
J. Parallel Distrib. Comput. 66 (2006) 291–306
www.elsevier.com/locate/jpdc

CEFT:A cost-effective, fault-tolerant parallel virtual file system

Yifeng Zhua,∗, Hong Jiangb

aDepartment of Electrical and Computer Engineering, University of Maine, Orono, ME 04469-5708, USA
bDepartment of Computer Science and Engineering, University of Nebraska, Lincoln, NE 68588-0115, USA

Received 12 June 2004; received in revised form 30 September 2005; accepted 28 October 2005
Available online 19 December 2005

Abstract

The vulnerability of computer nodes due to component failures is a critical issue for cluster-based file systems. This paper studies the
development and deployment of mirroring in cluster-based parallel virtual file systems to provide fault tolerance and analyzes the tradeoffs
between the performance and the reliability in the mirroring scheme. It presents the design and implementation of CEFT, a scalable RAID-10
style file system based on PVFS, and proposes four novel mirroring protocols depending on whether the mirroring operations are server-driven
or client-driven, whether they are asynchronous or synchronous. The comparisons of their write performances, measured in a real cluster, and
their reliability and availability, obtained through analytical modeling, show that these protocols strike different tradeoffs between the reliability
and performance. Protocols with higher peak write performance are less reliable than those with lower peak write performance, and vice versa.
A hybrid protocol is proposed to optimize this tradeoff.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Cluster computing; Parallel I/O; Reliability analysis; Markov process; CEFT; PVFS; Linux clusters

1. Introduction

Rapid advances in general-purpose communication networks
have motivated the deployment of inexpensive commodity com-
ponents to build competitive cluster-based storage solutions to
meet the increasing demand of scalable computing. In the re-
cent years, the bandwidth of these networks has been increased
by two orders of magnitude [6,18,29], which has greatly nar-
rowed the performance gap between them and the dedicated
networks used in commercial storage systems, such as the fiber
channels. The significant improvement in network bandwidth
offers an appealing opportunity to provide cost-effective high-
performance storage services by aggregating the capacity and
bandwidth of all commodity disks that already exist as an in-
tegral part of each node in a typical cluster.

Parallel storage systems in a cluster aim to alleviate the I/O
bottleneck for data-intensive scientific applications by provid-
ing efficient parallel access to the storage devices distributed
across the entire cluster. One major concern in designing such

∗ Corresponding author.
E-mail addresses: zhu@eece.maine.edu (Y. Zhu), jiang@cse.unl.edu

(H. Jiang).

0743-7315/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.10.008

systems is the fault-tolerance (or lack thereof). Assume that the
Mean Time To Failure (MTTF) of a disk is three years and
all the other hardware and software components of a cluster,
such as network, memory, processors and operating systems,
are fault-free, the MTTF in such a cluster-based storage system
with 128 server nodes will be reduced to around nine days if
the failures of storage nodes are independent of one another (3
years–128 ≈ 9 days). Needless to say, the MTTF will be fur-
ther significantly reduced when the failures of the other compo-
nents are considered. Similar to disk arrays [43], without fault
tolerance, these storage systems built upon clusters are too un-
reliable to be useful.

To accommodate the fact that clusters tend to be error-prone
since the reliability of a cluster is inversely proportional to the
number of nodes that it has, this paper studies the incorporation
of mirroring protocols into parallel storage systems in a clus-
ter to improve the reliability and availability of cluster-based
storage systems. More specifically, we present our design,
implementation and performance evaluation of a RAID-10
style, cost-effective and fault-tolerant (CEFT) parallel virtual
file system [63] in a cluster-environment. We have chosen
PVFS [11] as a platform for our research that allows us to test
our proposed protocols in a real file system. PVFS is a freely

http://www.elsevier.com/locate/jpdc
mailto:zhu@eece.maine.edu
mailto:jiang@cse.unl.edu

292 Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306

available parallel file system for Linux clusters that delivers
scalable, high-bandwidth storage services to applications run-
ning in clusters. Although our current implementation is based
on PVFS, our protocol designs can provide system designers
with significant insights into the fault-tolerance design for gen-
eral cluster-based storage systems.

The primary contributions of this work are three-fold. Firstly,
this work proves the feasibility of providing high performance
of storage services in a computational cluster without adding
any additional hardware. Secondly, it develops an analytical
model, based on Markov process, to evaluate the reliability
of the proposed mirroring protocols, which can also be easily
adopted to analyzing the reliability of mirroring schemes in any
other non-centralized system. This model distinguishes itself
from the conventional Markov models for a centralized RAID-
10 system by capturing an important nature of non-centralized
systems, that of loose coupling. In a cluster environment, the
data duplication from one node to another node has to ex-
perience the queuing delay and network latency, whereas the
duplication from one disk to another disk in a conventional
centralized RAID-10 is almost instantaneous since these disks
are closely coupled directly through fast data buses. Thirdly, it
designs four different mirroring protocols that strike different
tradeoffs between the reliability and performances.

The rest of this paper is organized as follows. In the next
section, we discuss the related work. Then the design and im-
plementation of our CEFT are presented in detail in Section 3.
Section 4 describes four different mirroring protocols and Sec-
tion 5 evaluates the performance of CEFT, with a focus on the
write performance of these protocols under a microbenchmark,
along with a summary discussion of read performance of CEFT
based on a similar microbenchmark and a real application case
study. In Section 6, a Markov-chain model is constructed to ac-
curately analyze the reliability and availability of these proto-
cols. Finally, Section 7 presents our conclusions and describes
possible future work.

2. Related work

The proposed system has roots in a number of distributed
and parallel file systems. The section presents a brief overview
of this related work.

Swift [9], Zebra [25] and xFS [1] employ RAID-4/5 to im-
prove redundancy. Swift conducts file stripping so that large
files benefit from access parallelism. Zebra aggregates client’s
data first and then does striping on log-structured file systems to
enhance small write performance. xFS removes the centralized
file manager in Zebra and dynamically distributes the metadata
management among multiple server nodes for the sake of per-
formance and scalability. In these designs, the parity is calcu-
lated by client nodes. In I/O-intensive applications, the calcu-
lation of parity potentially wastes important computational re-
sources on the client nodes, which are also computation nodes
in a cluster environment. In addition, both systems can toler-
ate the failure of any single node. The failure of a second node
causes them to cease functioning.

PIOUS [36] employs a technique of data declustering to ex-
ploit the combined file I/O and buffer cache capacities of net-
worked computing resources. It provides minor fault tolerance
with a transaction-based approach so that writes can be guar-
anteed to either completely succeed or completely fail.

Petal [33], a block level distributed storage system, provides
fault tolerance by using chained declustering [27]. Chained
declustering is a mechanism that reduces the reliability of
RAID-1 to trade for balancing the workload on the remaining
working nodes after the failure of one storage node [19]. In
Petal, the failure of either neighboring node of a failed node
will result in data loss, while only the failure of its mirrored
node can make the data unavailable in RAID-1. In addition,
Petal does not provide a file level interface and the maximum
bandwidth achieved is 43.1 MB/s with 4 servers and 42 SCSI
disks, which does not fully utilize the disk bandwidth.

RAIDx [28], a block level storage system designed for clus-
ters, proposes a novel scheme called orthogonal striping and
mirroring that degrades the reliability of RAID-10 to improve
the write performance. In this scheme, the data blocks of one
stripe and their redundancy blocks in the form of mirroring are
placed orthogonally such that the former take residence on dif-
ferent disks while the latter are stored sequentially in a single
disk. While RAIDx can tolerate only one disk failure, it signifi-
cantly improves the write performance by reducing the number
of write operations and exploiting the sequentiality exhibited in
the redundant blocks. One major concern is that the fault tol-
erance provided in RAIDx is relatively weak for a cluster with
hundreds of disks.

GPFS [52] is IBM’s parallel shared-disk file system for clus-
ters. The stripping among many disks that are connected over
a switching fabric, a dedicated storage network, to the cluster
nodes achieves high I/O performance. It utilizes dual-attached
RAID controllers and file level duplication to tolerate disk fail-
ures. While CEFT requires no additional hardware in a clus-
ter, GPFS typically needs dedicated switching fabric and RAID
controllers.

Google file system (GFS) [20] is a scalable distributed file
system that supports the heavy workload at the Google website
and runs on a cluster with inexpensive commodity hardware. In
GFS, a single master node is used to maintain the metadata and
the traffic of high volume of actual file contents are diverted to
bypass the master to achieve high performance and scalability.
GFS takes an aggressive approach to provide fault tolerance, in
which three copies of data are stored by default. GFS is tailored
to meet the particular demands for Google’s data processing
and is not a general-purpose file system.

PVFS [11,31] is an open source RAID-0 style parallel file
system for clusters. It partitions a file into stripe units and dis-
tributes these stripes to disks in a round robin fashion. PVFS
consists of one metadata server and several data servers. All
data traffic of file content flows between clients and data server
nodes in parallel without going through the metadata server.
The fatal disadvantage of PVFS is that it does not provide any
fault-tolerance in its current form. The failure of any single
server node will render the whole file system dysfunctional.
Ref. [44] proposes a hybrid fault tolerance scheme based on

Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306 293

PVFS, which chooses to use RAID-5 style redundancy for large
writes and RAID-1 style redundancy for small writes. Main-
taining an optimal threshold to distinguish large writes from
small writes for a diversity of workloads is a challenging issue
that remains to be addressed.

The proposed CEFT parallel virtual file system is a RAID-
10 style parallel file system, which first stripes the data across a
group of storage nodes and then mirrors these data onto another
group. In Ref. [63], we introduce four different mirroring pro-
tocols that strike different tradeoff between performance and
reliability. In Ref. [64], we optimize the performance of write
operations by exploiting the disparity of resource utilization
between each mirroring pair. In Ref. [65], we utilize the redun-
dancy in CEFT to improve the read performance by 100% by
doubling the degree of the parallelism: reading the first half of
a file from one storage group and the second half from the other
group in parallel. In Ref. [68], we run a real data-intensive sci-
entific application on CEFT and further prove that the read and
write performance optimization techniques described above are
highly efficient.

3. Implementation overview

3.1. The choice of fault tolerance designs

There are several approaches to providing fault tolerance
in parallel file systems. One simple way is to strip data on
multiple RAIDs that are attached to different cluster nodes.
However, this approach provides moderate reliability since it
cannot tolerate the crash of any cluster nodes.

Another possible approach to providing fault tolerance is to
use parity-based redundancy. RAID 5 is a typical example that
can tolerate one-node failures and some other parity schemes,
such as EVENODD [5], RM2 [41] and RDP [15], can be de-
ployed to tolerate two-node failures. However, these parity-
based redundancies cannot satisfy the reliability requirement in
a large cluster. In these schemes, a second or third node fail-
ure results in the temporary or permanent inaccessibility of all
the data and the probability of such failures are not negligi-
ble in a cluster with hundreds or even thousands of nodes. In
addition, small writes cause their performance to degrade. For
example, a small RAID-5 write involves four I/Os, two to pre-
read the old data and old parity and two to write the new data
and old parity [12]. In a loosely coupled system, such as clus-
ters, the four I/Os can cause significant delays. Finally, in a dis-
tributed system, the parity calculation should not be performed
by any single node to avoid severe performance bottleneck; in-
stead, it should be performed distributively. However, this dis-
tributed nature complicates the concurrency control since mul-
tiple nodes may need to read or update the shared parity blocks
simultaneously.

Still another possible approach is to use erasure coding, such
as Rabin’s Information Dispersal Algorithm (IDA) [48,3] and
Reed Soloman Coding [34,45], to disperse a file into a set of
pieces such that any sufficient subset allows reconstruction.
Consequently, this approach is usually more space-efficient and
reliable than RAID-5 and mirroring. While the erasure coding

has been extensively used in P2P systems [49], it may not be
suitable for GB/s scale cluster file systems since the dispersal
and reconstruction require matrix multiplications and multiple
disk accesses and generate a potentially significant computa-
tional and I/O overhead.

Hybrid algorithms are also an appealing approach. For ex-
ample, AutoRAID [62] is a hybrid algorithm implemented in a
single RAID controller that combine RAID 1 and RAID 5 into
a two-level storage hierarchy, in which the upper level mirror-
ing is employed for active data to achieve better performance
and the lower level RAID-5 parity is used for inactive data and
read-only data to lower storage cost. Data are adaptively mi-
grated between these two layers in the background to balance
the workload. CSAR [44] also combines RAID 0 and RAID 5
in a cluster-based storage, but it uses RAID 1 for small writes
and RAID 5 for large writes. While these hybrid algorithms
can potentially inherit the advantages of different fault toler-
ance schemes, a major challenge for storage designers is how
to optimize the performance for a diversity set of the appli-
cation workload. This challenge becomes more significant in
a scientific computational environment since there is no clear
consensus in characterizing the I/O requirements and workload
patterns of scalable scientific applications [55,60].

In CEFT, we choose to use a simple yet effective scheme
that mirrors striped data among different nodes to improve the
reliability while maintaining a high aggregated throughput. As
the storage capacity doubles every year [26], the storage cost
decreases rapidly. By August 2003, the average price of com-
modity IDE disks has dropped below 0.5 US$/GB. Therefore,
it makes perfect sense to “trade” 50% storage space for per-
formance and reliability. Compared with the parity and erasure
coding style parallel systems, our approach adds the smallest
operational overhead and its recovery process and concurrency
control are much simpler. Compared with the hybrid ones, our
approach has significantly less complexity and does not suf-
fer the performance degradation for a diversity set of scientific
computation workload. Another benefit from mirroring, which
the other redundancy approaches cannot achieve, is that the
aggregate read performance can be doubled by doubling the
degree of parallelism, that is, reading data from two mirroring
groups simultaneously [65].

3.2. Design of CEFT

CEFT is a RAID-10 style parallel file system that mirrors the
striped data between two groups of server nodes, one primary
group and one backup group, as shown in Fig. 1. There is one
metadata server in each group. To simplify the synchronization
process, clients’ requests go to the primary metadata server first.
If the primary metadata server fails, all metadata requests will
be redirected to the backup one. All following requests will
directly go to the backup metadata server until the primary one
is recovered and rejoins the system. For write requests, the data
will first be written to the primary group and then duplicated
to the backup group. Four duplication (or mirroring) protocols
are designed and will be discussed in Section 4.

294 Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306

Myrinet Switch

...Client
node

Primary group

...

Data
Server 1D 1

Data
Server 2D 2

Data
Server ND N

Backup group

...

Data
Server 1' D 1'

Data
Server 2' D 2'

Data
Server N' D N'

Metadata
ServerMeta

Client
node

Client
node

Metadata
Server' Meta'

Fig. 1. Basic diagram of CEFT.

Fig. 2. Sample metadata in CEFT.

3.3. Metadata management

CEFT maintains two metadata structures, system metadata
and file metadata. The system metadata indicates the dead or
live status of the data servers. When one data server is down, all
I/O accesses will be redirected to its mirror server. Currently, a
data server is simply thought to be down if the metadata server
does not receive the periodic “heartbeat” message from this
data server within a certain amount of time. The file metadata
describes the striping information, the data mirroring status, and
other conventional file information, such as ownership, access
mode, and last access time, etc. Like UNIX file systems, the
access authorization is implemented by checking the ownership
and access mode. Fig. 2 shows a metadata example in CEFT
with eight data servers in either storage group.

The striping information is described by the stripe width, the
stride block size and the data location. The location, an array of
size stripe_width, records the data server indices on which the
data are striped. In this example, the file is striped across three

data servers, i.e., Nodes 1, 2 and 7, with a striping block size of
64 KB. While the strip_width is given by clients, the values of
location are assigned by the metadata server to approximately
balance the disk space utilization on each data server.

The dstatus, an array of size stripe_width, describes the mir-
roring status between two groups of mirroring servers that a
file is striped on. More precisely, it is defined according to the
status of data blocks, shown as follows:

dstatus(i) =

⎧⎪⎪⎨
⎪⎪⎩

1 if on location(i) of primary group,
2 if on location(i) of backup group,
3 if on location(i) of both groups,
0 if not on location(i) of both groups,

where 1� i�stripe_width.

3.4. Metadata backup and the naming mechanism

Metadata server holds the most critical information about
striping and authorization. The failure of the metadata server
will crash the whole storage system. Therefore, the metadata
server needs to be backed up to improve reliability. However,
the original PVFS cannot achieve the backup of the metadata
server due to the limitation of its naming mechanism for the
striped files. In PVFS, the striped data in a data server are sieved
together and stored as a file. In addition, the file name is chosen
to be the inode number of the metadata file to guarantee the
uniqueness of the file name in the data servers. One significant
disadvantage of the naming mechanism based on inode numbers
is that the system may mistakenly backup the meta server since
the data of a new file will be falsely written into an existing
file when the primary metadata server is down and the backup
metadata server assigns the new file an inode number that has
been used by the primary metadata server.

In the design of CEFT, we have changed the naming mech-
anism and instead used the MD5 sum [58] of the requested
file name as the data file name. In this way, the metadata can
be directly duplicated to any backup storage device to provide
redundancy. An analysis similar to Ref. [47] can prove that in
practice the problem of MD5 hash collisions does not arise in
our naming mechanism.

The calculation of MD5 will not introduce significant over-
head in CEFT. First, we only need to calculate the MD5 of file
names, which are typically 5–20 bytes. While we measured that
the MD5 program can calculate with a speed of 200 MB/s on
a single node, the calculation of a file name usually takes only
25–100 ns. Second, the MD5 calculation is not the bottleneck
since it is performed distributively by client nodes. Each client
node calculates the MD5 of its destination file name and sends
the result along with its I/O requests to the metadata server so
that the metadata server can directly extract it from the requests.

3.5. Data consistency

The I/O traces of scientific applications show a frequent
pattern in which multiple clients concurrently access the
same files [30]. In CEFT, we employ a centralized byte-range

Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306 295

Fig. 3. The procedure of data recovery invoked when a failed server is rebooted after it has been successfully repaired.

lease-based mechanism to allow simultaneous accesses to dif-
ferent portions of a single file while maintaining the multiple-
reader single-writer semantics to each requested data portion.
A lease is essentially a timed lock that gives its holder speci-
fied rights over the property for a limited period of time [23].
Leases are not based on file blocks, instead, they are based
on the logical starting and ending addresses in bytes within
destination files, thus allowing a more flexible and fine grained
consistency control. When the metadata server receives a write
request, it looks at the desired portion (addressed in bytes)
of the targeted file and checks whether all the bytes in the
desired range have not been locked by other clients. If no,
the metadata server will issue an exclusive write-lease to the
client to permit the write access. Multiple read-leases can be
issued to different read-only requests as long as no conflicting
write-lease exists. The lease mechanism can reduce the over-
head of consistency maintenance. After the clients are granted
the access, they continue to hold this access grant for a short
period of time in a hope to save the negotiation with the meta-
data server for the immediate accesses of the same data. This
access grant is revoked by the metadata server before the short
period expires if other clients are waiting. The centralized
management of locking certainly limits the parallelism of I/O
operations. However, as discussed in Section 5, the metadata
server is not likely the bottleneck under our measurements, a
similar observation was found in the GFS [20].

3.6. Data recovery

After the reboot of a failed server, all the data on this server
should be recovered. The recovery process in CEFT is simple
and fast since all the data can be directly read from its mirrored
server without doing any calculations. However, write requests
may arrive at the functional servers within the period of recov-
ery and the interleaving of these write operations and the dupli-
cation operations can potentially render the data on the server

being recovered inconsistent. A simple remedy is to lock the
corresponding functional servers and prohibit write operations
until the duplication has finished. Clearly, this will make the
I/O services unavailable for writes during the recovery process
while the data on the servers are still accessible for reads.

To allow uninterrupted services, an on-line snapshot tech-
nique, called “copy-on-write (COW)” [13], is deployed in
CEFT, as shown in Fig. 3. When a server is repaired and re-
joins the system, the recovery process is automatically invoked.
First, data are replicated from the mirrored functional server
(Step 1). When a write request arrives on the functional server
to modify existing data during the recovery period, a shadow
copy of the target data blocks is created and updates are then
performed on the shadow copy (Step 2). When a write request
creates new data blocks, the new data are also saved into the
shadow region, leaving the old content intact. For every I/O
write request that arrives during the recovery period, the name
of the destination file and the touched byte region within that
file are recorded into a list, called the modified list, in the order
of the requests’ arrivals. After the old data have been cloned,
the new data, pointed to by the data structure in the modified
list, will be replicated to the newly repaired server in a sequen-
tial order, to eliminate the possible inconsistency that resulted
during the recovery process (Step 3). As soon as no files are
left in the waiting list, the recovery process can begin to write
back the modified or new data from the shadow region into
the old image (Step 4). On the functional server, the recovery
process assumes a higher priority than the I/O service process
to guarantee that the recovery will eventually finish. After the
recovery finishes successfully, the COW functions are turned
off and the waiting list is reset.

The modified list is saved into disk devices to reduce the
possibility of incoherence caused by the failure of the functional
server during the recovery processes. However, since typically
there is no non-volatile RAM in off-the-shelf cluster nodes,
some items in a modified list may be lost from the cache in
the events of unpredictable system crashes. One of our future

296 Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306

Backup
Group

Primary
Group

Client node

43 3 44 4 3 321

5 6

D 1'

D 1

65

D 2'

D 2

5 65

D 3'

D 3

65

D 4'

D 4

3' 4'

Meta

Meta'

ACK

REQ

Fig. 4. The steps of duplication process for Protocol 1.

research directions is to design and implement an efficient tool
to check the integrity of the file data and produce a coherent
file system state.

4. Duplication protocols

Once a naming mechanism, metadata management, data con-
sistency control and data recovery are in place to facilitate fault
tolerance, several different protocol possibilities for data dupli-
cation (mirroring) exist for detailed implementation. We have
investigated four distinct protocols, which are detailed in this
section.

4.1. Protocol 1: asynchronous server duplication

Fig. 4 shows the steps of the duplication process. First, the
client fetches the striping information from the metadata server
(Steps 1 and 2). Then it writes the data to the primary servers
simultaneously (Step 3). Once the primary server receives the
data, it immediately sends back an acknowledgment to inform
the client of the completion of the I/O process (Step 4). The
duplication operation will be performed by the primary servers
in the background (Steps 5 and 6). After a backup server re-
ceives and stores the data from its primary server, it will send
a request to both metadata servers to change the corresponding
flag in the dstatus array to indicate the completion of the du-
plication operation. This duplication process can be considered
as asynchronous I/O. A potential problem with this protocol is
that the new data will be lost if the primary node fails during
the duplication operation.

4.2. Protocol 2: synchronous server duplication

Protocol 2 is shown in Fig. 5. As in Protocol 1, the duplica-
tion operation is performed by the primary servers. The differ-
ence is that the primary servers postpone the acknowledgment
to the client until their corresponding backup servers signal the
completion of duplication. In addition, the duplication process
is pipelined on each data server to speed up the write perfor-
mance, a technique similar to the one used in the GFSs [20].
More specifically, as soon as a block of striped data from any
client arrives at the memory of the primary server, these data
will be immediately duplicated to the backup server without

Backup
Group

Primary
Group

Client node

63 3 66 6 3 321

4 5

D 1'

D 1

55

D 2'

D 2

4 54

D 3'

D 3

54

D 4'

D 4

3' 4'

Meta

Meta'

ACK

REQ

Fig. 5. The steps of duplication process for Protocol 2.

Backup
Group

Primary
Group

Client node

3 4 4
4

3
33

1
4

2

3 4
4

4
3

33
1

4
2

ACK

REQ

Meta D 1 D 2 D 4 D 3

D 4'D 2'D 1' D 3'Meta'

Fig. 6. The steps of duplication process for Protocols 3 and 4.

waiting for the whole data from that client to reduce disk ac-
cesses. This protocol can always guarantee that the data are du-
plicated to both servers before the client finishes writing. How-
ever, this guarantee, and thus an enhanced reliability, comes at
the expense of write performance, as analyzed and discussed
later in the paper.

4.3. Protocol 3: asynchronous client duplication

In this protocol, the duplication task is assigned to the client,
as shown in Fig. 6. After fetching, the client can write to the
primary and backup servers simultaneously. The duplication
process is regarded as successful after receiving at least one
acknowledgment among each pair of mirrored servers. Obvi-
ously, there is a potential problem if the slower server in the
pair fails before acknowledgment. This problem is similar, but
not identical to that in Protocol 1.

4.4. Protocol 4: synchronous client duplication

Protocol 4 is similar to Protocol 3, but it will wait for the
acknowledgments from both the primary and the backup servers
in each mirrored pair. This protocol can always guarantee that
the new data will be stored in both servers of the pair before
the completion of I/O access. Similar to the trade-off between
Protocols 1 and 2, there is an obvious performance-reliability
trade-off between Protocols 3 and 4.

Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306 297

4.5. Cache effect

In these protocols, the file system caches on the servers are
fully utilized to improve the overall I/O performance. Thus
there is a possibility, however small, that data can be lost when
the disk or the server node crashes before the cache data are
written onto the disks. Nevertheless, if a “hard” reliable storage
system is required, we can potentially use techniques such as
forced disk writes in these four duplication protocols. While the
four protocols with forced disk writes improve the reliability,
the penalty on the I/O performance is too heavy to make the
forced disk writes appealing. In addition, even if the forced disk
writes are used, these four duplication protocols still present
different performance and reliability.

5. Experimental results in CEFT

5.1. Experimental environments

The performance results presented here are measured on the
PrairieFire cluster [46] where CEFT has been implemented and
installed, at the University of Nebraska—Lincoln. At the time of
our experiment, the cluster had 128 computational nodes, each
with two AMD Athlon MP 1600 processors, 1 GB of RAM, a
Myrinet card and a 20 GB IDE(ATA100) hard drive. Under the
same network and system environment as CEFT, the ttcp [57]
benchmark reports a TCP bandwidth of 112 MB/s using a 1KB
buffer with 46% CPU utilization. The disk write bandwidth is
32 MB/s when writing 2 GB of data, according to the Bonnie [7]
benchmark.

5.2. Benchmark

A simple benchmark, similar to the one used in Refs.
[11,36,56,16], was used to measure the overall concurrent
write performance of this parallel file system. Fig. 7 gives a
simplified MPI program of this benchmark. The overall and
raw write throughput are calculated. The overall write through-
put includes the overhead of contacting the metadata server
while the raw write throughput does not include the open and
close time and measures the aggregate throughput of the data
servers exclusively. In both measurements, the completion time
of the slowest client is considered as the overall completion
time. While this benchmark may not reveal complete workload
patterns of real applications, it allows a detailed and fair com-
parison of the performance of PVFS and the four duplication
protocols.

The aggregate write performance is measured under three
server configurations, 8 data servers mirroring 8, 16 data servers
mirroring 16, and 32 data servers mirroring 32, respectively.
With the metadata servers included, the total numbers of servers
in the three configurations become 18, 34 and 66. In the three
sets of tests, each client node writes a total amount of 16 MB
to the servers, i.e., it writes 2, 1 and 0.5 MB to each server
node, respectively, which are the approximate amounts of data
written by a node during the checkpointing process of a real
astrophysics code [51]. During the measurements, there were

Fig. 7. Pseudocode of the benchmark.

other computation applications running on our cluster, which
shared the node resources, such as network, memory, processors
and I/O devices, with the CEFT, and thus the aggregate write
performance was probably degraded. In order to reduce the
influence of these applications on the performance of these
protocols, many measurements were repeated at different times
and the average value is calculated after discarding the five
highest and five smallest measurements.

5.3. The metadata server overhead

The overall and raw write throughput is measured in CEFT
with a configuration of eight data servers mirroring eight un-
der two access patterns: all clients concurrently write different
files and all clients concurrently write different portions of the
same file. Fig. 8 plots the overall and raw write performance
of Protocol 2 as a function of the number of client nodes, in
which all clients write data into the same file and different files,
respectively.

As the experiment indicates, the aggregate write performance
increases with the number of client nodes and reaches its max-
imum values when the cache at the data server side achieves
best utilization. When the client number continues to increase,
the aggregate write performance will decrease since on the data
server side the context-switching overhead among different I/O
requests increases while the benefit of cache decreases. The
aggregate throughput will eventually saturate the disk through-
put.

An important observation from these figures is that the per-
formance gap between overall and raw write throughput does
not increase significantly with the total number of clients.
This implies that the metadata server is most likely not the
performance bottleneck even when that client number is 100,
close to the total available client number of 128 in our cluster.

298 Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Number of Client Nodes

A
gg

re
ga

te
 W

rit
e

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

1: raw write throughput
2: overall write throughput

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Number of Client Nodes

A
gg

re
ga

te
 W

rit
e

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

1: raw write throughput
2: overall write throughput

Fig. 8. Aggregate write performance when all clients write to the same file and different files, respectively, using Synchronous Server Duplication with
8-mirroring-8 data servers (20 measurements, discarding 5 highest and 5 smallest).

Experimental results of the other three protocols also show
the same pattern of performance gap between the overall and
raw throughputs. This further validates the claim made in
[31,11] that the metadata server only introduces insignificant
performance degradation and is not the performance bottle-
neck in a moderate-size cluster. Similar observation is made
in GFS that also employs the design of a single metadata
server (called master) to provide terabyte-scale storage. GFS
runs across thousands of disks on over a thousand machines
and it is concurrently accessed by hundreds of clients. Their
experiments show that the metadata server is not the perfor-
mance bottleneck under the heavy web searching workload in
Google.

5.4. Write performances of the four duplication protocols

The overall write performance of the four duplication pro-
tocols and PVFS are measured in the three server configura-
tions using the benchmark and workload described previously.
Figs. 9–11 show their average performances over 70 measure-
ments, in which the 5 highest and 5 lowest are discarded. When
there is only one client node, Protocols 1–3 perform almost
identically, where the bottleneck is likely to be the TCP/IP stack
on the client node. In contrast, Protocol 4 performs the worst
since it is at a double-disadvantage: first, the client node that
is already the bottleneck must perform twice as many writes;
second, it has to wait for the slowest server node to complete
the write process.

In Protocol 2, the write process from the clients to the primary
group and the duplication process from the primary group to
the backup group are pipelined and thus the performance is
only slightly inferior to that of Protocol 1 when the primary
server is lightly loaded (e.g., with fewer than five clients). As
the workload on the primary server increases, the performance
of Protocol 2 lags further behind that of Protocol 1.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

900

1000

Number of Client Nodes

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

1: Asyn Server Dup
2: Syn Server Dup
3: Asyn Client Dup
4: Syn Client Dup
5: PVFS (8 data servers)
6: PVFS (16 data servers)

Fig. 9. Write performance when 8 I/O data servers mirror another 8 I/O data
servers (70 measurements, discarding 5 highest and 5 smallest).

When the number of client nodes is smaller than the number
of server nodes, Protocols 1 and 2 outperform Protocols 3 and
4, since more nodes are involved in the duplication process in
the first two protocols than in the last two. On the other hand,
when the number of client nodes approaches and surpasses the
number of server nodes in one group, the situation reverses
itself so that Protocols 3 and 4 become superior to Protocols 1
and 2. To achieve a high write bandwidth, we have designed a
hybrid protocol, in which Protocol 1 or 2 is preferred when the
client node number is smaller than the number of server nodes
in one group, and otherwise Protocol 3 or 4 is used. When
the reliability is considered, this hybrid protocol can be further
modified to optimize the balance between reliability and write
bandwidth. This will be explained in detail later in this paper.

Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306 299

0 5 10 15 20 25 30 35 40 45 50
0

150

300

450

600

750

900

1050

1200

1350

1500

Number of Client Nodes

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

1: Asyn Server Dup
2: Syn Server Dup
3: Asyn Client Dup
4: Syn Client Dup
5: PVFS (16 data servers)
6: PVFS (32 data servers)

Fig. 10. Write performance when 16 I/O data servers mirror another 16 I/O
data servers (70 measurements, discarding 5 highest and 5 smallest).

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

Number of Client Nodes

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

1: Asyn Server Dup
2: Syn Server Dup
3: Asyn Client Dup
4: Syn Client Dup
5: PVFS (32 data servers)

Fig. 11. Write performance when 32 I/O data servers mirror another 32 I/O
data servers (70 measurements, discarding 5 highest and 5 smallest).

Table 1 summarizes the average peak aggregate write per-
formance of the four protocols in the saturation region, along
with their performance relative ratio to the PVFS with half the
number of data servers and the same number of data servers,
respectively. The aggregate write performance of Protocol 1 is
nearly 30%, 28% and 25% better than that of Protocol 2 un-
der the three server configurations, respectively, with an aver-
age improvement of 27.7%. The performance of Protocol 3 is
nearly 14%, 7% and 23% better than that of Protocol 4, under
the three configurations, respectively, with an average improve-
ment of 14.7%. While the workload on the primary and backup
groups are well balanced in Protocols 3 and 4 due to the du-
plication symmetry initiated by the client nodes, in Protocols
1 and 2 the primary group bears twice the amount of workload
as the backup group because of the asymmetry in the duplica-
tion process. As a result, the peak performance of Protocol 3

is better than that of Protocol 1, while Protocol 4 outperforms
Protocol 2 consistently.

In addition, experiment results show that the peak perfor-
mance of Protocol 4 is only around 7% less than PVFS with
half the number of servers. As shown in Fig. 9, when the total
number of clients is less than four, the write bandwidth of Pro-
tocol 4 is around 50% of PVFS due to the doubled network traf-
fic at the client side. When the number of clients increases, the
performance gap between CEFT and PVFS begins to decrease.
This is because the bottleneck gradually shifts from the client
side to the server side. When the bottleneck completely shifts
to the servers, the doubled network traffic on each client does
not have significantly negative impact on the aggregate band-
width. The 7% overhead, we believe, is mainly caused by the
delay in waiting for the acknowledgements from both servers.

Compared with the PVFS with the same number of data
servers, the server driven Protocols 1 and 2 improve the relia-
bility at the expense of 46–58% write bandwidth and the client
driven Protocols 3 and 4 cost around 33% and 41% write band-
width, respectively. Compared with the PVFS with half the
number of data servers, as shown in Table 1, such cost is not
only acceptable in most cases, but it is also at times negligible
or even negative, especially for Protocol 3. In Protocol 3, when
the total number of clients is large enough, the extra work of du-
plication at the client side will not influence the aggregate write
performance since the data servers have already been heavily
loaded and their I/O bandwidth have been saturated. Further-
more, the application running on a client node will consider its
write operations completed as long as the client has received
at least one acknowledgment among each mirroring pair, al-
though some duplication work may still proceed, transparent
to the application. Since the data servers are not dedicated and
their CPU, disks, memory and network load are different, Pro-
tocol 3 chooses the response time of the less heavily loaded
server in each mirroring pair and thus surpasses the PVFS with
half the number of data servers.

5.5. Read performance and real application benchmark

A similar microbenchmark is also used to evaluate the read
performance [65,66]. In addition, we propose to use the tech-
niques of doubling the degree of parallelism and hot-spot skip-
ping to improve the aggregate read performance. The read per-
formance is boosted by scheduling requests on both mirroring
groups in order to double the degree of parallelism. In the case
that a node becomes a hot spot, this node is skipped and all the
data are read from its mirror node. Extensive experiments in
a real cluster environment, where each data server is not ded-
icated but time-shared with compute tasks, indicate that both
techniques are highly effective.

We also conduct a case study for a popular read-I/O intensive
application, namely, parallel BLAST [17], and use this appli-
cation as a benchmark to evaluate the techniques proposed in
CEFT [68,67]. We aim to investigate the performance impact of
the degree of I/O parallelism and the contention of the I/O re-
source on scientific applications. Experiments show that CEFT

300 Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306

Table 1
Average peak write performance and ratio to the performances of PVFS with half nodes

Protocol Number of data servers in one group

8 16 32

MB/s % MB/s % MB/s %

1 (Server asynchronous duplication) 492 87 796 86 1386 94
2 (Server synchronous duplication) 391 68 660 71 1114 75
3 (Client asynchronous duplication) 604 106 974 104 1501 101
4 (Client synchronous duplication) 528 93 905 97 1218 82
5 (PVFS with half # of nodes) 567 100 929 100 1482 100
6 (PVFS with same # of nodes) 929 164 1482 160 — —

can exploit parallel I/O to significantly reduce the running time
of this application, and the read optimization techniques of dou-
bling the degree of parallelism and skipping hot-spot nodes are
highly effective in improving the aggregate throughput.

6. Reliability and availability analysis

In this section, a Markov-chain model is constructed to ana-
lyze the reliability and availability of the four duplication pro-
tocols, and to compare their reliability with that of the PVFS.

Markov models have been used to analyze the reliability of
RAID-1 in Refs. [21,39,2,8,37]. However, none of these models
distinguishes the primary disk failures from the backup disk
failures, i.e., they assume that all the data on a failure disk can
be recovered from its mirror disk. This assumption holds true
in a tightly coupled array of disks, such as RAID, because data
on primary and backup disks are always kept consistent with
the help of hardware. However, this assumption may not be true
in our loosely coupled distributed system, such as clusters, in
which the failure of a primary server and a backup server have
different implications. For example, in Protocol 1, if a primary
server fails before the completion of duplication, the backup
server will lose the data that has not been duplicated. But the
system does not lose any data if only a backup node fails.
Therefore, in our system, the primary and the backup server
nodes are not symmetrical in terms of their failure implications
and the classic RAID model cannot be used. In addition to being
able to reflect the asymmetry, our model should be general
enough so that the reliability of all four protocols can be derived
directly. In the following sections, we take Protocol 1 as an
example to show how the Markov-chain model is developed
and how it can be applied to other protocols by appropriately
changing some relevant definitions.

To simplify the analysis, the following assumptions are made:

(1) In this model, we neglect the data loss caused by the failures
of nodes or disks that happen before the data in the cache
are written onto the disks since the cache size is relatively
small and the local file system on each data server usually
periodically flushes modified (dirty) blocks back to disks. In
most UNIX/Linux file systems, every 30 s, all dirty blocks
that have not been modified in the last 30 s are written back
onto disks [38,35,10]. We understand that this assumption

is somewhat unrealistic and may lead to an overestimate of
the reliability.

(2) Network and node failures are all independent and follow
an exponential distribution. Ref. [22] has studied the expo-
nential, Weibull, and Gamma models of disk lifetime dis-
tributions and concluded that exponential distributions are
sufficient. The failure distribution of a cluster node, which
incorporates both hardware and software failures, can also
be reasonably modeled as exponential distribution [61,54].
This assumption might not be realistic in some situations,
such as power surges, burst of I/O tasks, etc.

(3) Write requests arrive at the primary server from the clients
following the Poisson process, with an exponentially dis-
tributed inter-arrival time whose mean value is referred
to in this paper as the mean-time-to-write (MTTW).
Refs. [40,59,32] provide justifications for the assumption
that the I/O access patterns in scientific applications exhibit
Poisson arrival rates and thus can be modeled as Markov
processes. Ref. [24] shows that, strictly speaking, file sys-
tem traffic is not self-similar in nature and this further
assures us the appropriateness of the Poisson assumption.

(4) Similarly, the duplication time is also assumed as a random
variable, following an exponential distribution, whose value
depends on the data size, network traffic, workload on both
the primary server and the backup server, etc. Its mean
time interval is referred to as the mean-time-to-duplicate
(MTTD) in this paper.

Table 2 presents some basic notations, while others will be
introduced appropriately during the discussion.

6.1. Calculation of Pc

According to the given assumptions, we know that write
requests arrive in the duplication queue with an arrival rate of
�w and leave the queue with a duplication rate of �d. For the
system to be stable, it is implied that �w < �d, otherwise the
length of the duplication queue will grow to infinity, causing
the system to saturate. If the number of requests in the queue is
zero, we say that the data in the primary node are consistent with
the backup node. This duplication queue can be modeled by an
M/M/1 queuing model [53,14]. In the model, the probability
of the consistent state, i.e., the probability of an empty queue,

Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306 301

Table 2
Notation

N Total number of nodes in one group
S Total number of Markovian states
i, j Index of Markovian states, 1� i, j �S

m, n Number of failed nodes, 0�m, n�N

� Failure rate per node
�s Failure rate of the network switch
�w Arrival rate of write requests per server
� Repair rate per node
�d Duplication rate

MTTFnode = 1

�
Mean time to failure per node

MTTFswitch = 1

�s
Mean time to failure per switch

MTTW = 1

�w
Mean time to write

MTTRnode = 1

�
Mean time to repair per node

MTTD = 1

�d
Mean time to duplicate

MTTDL Mean time to data loss
M Markovian fundamental matrix
Q = [qij]S×S Markovian truncated matrix
Pc Probability that a primary node is consistent with its

mirror node
P(mPnB) Probability of the system being still functional when m

primary nodes and n backup nodes have failed
(n

k

) = n!
(n − k)!k! Binomial coefficient

can be calculated as follows:

Pc = 1 − �w

�d
= 1 − MTTD

MTTW
. (1)

Although Pc is derived based on the duplication process of
Protocol 1, this term can also be used in other protocols. In
Protocols 2 and 4, all data have already been duplicated to the
mirror nodes at the time when the client nodes complete the
writing access. Thus MTTD can be thought to be 0. In Protocol
3, at the time the client finishes the writing process, there is still
a chance that a primary node is not consistent with its backup
node. Similarly, it can also be modeled as M/M/1 theoretically
if we redefine MTTD as the difference between the time instants
when data are stored in the faster server and when data are
stored in the slower server node.

6.2. Markov-chain model for reliability evaluation

Fig. 12 shows the Markov state diagram for Protocol 1, which
can also be applied to the other protocols. In this diagram,
i : mPnB signifies that the state number/index is i, and there
are m and n failed nodes in the primary and backup groups,
respectively. All the states shown are working states, with the
exception of DL, which is the data loss state. The total number
of states in the Markov state diagram is denoted by S and is
equal to (N +1)(N +2)/2. The Markov chain begins with State
1 (1 : 0P 0B), followed by State 2 (2 : 1P 0B), and so on.

To facilitate the solution to this model, we derive a function,
given in Eq. (2), that maps from the system state with m failed

1:
0P0B

2:
1P0B

DL

DL

3:
0P1B

DL

4:

DL

5:
1P1B

DL

6:
0P2B

DL

DL

DL

DL

DL

.

.

.

...

...

...

...

S-N:
NP0B

S-N+1:
(N-1)P0B

S-1:
1P(N-1)B

S:
0PNB

2P0B

Fig. 12. Markov state diagram for Protocol 1.

primary nodes and n failed backup nodes to the state index i

of the Markov state diagram:

i = 1
2 (m + n)(m + n + 1) + (n + 1). (2)

Similarly, the inverse mapping function is given in

n = i − 1 − x(x + 1)

2
, (3)

m = x − n, (4)

where x =
⌈√

8i+1−3
2

⌉
.

Fig. 13 shows the transition rate between the neighboring
states. In the diagram, Pij denotes the probability that the sys-
tem remains functional, also referred to as safety probability,
given that one more primary node fails while m primary nodes
and n backup nodes have already failed. Similarly, Pik denotes
the probability, or safety probability, of the system remaining
functional when one more backup node fails while m primary
nodes and n backup nodes have already failed. Pij can be cal-
culated as

Pij = P((m + 1)PnB | mPnB)

= P(((m + 1)PnB) ∩ (mPnB))

P(mPnB)

= P((m + 1)PnB)

P(mPnB)
, (5)

where P is the safety probability when m nodes in the primary
group and n nodes in the backup group fail simultaneously. The
calculation of P is as follows:

P(mPnB) =

⎧⎪⎪⎨
⎪⎪⎩

(
N

m+n

)
2m+n

(2N
m+n

) if m + n�N ,

0 otherwise.

(6)

302 Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306

DL

: (1)j m PnB+

: (1)k mP n B+

:i mPnB

() (1) () (1)c ij ik sN m N nλ λ λ− − + − − +P P P

() ij cN m λ− P P

(1)m µ+

() ikN n λ− P

(1)n µ+

Fig. 13. The transition probability between different states.

Similarly, we have

Pik = P(mP (n + 1)B)

P(mPnB)
. (7)

The transition probability from State i to the data loss state,
denoted as qi,DL, can be calculated as

qi,DL = loss caused by one more primary node failure

+ loss caused by one more backup node failure

+ loss caused by network switch failure

= (N − m)�[(1 − Pij) + Pij (1 − Pc)]
+(N − n)�(1 − Pik) + �s

= (N − m)�(1 − PcPij)

+(N − n)�(1 − Pik) + �s. (8)

The stochastic transitional probability matrix is defined as
Q = [

qij

]
, where 1� i, j �S and qij is the transition probabil-

ity from State i : miPniB to State j : mjPnjB. In summary,
qij can be calculated as follows:

If i < j , then

qij =
⎧⎨
⎩

(N − mi)�Pij Pc if mj = mi + 1 and nj = ni ,
(N − mi)�Pij if mj = mi and nj = ni + 1,
0 otherwise.

(9)

If i > j , then

qij =
⎧⎨
⎩

mj� if mj = mi + 1 and nj = ni ,
nj� if mj = mi and nj = ni + 1,
0 otherwise.

(10)

If i = j , then

qii = 1 −
j �S∑

i=1,j �=i

qij − qi,DL. (11)

If Pc = 1, i.e., the primary node and backup node are always
kept consistent, like in RAID-1, and a fault-free network is
assumed, the model shown in Fig. 12 can be simplified to the
classic RAID-1 model [2], as shown in Fig. 14. This is proven

0 disk
down

1 disk

DL

...
down

N-1disk
down

N disk
down

Fig. 14. Classic Markov state diagram of RAID-1.

by the fact that numerical results generated by both models
with the same set of input parameters are identical.

6.3. Calculation of MTTDL

MTTDL can be obtained from the fundamental matrix M,
which is defined by [4].

M = [mij] = [I − Q]−1, (12)

where mij represents the average amount of time in State j

before entering the data loss state, when the Markov chain starts
from State i.

The total amount of time expected before being absorbed into
the data loss state is equal to the total amount of time it expects
to make to all the non-absorbing states. Since the system starts
from State 1, where there are no node failures, MTTDL is the
sum of the average time spent on all states j (1�j �S), i.e.,

MTTDL =
S∑

j=1

m1j . (13)

When MTTD = 0 and MTTFswitch = ∞, our model be-
comes the classic model for RAID-1. If MTTD = ∞ and
MTTFswitch = ∞, it then becomes the classic model for RAID-
0. When using the same MTTF and MTTR to calculate the
MTTDL of RAID-0 and RAID-1 as Ref. [2], our model shows
identical results to those given in the above references.

To further validate our model, Fig. 15 shows the relationship
between MTTDL and MTTD under different workload condi-
tions in an CEFT where there are eight data server nodes in
either group. The MTTDL in this figure is calculated based on
our model built above. This figure indicates that the MTTDL
decreases with an increase in MTTD. With the same MTTD but
increasing MTTW , MTTDL increases. All of these performance
trends are intuitive and realistic.

6.4. Reliability analysis

The numerical results, calculated according to the Markov
chain model, show the significant impact of the mean-time-to-
duplication on the whole system reliability, measured in terms
of mean-time-to-data-loss, under different workload conditions.
As the model indicates, the reliability of CEFT depends on the
write frequencies of the client nodes. The more frequently the
client nodes write data into the storage nodes, the higher the

Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306 303

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

M
ea

n
T

im
e

T
o

D
at

a
Lo

ss
 (

in
 y

ea
rs

)

Mean Time To Duplication (in seconds)

MTTW = 2 sec
MTTW = 10 secs
MTTW = 30 secs
MTTW = 1 min
MTTW = 5 mins
MTTW = 1 hour

Fig. 15. Influence of MTTD on MTTDL of eight mirroring eight data
servers under different workloads (MTTF = 1 year, MTTFswitch = 3 years,
MTTR = 2 days and MTTW = 5 min).

probability that the primary storage group remains inconsistent
with the backup group, thus giving rise to increased likelihood
of data loss due to the failure of some nodes in the storage
group. The write frequency, measured as mean-time-to-write,
is highly dependent on the applications running on the client
nodes.

To quantitatively compare the reliability of the four duplica-
tion protocols, we evaluate their reliability in the scenario of a
simple benchmark presented in Section 5. Although this simple
benchmark does not reflect all applications that run on CEFT,
it gives a quantitative and fair comparison of these duplication
protocols. We recorded the time instants of all the events on all
server and client nodes and stored them into the files so that
we could calculate the MTTW and MTTD of this simple bench-
mark. The MTTD of Protocol 1 can be directly calculated from
the trace files. The MTTD of Protocols 2 and 4 can be regarded
as 0 since the data are consistent as soon as the client node
finishes the write process. To obtain the MTTD of Protocol 3
is tricky because the duplication process is performed by the
client nodes. In Protocol 3, we define MTTD as the mean time
difference between the arrivals of the acknowledgments from
the primary node and the backup node.

We assume that MTTF = 1 year, MTTFswitch = 3 years and
MTTR = 2 days. In the simple benchmark, MTTW = 1 min.
We calculate the MTTDL curve as a function of the number
of server nodes for the four protocols under the three server
configurations. Fig. 16 compares the reliability between CEFT
and PVFS and compared with their MTTDL, on average the
four duplication protocols improve the reliability of PVFS by
a factor of 41, 64 and 96 in the three server configurations,
respectively. In addition, Protocol 1 is 93%, 93% and 99% of
Protocols 2 and 4 under the three different server configurations,
respectively, with an average degradation of 5%. Protocol 3
is 96%, 94% and 99% of Protocols 2 and 4, with an average
degradation of 3.3%.

18 34 66
0

0.5

1

1.5

2

2.5

M
ea

n
T

im
e

T
o

D
at

a
Lo

ss
 (

in
 y

ea
rs

)

the total number of server nodes (including metadata servers)

1: Asyn Server Dup
2: Syn Server Dup
3: Asyn Client Dup
4: Syn Client Dup
5: PVFS with same total # of servers

Fig. 16. Reliability comparison of CEFT and PVFS.

6.5. Availability analysis

Availability is defined in this paper to be the fraction of time
when a system is operational. More precisely, it is defined as
follows:

Availability = MTTF

MTTF + MTTR
. (14)

Figs. 17 and 18 give the availability comparisons between the
four duplication protocols and PVFS within the same scenarios
as the reliability analysis. While the availability of PVFS is only
0.91, 0.85 and 0.73 in the three server configurations, respec-
tively, the availability of CEFT with four duplication protocols
are all above 0.99. Similarly with the reliability comparisons,
Protocols 2 and 4 achieve a better availability than Protocols 1
and 3. Note that a small difference in the availability does have
a significant impact in practice [42].

6.6. Optimization of the tradeoffs

As the measurement and analytical results indicate, if the
number of client nodes is smaller than the number of server
nodes, server-driven protocols tend to have a higher write per-
formance than the client-driven protocols since more nodes are
involved in sharing the duplication work. Between the server-
driven protocols, the synchronous one is preferred because it
has a higher reliability with only slightly lower bandwidth. On
the contrary, if the total number of the client nodes is greater
than that of the server nodes, the client-driven protocols are
better than their server-driven counterparts. Between the client-
driven protocols, the asynchronous client duplication is the
most favorable since it has the highest write performance and
the second best reliability. These observations lead us to pro-
pose a hybrid protocol to optimize the tradeoff between the
reliability and bandwidth performances.

A scientific application is usually required to specify the total
number of parallel jobs or clients it needs before running in a

304 Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306

18 34 66
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
T

im
e

T
o

D
at

a
Lo

ss
 (

in
 y

ea
rs

)

the total number of server nodes(including metadata servers)

1: Asyn Server Dup
2: Syn Server Dup
3: Asyn Client Dup
4: Syn Client Dup
5: PVFS with same total # of servers

Fig. 17. Availability comparison of CEFT and PVFS.

18 34 66
0.9962

0.9964

0.9966

0.9968

0.997

0.9972

0.9974

0.9976

A
va

ila
bi

lit
y

the total number of server nodes (including metadata servers)

1: Asyn Server Dup
2: Syn Server Dup
3: Asyn Client Dup
4: Syn Client Dup

Fig. 18. Availability comparison of four duplication protocols.

cluster. In the hybrid duplication protocol, each client compares
the total server number in one storage group with the total num-
ber of parallel clients of the current application. If the server
number exceeds the client number, the synchronous server du-
plication is used to mirror the data. Otherwise, the asynchronous
client duplication is preferred. In this way, this hybrid protocol
always tries to achieve a considerably high write performance
or reliability with little degradation of the other.

7. Conclusion and future work

This paper presents the design and implementation of CEFT,
a RAID-10 style file system based on PVFS, and proposes
four duplication protocols. The efficiencies of these protocols
are examined by measuring their write performance in a real
cluster and analyzing their reliability and availability based on
Markov process modeling.

The study in this paper shows that these proposed protocols
have a write performance penalty 33–58% when compared with
PVFS with the same total number of servers. In addition, these
duplication protocols strike different balances between relia-
bility and write performance. A protocol that has higher band-
width is most likely to be inferior in reliability. Between the
server-driven protocols, the asynchronous one achieves a write
performance that is 27.7% higher than the synchronous one,
which comes at the expense of an average of 5% reliability
degradation. Similarly, between the client-driven protocols, the
asynchronous one has a write performance that is 14.7% higher
than the synchronous one, while paying a premium of an aver-
age of 3.3% reduction in reliability. We also proposed a hybrid
protocol that optimizes the tradeoff between the reliability and
write performance. In this hybrid protocol, if the total number
of jobs of a data-intensive application is less than the server
number of one storage group, the synchronous server duplica-
tion is used to mirror the data. Otherwise, the asynchronous
client duplication is preferred.

None of the proposed protocols employs high-cost but more
reliable techniques such as “forced writes” to the disks, and the
data that have not been flushed from the cache buffer to the
disks will be lost when a node fails. We will further investigate
the tradeoff when considering “forced writes”.

Further work is needed to enrich the interfaces of CEFT to
applications. While PVFS has three types of interfaces for ap-
plications, including native I/O library, MPI I/O library based
on ROMIO [50] and NFS type interfaces, CEFT provides its
own native I/O libraries. Although both parallel and non-parallel
applications can use this native interfaces to successfully ac-
cess data in CEFT, we are implementing the standard MPI I/O
functions and NFS-type kernel modules so that applications can
directly run over CEFT without modifying their source code.

Acknowledgments

This work was partially supported by an NSF Grant (EPS-
0091900), a University of Maine MEIF startup fund (5254923),
a Nebraska University Foundation Grant (26-0511-0019), a
University of Nebraska–Lincoln Academic Priority Grant, and
A Chinese NSF 973 Project Grant (2004cb318201). Work was
completed using the Research Computing Facility at Univer-
sity of Nebraska, Lincoln. Special thanks are also due to the
Argonne National Labs and Clemson University for making the
source code of PVFS publicly available.

References

[1] T.E. Anderson, M.D. Dahlin, J.M. Neefe, D.A. Patterson, D.S. Roselli,
R.Y. Wang, Serverless network file systems, ACM Trans. Comput.
Systems 14 (1) (1996) 41–79.

[2] S.H. Baek, B.W. Kim, E.J. Joung, C.W. Park, Reliability and performance
of hierarchical RAID with multiple controllers, in: Proceedings of
the Twentieth Annual ACM Symposium on Principles of Distributed
Computing, 2001, pp. 246–254.

[3] A. Bestavros, Ida-based redundant arrays of inexpensive disks, in:
Proceedings of the First International Conference on Parallel and
Distributed Information Systems, IEEE Computer Society Press, 1991,
pp. 2–9.

Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306 305

[4] R. Billinton, R.N. Allan, Reliability Evaluation of Engineering System:
Concepts and Techniques, Perseus Publishing, 1992.

[5] M. Blaum, J. Brady, J. Bruck, J. Menon, Evenodd: an optimal scheme
for tolerating double disk failures in raid architectures, in: Proceedings
of the 21st Annual International Symposium on Computer Architecture,
IEEE Computer Society Press, 1994, pp. 245–254.

[6] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N.
Seizovic, W.-K. Su, Myrinet: a gigabit-per-second local area network,
IEEE Micro 15 (1) (1995) 29–36.

[7] Bonnie, <http://www.textuality.com/bonnie/>, September 2002.
[8] W.A. Burkhard, J. Menon, Disk array storage system reliability, in:

Symposium on Fault-Tolerant Computing, 1993, pp. 432–441.
[9] L.-F. Cabrera, D.D.E. Long, Swift: using distributed disk stripping to

provide high I/O data rates, Comput. Systems 4 (4).
[10] R. Card, T. Ts’o, S. Tweedie, Design and implementation of the second

extended file system, in: Proceedings of the First Dutch International
Symposium on Linux, 1994.

[11] P.H. Carns, W.B. Ligon III, R.B. Ross, R. Thakur, PVFS: a parallel
file system for Linux clusters, in: Proceedings of the 4th Annual Linux
Showcase and Conference, USENIX Association, Atlanta, GA, 2000,
pp. 317–327 (best Paper Award).

[12] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, D.A. Patterson, RAID:
high-performance, reliable secondary storage, ACM Comput. Surveys
(CSUR) 26 (2) (1994) 145–185.

[13] A. Chervenak, V. Vellanki, Z. Kurmas, Protecting file systems: a survey
of backup techniques, in: Proceedings Joint NASA and IEEE Mass
Storage Conference, 1998.

[14] J.W. Cohen, The Single Server Queue, North-Holland, Amsterdam, 1982.
[15] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,

S. Sankar, Row-diagonal parity for double disk failure correction,
in: Proceedings of the USENIX FAST ’04 Conference on File and
Storage Technologies, Network Appliance, Inc., USENIX Association,
San Francisco, CA, 2004, pp. 1–14.

[16] R. Cristaldi, G. Iannello, F. Delfino, The cluster file system: integration
of high performance communication and I/O in clusters, in: Proceedings
of the 2nd IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID), Berlin, Germany, 2002, pp. 160–169.

[17] A.E. Darling, L. Carey, W. Chun Feng, The design, implementation, and
evaluation of mpiBLAST, in: Proceedings of Cluster World Conference
& Expo, 2003.

[18] C. Eddington, Infinibridge: an infiniband channel adapter with integrated
switch, IEEE Micro 22 (2) (2002) 48–56.

[19] J. Gafsi, E.W. Biersack, Modeling and performance comparison of
reliability strategies for distributed video servers, IEEE Trans. Parallel
Distrib. Systems 11 (4) (2000) 412–430.

[20] S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, in:
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, 2003, pp. 29–43.

[21] G.A. Gibson, Redundant disk arrays: reliable, parallel secondary storage,
Ph.D. Thesis, U.C., Berkeley, Berkeley, CA, March 1991.

[22] G.A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary
Storage, MIT Press, Cambridge, MA, 1992.

[23] C. Gray, D. Cheriton, Leases: an efficient fault-tolerant mechanism for
distributed file cache consistency, in: Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles, ACM Press, 1989, pp.
202–210.

[24] S.D. Gribble, G.S. Manku, D. Roselli, E.A. Brewer, T.J. Gibson, E.L.
Miller, Self-similarity in file systems, in: Proceedings of the 1998
ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems, 1998, pp. 141–150.

[25] J.H. Hartman, J.K. Ouserhout, The zebra striped network file system,
ACM Trans. Comput. Systems 13 (3) (1995) 274–310.

[26] J. Hennessy, D. Patterson, Computer Architecture: A Quantitative
Approach, third ed., Morgan Kauffmann, San Francisco, CA, 2002.

[27] H.-I. Hsiao, D. DeWitt, Chained declustering: a new availability
strategy for multiprocessor database machines, in: Proceedings of 6th
International Data Engineering Conference, 1990, pp. 456–465.

[28] K. Hwang, H. Jin, R.S. Ho, Orthogonal striping and mirroring in
distributed raid for I/O-centric cluster computing, IEEE Trans. Parallel
Distrib. Systems 13 (1) (2002) 26–44.

[29] IEEE p802.3ae, 10 GB/s Ethernet Task Force, <http://grouper.ieee.org/
groups/802/3/ae/>, 2003.

[30] D. Kotz, N. Nieuwejaar, Dynamic file-access characteristics of a pro-
duction parallel scientific workload, in: Proceedings of Supercomputing
’94, IEEE Computer Society Press, Washington, DC, 1994, pp. 640–649.

[31] W.B.L. III, R.B. Ross, Implementation and performance of a parallel file
system for high performance distributed applications, in: Proceedings
of the Fifth IEEE International Symposium on High Performance
Distributed Computing (HPDC), Syracuse, New York, 1996.

[32] L.-W. Lee, P. Scheuermann, R. Vingralek, File assignment in parallel I/O
systems with minimal variance of service time, IEEE Trans. Comput.
49 (2) (2000) 127–140.

[33] E.K. Lee, C.A. Thekkath, Petal: distributed virtual disks, in: Proceedings
of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, 1996, pp. 84–92.

[34] F.J. MacWilliams, J.J.A. Sloane, The Theory of Error-Correcting Codes,
North-Holland, Amsterdam, 1977.

[35] M.K. McKusick, W.N. Joy, S.J. Leffler, R.S. Fabry, A fast file system
for unix, ACM Trans. Comput. Systems 2 (3) (1984) 181–197.

[36] S.A. Moyer, V.S. Sunderam, PIOUS: a scalable parallel I/O system
for distributed computing environments, in: Proceedings of the Scalable
High-Performance Computing Conference, 1994, pp. 71–78.

[37] Y. Nam, D.W. Kim, T.Y. Choe, C. Park, Enhancing write I/O performance
of disk array RM2 tolerating double disk failures, in: International
Conference on Parallel Processing, 2002, pp. 211–218.

[38] M.N. Nelson, B.B. Welch, J.K. Ousterhout, Caching in the sprite network
file system, ACM Trans. Comput. Systems 6 (1) (1988) 134–154.

[39] Y. Oh, S. Kim, J.-H. Kim, A fault-tolerant continuous media disk array
under arbitrary-rate search, IEEE Trans. Consumer Electron. 46 (2)
(2000) 334–342.

[40] J. Oly, D.A. Reed, Markov model prediction of I/O requests for scientific
applications, in: Proceedings of the 16th International Conference on
Supercomputing, 2002, pp. 147–155.

[41] C. Park, Efficient placement of parity and data to tolerate two disk
failures in disk array systems, IEEE Trans. Parallel Distrib. Systems 6
(11) (1995) 1177–1184.

[42] D.A. Patterson, Availability and maintainability: new focus for a new
century, in: USENIX Conference on File and Storage Technologies
(FAST ’02), Keynote Address, Monterey, CA, 2002.

[43] D.A. Patterson, G. Gibson, R.H. Katz, A case for redundant arrays of
inexpensive disks (RAID), in: Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data, 1988, pp. 109–116.

[44] M. Pillai, M. Lauria, A high performance redundancy scheme for cluster
file systems, in: Proceedings of IEEE International Cluster Computing,
2003, pp. 216–223.

[45] J.S. Plank, A tutorial on Reed–Solomon coding for fault-tolerance in
RAID-like systems, Software, Practice and Experience 27 (9) (1997)
995–1012.

[46] Prairiefire Cluster at UNL, <http://rcf.unl.edu>, September 2002.
[47] S. Quinlan, S. Dorward, Venti: a new approach to archival storage,

in: Proceedings of the Conference on File and Storage Technologies,
USENIX Association, 2002, pp. 89–101.

[48] M.O. Rabin, Efficient dispersal of information for security, load
balancing, and fault tolerance, J. ACM 36 (2) (1989) 335–348.

[49] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, J. Kubiatowicz,
Pond: the OceanStore prototype, in: Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST ’03), San Francisco,
CA, 2003, pp. 1–14.

[50] R.B. Ross, Providing parallel I/O on Linux clusters, in: Second Annual
Linux Storage Management Workshop, Miami, FL, 2000.

[51] R. Ross, D. Nurmi, A. Cheng, M. Zingale, A case study in application
I/O on Linux clusters, in: Proceedings of SC2001, Denver, CO, 2001,
pp. 1–17.

[52] F. Schmuck, R. Haskin, GPFS: a shared-disk file system for large
computing clusters, in: Proceedings of the Conference on File and
Storage Technologies (FAST ’02), 2002, pp. 231–244.

http://www.textuality.com/bonnie/
http://grouper.ieee.org/groups/802/3/ae/
http://grouper.ieee.org/groups/802/3/ae/
http://rcf.unl.edu

306 Y. Zhu, H. Jiang / J. Parallel Distrib. Comput. 66 (2006) 291–306

[53] H. Singh, R.D. Gupta, On the probability that kth customer finds an
M/M/1 queue empty, in: Advances in Applied Probability, vol. 24, 1992,
pp. 238–239.

[54] N. Singpurwalla, The failure rate of software: does it exist?, IEEE Trans.
Reliability 44 (3) (1995) 463–469.

[55] E. Smirni, R.A. Aydt, A.A. Chien, D.A. Reed, I/O requirements of
scientific applications: an evolutionary view, in: Proceedings of the
Fifth IEEE International Symposium on High Performance Distributed
Computing, IEEE Computer Society Press, Syracuse, NY, 1996,
pp. 49–59.

[56] H. Taki, G. Utard, MPI-IO on a parallel file system for cluster of
workstations, in: Proceedings of the IEEE Computer Society International
Workshop on Cluster Computing, Melbourne, Australia, 1999,
pp. 150–157.

[57] Test TCP, <ftp://ftp.arl.mil/pub/ttcp/>, September 2002.
[58] J.D. Touch, Performance analysis of MD5, in: ACM Proceedings of the

Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, New York, NY, USA, 1995, pp. 77–86.

[59] N. Tran, D.A. Reed, Arima time series modeling and forecasting for
adaptive I/O prefetching, in: Proceedings of the 15th International
Conference on Supercomputing, 2001, pp. 473–485.

[60] F. Wang, Q. Xin, B. Hong, S.A. Brandt, E.L. Miller, D.D.E. Long,
T.T. McLarty, File system workload analysis for large scale scientific
computing applications, in: Proceedings of the Twentieth IEEE/Eleventh
NASA Goddard Conference on Mass Storage Systems and Technologies,
IEEE Computer Society Press, College Park, MD, 2004.

[61] S. Welke, B. Johnson, J. Aylor, Reliability modeling of hardware/software
systems, IEEE Trans. Reliability 44 (3) (1995) 413–418.

[62] J. Wilkes, R. Golding, C. Staelin, T. Sullivan, The HP AutoRAID
hierarchical storage system, ACM Trans. Comput. Systems 14 (1) (1996)
108–136.

[63] Y. Zhu, H. Jiang, X. Qin, D. Feng, D. Swanson, Design, implementation,
and performance evaluation of a cost-effective fault-tolerant parallel
virtual file system, in: The International Workshop on Storage Network
Architecture and Parallel I/Os, in conjunction with the IEEE Twelfth
International Conference on Parallel Architectures and Compilation
Techniques, New Orleans, LA, 2003.

[64] Y. Zhu, H. Jiang, X. Qin, D. Feng, D. Swanson, Scheduling for improved
write performance in a cost-effective, fault-tolerant parallel virtual file
system (CEFT-PVFS), in: Proceedings of Cluster World Conference and
Expo, San Jose, California, 2003.

[65] Y. Zhu, H. Jiang, X. Qin, D. Feng, D. Swanson, Improved read
performance in a cost-effective, fault-tolerant parallel virtual file system
(CEFT-PVFS), in: Proceedings of IEEE International Symposium on
Cluster Computing and the Grid (CCGRID), Workshop on Parallel I/O
in Cluster Computing and Computational Grids, Tokyo, Japan, 2003, pp.
730–735.

[66] Y. Zhu, H. Jiang, X. Qin, D. Feng, D. Swanson, Exploiting redundancy to
boost performance in a RAID-10 style cluster-based file system, Cluster
Computing: The Journal of Networks, Software Tools and Applications,
accepted for publication.

[67] Y. Zhu, H. Jiang, X. Qin, D. Feng, D. Swanson, A case study of parallel
I/O for biological sequence analysis on Linux clusters, Internat. J. High
Performance Comput. Networking 1 (4) (2004) 214–222.

[68] Y. Zhu, H. Jiang, X. Qin, D. Swanson, A case study of parallel I/O for
biological sequence analysis on Linux clusters, in: Proceedings of IEEE
International Conference on Cluster Computing, Hong Kong, 2003, pp.
730–735.

Yifeng Zhu received his B.Sc. degree in Electri-
cal Engineering in 1998 from Huazhong Univer-
sity of Science and Technology, Wuhan, China;
the M.S. and Ph.D. degree in Computer Sci-
ence from University of Nebraska—Lincoln, in
2002 and 2005, respectively. He is an assistant
professor in the Electrical and Computer Engi-
neering Department at University of Maine. His
main research interests are cluster computing,
grid computing, computer architecture and sys-
tems, and parallel I/O storage systems. Dr. Zhu
is a Member of ACM, IEEE, the IEEE Com-
puter Society, and the Francis Crowe Society.

Hong Jiang received the B.Sc. degree in Com-
puter Engineering in 1982 from Huazhong
University of Science and Technology, Wuhan,
China; the M.A.Sc. degree in Computer Engi-
neering in 1987 from the University of Toronto,
Toronto, Canada; and the Ph.D. degree in
Computer Science in 1991 from the Texas
A&M University, College Station, Texas, USA.
Since August 1991 he has been at the Univer-
sity of Nebraska—Lincoln, Lincoln, Nebraska,
USA, where he is Professor and Vice Chair
in the Department of Computer Science and
Engineering. His present research interests are

computer architecture, parallel/distributed computing, cluster and grid com-
puting, computer storage systems and parallel I/O, performance evaluation,
real-time systems, middleware, and distributed systems for distance educa-
tion. He has over 100 publications in major journals and international confer-
ences in these areas and his research has been supported by NSF, DOD and
the State of Nebraska. Dr. Jiang is a Member of ACM, the IEEE Computer
Society, and the ACM SIGARCH.

ftp://ftp.arl.mil/pub/ttcp/

