of the page
fault rate are summarized in Fig. 4(b). The general observa-
tions in this experiment are in agreement with [34], where
the impact of page fault rate on the mean slowdown is quan-
titatively evaluated. Therefore, we only present new results
about the proposed schemes and their comparison with the
existing schemes.

The result shows that the mean slowdowns of WAL-
RE and WAL-PM are nearly identical to those of the CM-
RE and CM-PM policies, because the WAL-RE and WAL-
PM policies can gracefully reduce to CM-RE and CM-
PM by dynamically configuring the weighted load index
in accordance with the CPU-memory intensive workload.
The mean slowdowns of CM-RE and CM-PM are omitted
from 4(b).

As can be seen in Fig. 4(b), when page fault rate is high
and I/O rate is low, IOCM, CM-RM, CM-PM, WAL-RE,
and WAL-PM outperform the IO-RM and IO-PM schemes
considerably. These results can be explained by the follow-
ing reasons. First, IOCM, CM-RE, CM-PM, WAL-RE, and
WAL-PM consider the effective usage of global memory, at-
tempting to balance the implicit I/O load, which makes the
most significant contribution to the overall system load when
page fault rate is high and the explicit I/O load is low. Sec-
ond, the IO-RE and IO-PM schemes improve the utilization
of disks based only on explicit I/O load, ignoring the implicit
I/O load resulted from page faults. Again, Fig. 4(b) illustrates
that IOCM outperforms CM-RE, CM-PM, and WAL-RE, by
up to 18.3%. The reason for this phenomenon is that be-
sides balancing the memory load and the implicit I/O load
generated by the page faults, IOCM further balances the ex-
plicit I/O load measured by the I/O access rate.

As expected, CM-PM and WAL-PM consistently per-
form slightly worse than CM-RE and WAL-RE because re-
mote execution results in lower data movement cost during
migration than that of preemptive strategy for memory-
intensive jobs. This experiment is consistent with the results
reported in [34]. However, the opposite is true for IO-based
policies when memory demand is comparatively high. The
explanation is that a high memory demand implies an

I/O-intensive workload due to a large number of page faults,
and a preemptive strategy is effective for an I/O-intensive
workload.

4.4 Initial data size

The migration cost of non-preemptive and preemptive poli-
cies depend in part on the size of initial data. Figure 5(a)
shows the impact of initial data size on slowdowns un-
der I/O-intensive workload. We only present the results
of WAL-RE, WAL-PM, and IOCM, since the perfor-
mance patterns of other policies are similar to these three
policies.

First, Fig. 5(a) shows that the IOCM and WAL-PM poli-
cies consistently outperform the WAL-RE policy. Second,
the slowdowns increase with the increasing size of the initial
data size. The reason is that the large initial data size results
in a high migration time, which in turn reduces the benefits
gained from migration. Third, it is observed that the slow-
downs of WAL-RE and IOCM are much more sensitive to the
initial data size than that of WAL-PM. This result indicates
that the performance gain by WAL-PM over existing poli-
cies becomes more pronounced when the initial data size is
large.

Figure 5(b) illustrates the impact of the initial data size
on the WAL-PM slowdown performance under memory-
intensive workloads. An observation is that the sensitivity
of WAL-PM to the initial data size is heightened by increas-
ing the page fault rate. This is because migrating the ini-
tial data of a job involves two disk accesses, reading initial
data from the source disk and writing it to the target disk.
The average response times at the source and the target
disks are likely to be long when the I/O load of two disks
is heavy due to the high page fault rate, thereby leading
to a large overhead of migrating initial data. This result
suggests that the slowdown of the WAL-PM policy does
not suffer significantly from a large initial data size when
the page fault rate is low. Likewise, WAL-PM can toler-
ate a relatively high page fault rate if the initial data size is
small.

Springer



Cluster Comput (2006) 9:297–311 307

0

50

100

150

200

250
WAL-RE,IO rate=2.9

WAL-PM,IO rate=2.9

IOCM,  IO rate=2.9

Initial Data Size (MByte)

Mean Slowdown

0

50

100

150

200

250

WAL-PM,page rate=7.2

WAL-PM,page rate=8.0

WAL-PM,page rate=8.4

Initial Data Size (MByte)

Mean Slowdown

a. Page fault rate is 0.5 No./ms b. I/O access rate is 0.1 No./ms

Fig. 5 Mean slowdown as a
function of the size of initial data

0

20

40

60

80

100

120

WAL-RE,IO rate=2.6
WAL-PM,IO rate=2.6
WAL-PM,IO rate=2.8

IOCM,IO rate=2.6

 Average Data Size (KByte)

Mean Slowdown

0

30

60

90

120

150

CM_PM
WAL-RE
WAL-PM
IOCM

Network Bandwidth (Mbps)

Mean Slowdown

a. Impact of the average data size b. Impact of the network bandwidth

Fig. 6 (a) Page fault rate is 0.5
No./ms, and I/O rate is 2.6
No./ms; (b) Page fault rate is 0.5
No./ms, and I/O rate is 2.8
No./ms

4.5 Average data size

I/O load depends on I/O access rate and the average data size
of I/O accesses, which in turn rely on I/O access patterns.
The purpose of this experiment, therefore, is to show the
impact of the average data size on the performance of load
balancing policies.

Figure 6(a) shows that the mean slowdown increases as the
average data size increases. The reason is that as I/O access
rate is fixed, a large average data size yields a high utilization
of disks, causing longer waiting times on I/O processing.
A second observation from Fig. 6(a) is that the slowdown
performance of WAL-PM at a high I/O access rate is more
sensitive to average data size than that at a low I/O access
rate. This is because the higher the I/O access rate, the higher
the disk utilization, which results in longer waiting time in
disk queue.

4.6 Network bandwidth

Let us now consider the impact of network bandwidth on
the mean slowdowns of the CM-PM, WAL-RE, IOCM, and
WAL-PM policies. In order to explore this issue, we set the
network bandwidth in the range between 50Mbps and 1Gbps.
Since the performance of CM-RE, IO-RE, and IO-PM are al-
most identical to those of CM-PM, WAL-RE, and WAL-PM,

respectively, Fig. 6(b) only shows the results for the CM-
PM, WAL-RE, IOCM, and WAL-PM policies. As shown in
Fig. 6(b), CM-PM is not sensitive to network bandwidth. Be-
cause when the workload is I/O intensive, CM-PM degrades
to a non-load-balancing policy that is not affected by the net-
work speed. The slowdowns of the other three policies share
a common feature in the sense that when the network band-
width increases, the slowdowns slightly drop. The reason is
that a network with high bandwidth results in a low migra-
tion cost in these three load-balancing policies. Figure 6(b)
further reveals that WAL-RE and IOCM are more sensitive
to the network bandwidth than WAL-PM. This result can be
explained by the fact that the preemptive scheme tends to
select a job with the minimal migration cost and reduce the
network traffic overhead, thereby deflecting the impact of
network speed on the performance of the preemptive migra-
tion scheme.

4.7 Write percentage and re-access rate

Figures 7(a) and (b) illustrate the mean slowdowns of
WAL-PM as functions of write percentage and re-access rate,
respectively. We observe from Fig. 7(a) that the increase in
the write percentage worsens the performance. The reason is
that a high write percentage means a large amount of data to
be migrated (see Eq. (15)), implying a high migration cost
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as given in Eq. (14). Consequently, the high migration cost
yields a high slowdown.

Figure 7(b) indicates that the mean slowdowns decrease
as the value of re-access rate increases. This is because if
the I/O access rate of a job is fixed, increasing re-access rate
implies a smaller amount of data stored in disk for the job,
and thus a smaller amount of migrated data. As mentioned
earlier, the migration cost is proportional to the amount of
migrated data, and reducing the amount of migrated data
results in a reduced cost for migration.

The results strongly suggest that the overall performance
depends on I/O access patterns. Thus, I/O intensive jobs in
which either the I/O operations are dominated by read, or
data are most likely to be re-accessed, can potentially benefit
more from the WAL-PM scheme.

4.8 Real I/O-intensive applications

The experimental results reported in the previous sections are
obtained from jobs with synthetic I/O requests. To validate
the results based on the synthetic I/O workload, we simulate
a number of real I/O-intensive applications using five sets of
I/O traces collected from the University of Maryland [28].
These sets of traces reflect both scientific and non-scientific
applications with diverse disk I/O demands. We evaluate the
mean slowdowns of the following five applications:

1. Data mining (Dmine): This application extracts associa-
tion rules from retail data [31].

2. Parallel text search (Pgrep): This application is used for
partial match and approximate searches. It is a modified
parallel version of the agrep program from the University
of Arizona [30].

3. LU decomposition (LU): This application computes the
dense LU decomposition of an out-of-core matrix [11].

4. Titan: This is a parallel scientific database for remote-
sensing data [5].

5. Sparse Cholesky (Cholesky): This application is capable
of computing Cholesky decomposition for sparse, sym-

metric positive-definite matrices [2]. The input data of
this application is a matrix that contains over 45 million
double-precision nonzeros and 45,361 columns for a total
of 437 MB [28].

To simulate these I/O-intensive parallel applications, we
generate five job traces where the arrival patterns of jobs
are extrapolated based on the job traces collected from the
University of California at Berkeley [10]. The main purpose
of conducting this experiment is to measure the impact of
the I/O-aware load balancing schemes on a variety of real
applications and, therefore, each job trace consists of one
type of I/O-intensive application described above.

Figure 8(a) shows the mean slowdowns of the five job
traces scheduled by four load-sharing policies. We make
three observations. First, the I/O-aware load balancing
schemes benefit all I/O intensive applications, and offer a
26.5–112.0% performance improvement in mean slowdown
over the non-I/O-aware policies. The performance gain is
partially attributed to the low migration cost by virtue of du-
plicating read-only data. Note that these applications present
a uniformly low I/O demand for writes.

Second, WAL-RE and WAL-PM yield approximately
identical performance. We attribute this result to the fact
that all jobs running on the cluster in this experiment be-
long to the same application with identical CPU and I/O
demands, and the tasks of a newly arrived parallel job are
likely to become the most suitable tasks for migration due
to their low migration cost. In other words, both WAL-RE
and WAL-PM attempt to migrate the tasks of newly arrived
jobs when the local node in the cluster is overloaded and, as
a result, WAL-PM reduces to WAL-RE when the variance in
CPU and I/O demand is minimum.

Third, the trace with LU applications exhibits a larger
mean slowdown than the other four traces. Given a fixed job
arrival pattern, the mean slowdowns of jobs in a trace de-
pends partially on jobs’ total execution time, which in turn is
affected by the CPU and I/O execution times of jobs running
on a dedicated cluster.
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Figure 8(b) illustrates the contribution of CPU and I/O
execution time to the total execution time of each applica-
tion in a dedicated computing environment. In particular,
Fig. 8(b) shows that the total execution time of LU is domi-
nated by I/O processing, thereby giving rise to a low utiliza-
tion of CPU resources, which in turn leads to a high value
of mean slowdown for the trace with LU applications (see
Fig. 8(b)). Unlike the workload with the LU applications,
the workloads with the Dmine, Pgrep, and Cholesky appli-
cations sustain reasonably high utilizations of CPU and disk
I/O. This is because for these three applications, neither CPU
time nor I/O time dominates the total execution time. Hence,
the trace of the LU applications has the highest slowdown
value among all application traces for the four load-balancing
policies.

5 Conclusion

In this paper, we have proposed two dynamic load-balancing
policies, referred to as IOCM (load balancing for I/O, CPU,
and Memory) and WAL-PM (Weighted-Average-Load based
policy with Preemptive Migration), for workstation-based
cluster systems. IOCM employs remote I/O execution fa-
cilities to improve system performance, whereas WAL-PM
utilizes a preemptive job migration strategy to boost per-
formance. More specifically, IOCM allows applications and
their data to be located on different nodes, if well-balanced
I/O load is able to offset communication overheads im-
posed by remote I/O executions. WAL-PM considers not
only newly arrived jobs but also older, currently running
jobs as candidate migrant jobs, and migrates jobs that are the
most migration cost-effective. In addition to CPU and mem-
ory utilization, both IOCM and WAL-PM consider I/O load,
leading to a performance improvement over existing I/O-
based and CPU-Memory-based policies under I/O-intensive
workload. We compare IOCM and WAL-PM with four ex-
isting approaches, namely, (1) CPU-Memory-based policy
with preemptive migration (CM-PM), (2) CPU-Memory-

based policy with non-preemptive migration (CM-RE), (3)
IO-based policy with non-preemptive migration (IO-RE),
and (4) Weighted-Average-load based policy with non-
preemptive migration (WAL-RE). For comparison purposes,
IO-based policy with preemptive migration (IO-PM) is also
simulated and compared with the proposed schemes. A trace-
driven simulation demonstrates that applying IOCM and
WAL-PM to clusters for I/O-intensive workload is highly
effective.

In particular, the proposed schemes improve performance
with respect to mean slowdown over the existing non-
preemptive I/O-aware schemes by up to a factor of 10. On the
other hand, when the workload is I/O intensive, our schemes
achieve improvement in slowdown over the existing CPU-
Memory-based schemes by up to a factor of 20.

A future direction of this research is to study a feed-
back control mechanism to dynamically configure resource
weights in such a way that the weights are capable of reflect-
ing the significance of system resources. Since data move-
ment has a significant impact on the overall performance of
load balancing polices, another extension of this work will
be the study of a predictive model for moving data without
compromising the performance of applications running on
local nodes in a cluster.

Acknowledgments This work was partially supported by an NSF
grant (EPS-0091900), a Nebraska University Foundation grant (26-
0511-0019), and a UNL Academic Program Priorities Grant. Work was
completed using the Research Computing Facility at the University of
Nebraska-Lincoln. We are grateful to the anonymous referees for their
insightful suggestions and comments.

References

1. A. Acharva and S. Setia, Availability and utility of idle memory
in workstation clusters, in: Proceedings of the ACM SIGMETRICS
Conf. on Measuring and Modeling of Computer Systems (1999).

2. A. Acharya et al, Tuning the performance of I/O-intensive parallel
applications, in: Proceedings of the 4th IOPADS, Philadelphia, PA
(1996) pp. 15–27.

Springer



310 Cluster Comput (2006) 9:297–311

3. J. Basney and M. Livny, Managing network resources in condor, in:
Proceedings of the Ninth IEEE Symposium on High Performance
Distributed Computing (HPDC9) (2000) pp. 298–299.

4. A. D. Brown, T. C. Mowry, and O. Krieger, Compiler-based I/O
prefetching for out-of-core applications. ACM Transactions on
Computer Systems 19(2) (2001) 111–170.

5. C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and J. Saltz,
Titan: A high-performance remote-sensing database, in: Proc. of
International Conference on Data Engineering (1997).

6. M. M. Cettei, W. B. L. III, and R. B. Ross, Support for parallel out
of core applications on beowulf workstations, in: Proceedings of
the 1998 IEEE Aerospace Conference (1998).

7. J. Cruz and K. Park, Towards communication-sensitive load balanc-
ing, in: Proc. 21 Int’l Conf. Distributed Computing Systems (ICDCS
2001) (2001).

8. B. Forney, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
Storage-aware caching: Revisiting caching for heterogeneous stor-
age systems, in: Proceedings of the 1st Symposium on File and
Storage Technology Monterey, California, USA (2002).

9. P. Geoffray, OPIOM: Off-processor I/O with Myrinet. Future Gen-
eration Computer Systems 18 (2002) 491–499.

10. M. Harchol-Balter and A. Downey, Exploiting process lifetime dis-
tributions for load balancing. ACM Transactions on Computer Sys-
tems 15(3) (1997) 253–285.

11. B. Hendrickson and D. Womble, The torus-wrap mapping for dense
matrix calculations on massively parallel computers. SIAM J. Sci.
Comput. 15(5) (1994).

12. C. Hui and S. Chanson, Improved strategies for dynamic load shar-
ing. IEEE Concurrency 7(3) (1999).

13. C. Isert, and K. Schwan, ACDS: Adapting computational data
streams for high performance, in: International Parallel and Dis-
tributed Processing Symposium (IPDPS) (2000).

14. D. Kotz and N. Nieuwejaar, Dynamic file-access characteristics of
a production parallel scientific workload, in: Proceedings of the
ACM Conference on Supercomputing (1994) pp. 640–649.

15. R. Lavi and A. Barak, The home model and competitive algorithm
for load balancing in a computing cluster, in: Proceedings of the
21st Int’l Conf. Distributed Computing Systems (ICDCS 2001).

16. L. Lee, P. Scheauermann, and R. Vingralek, File assignment in
parallel I/O systems with minimal variance of service time. IEEE
Trans. on Computers 49(2) (2000) 127–140.

17. X. Ma, M. Winslett, J. Lee, and S. Yu, Faster collective output
through active buffering, in: Proceedings of the International Sym-
posium on Parallel and Distributed Processing (2002).

18. B. Pasquale and G. Polyzos, Dynamic I/O characterization of I/O
intensive scientific applications, in: Proceedings of the Supercom-
puting (1994) pp. 660–669.

19. X. Qin, H. Jiang, Y. Zhu, and D. Swanson, Dynamic load balancing
for I/O- and memory-intensive workload in clusters using a feed-
back control mechanism, in: Proceedings of the 9th International
Euro-Par Conference on Parallel Processing (Euro-Par 2003), Kla-
genfurt, Austria (2003a).

20. X. Qin, H. Jiang, Y. Zhu, and D. Swanson, Dynamic load balancing
for I/O-intensive tasks on heterogeneous clusters, in: Proceedings of
the 10th International Conference on High Performance Computing
(HiPC 2003), India (2003b).

21. X. Qin, H. Jiang, Y. Zhu, and D. Swanson, A dynamic load balanc-
ing scheme for I/O-intensive applications in distributed systems,
in: Proceedings of the 32nd International Conference on Parallel
Processing Workshops (2003c).

22. X. Qin, H. Jiang, Y. Zhu, and D. Swanson, Towards load balancing
support for I/O-intensive parallel jobs in a cluster of workstations,
in: Proceedings of the 5th IEEE International Conference on Clus-
ter Computing (Cluster 2003), Hong Kong (2003d).

23. K. Ranganathan and I. Foster, Decoupling computation and data
scheduling in distributed data-intensive, in: Proceedings of the 11th
IEEE International Symposium on High Performance Distributed
Computing Edinburgh, Scotland, UK (2002).

24. A. Riska and E. Smirni, Exact aggregate solutions for M/G/1-type
Markov processes, in: Proceedings of ACM Sigmetircs 2002 Edin-
burgh, Scotland, UK (2002) pp. 86–96.

25. J. Roads et al., A preliminary description of the Western U.S. cli-
matology, in: Proceedings of the Ninth Annual Pacific Climate (PA-
Clim) Workshop (1992).

26. M. Surdeanu, D. Modovan, and S. Harabagiu, Performance analysis
of a distributed question/answering system. IEEE Trans. on Parallel
and Distributed Systems 13(6) (2002) 579–596.

27. T. Tanaka, Configurations of the solar wind flow and magnetic
field around the planets with no magnetic field: Calculation by a
new MHD. Journal of Geophysical Research (1993) pp. 17251–
17262.

28. M. Uysal, A. Acharya, and J. Saltz, Requirements of I/O systems
for parallel machines: An Application-driven study, in: Technical
Report, CS-TR-3802, University of Maryland, College Park (1997).

29. G. Voelker, Managing server load in global memory systems, in:
Proceedings of the ACM SIGMETRICS Conf. on Measuring and
Modeling of Computer Systems (1997).

30. S. Wu and U. Manber, Agrep—A fast approximate pattern-
matching tool, in: the USENIX Conference Proceedings San Fran-
cisco, CA (1992) pp. 153–162.

31. X. Wu, V. Taylor, and R. Stevens, Design and implementation of
prophesy automatic instrumentation and data entry system, in: Proc.
of the 13th IASTED Int. Conf. on Parallel and Distributed Comput-
ing and Systems CA (2001).

32. L. Xiao, S. Chen, and X. Zhang, Dynamic cluster resource alloca-
tions for jobs with known and unknown memory demands. IEEE
Trans. on Parallel and Distributed Systems 13(3) (2002) 223–240.

33. L. Xiao, X. Zhang, and Y. Qu, Effective load sharing on heteroge-
neous networks of workstations, in: Proc. of International Sympo-
sium on Parallel and Distributed Processing (2000).

34. X. Zhang, Y. Qu, and L. Xiao, Improving distributed workload
performance by sharing both cpu and memory resources, in: Pro-
ceedings of the 20th Int’l Conf. on Distributed Computing Systems
(2000).

35. Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson, Improved read
performance in a cost-effective, fault-tolerant parallel virtual file
system (CEFT-PVFS), in: Proc. of the 3rd IEEE/ACM Intl. Symp.
on Cluster Computing and the Grid (2003a) pp. 730–735.

36. Y. Zhu, H. Jiang, X. Qin, and D. Swanson, A case study of parallel
I/O for biological sequence analysis on linux clusters, in: Proceed-
ings of the 5th IEEE International Conference on Cluster Comput-
ing, Hong Kong (2003b).

Springer



Cluster Comput (2006) 9:297–311 311

Xiao Qin received the BSc and MSc degrees in computer science from
Huazhong University of Science and Technology in 1992 and 1999,
respectively. He received the PhD degree in computer science from the
University of Nebraska-Lincoln in 2004. Currently, he is an assistant
professor in the department of computer science at the New Mexico In-
stitute of Mining and Technology. His research interests include parallel
and distributed systems, storage systems, real-time computing, perfor-
mance evaluation, and fault-tolerance. He served on program commit-
tees of international conferences like CLUSTER, ICPP, and IPCCC.
During 2000–2001, he was on the editorial board of The IEEE Dis-
tributed System Online. He is a member of the IEEE.

Hong Jiang received the B.Sc. degree in Computer Engineering in
1982 from Huazhong University of Science and Technology, Wuhan,
China; the M.A.Sc. degree in Computer Engineering in 1987 from the
University of Toronto, Toronto, Canada; and the PhD degree in Com-
puter Science in 1991 from the Texas A&M University, College Sta-
tion, Texas, USA. Since August 1991 he has been at the University
of Nebraska-Lincoln, Lincoln, Nebraska, USA, where he is Associate
Professor and Vice Chair in the Department of Computer Science and
Engineering. His present research interests are computer architecture,
parallel/distributed computing, computer storage systems and parallel
I/O, performance evaluation, middleware, networking, and computa-
tional engineering. He has over 70 publications in major journals and
international Conferences in these areas and his research has been sup-
ported by NSF, DOD and the State of Nebraska. Dr. Jiang is a Member
of ACM, the IEEE Computer Society, and the ACM SIGARCH and
ACM SIGCOMM.

Yifeng Zhu received the B.E. degree in Electrical Engineering from
Huazhong University of Science and Technology in 1998 and the M.S.
degree in computer science from University of Nebraska Lincoln (UNL)
in 2002. Currently he is working towards his Ph.D. degree in the depart-
ment of computer science and engineering at UNL. His main fields of
research interests are parallel I/O, networked storage, parallel schedul-
ing, and cluster computing. He is a student member of IEEE.

David Swanson received a Ph.D. in physical (computational) chem-
istry at the University of Nebraska-Lincoln (UNL) in 1995, af-
ter which he worked as an NSF-NATO postdoctoral fellow at
the Technical University of Wroclaw, Poland, in 1996, and sub-
sequently as a National Research Council Research Associate at
the Naval Research Laboratory in Washington, DC, from 1997–
1998. In early 1999 he returned to UNL where he has coordi-
nated the Research Computing Facility and currently serves as an
Assistant Research Professor in the Department of Computer Sci-
ence and Engineering. The Office of Naval Research, the National
Science Foundation, and the State of Nebraska have supported his re-
search in areas such as large-scale parallel simulation and distributed
systems.

Springer


