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Abstract

Obtaining representative and concise I/O workloads for
the purpose of projecting the performance of storage sys-
tems remains a challenge due to the complex nature of I/O
behaviors. Previous studies have shown that disk I/O traf-
fic can be represented as an independent and identically
distributed random process in some workloads and a self-
similar process in others. Additionally, workloads in the
presence of self-similarity can exhibit either Gaussian or
non-Gaussian characteristics. This paper proposes a new
and generic model based on the α-stable process to accu-
rately build a synthetic workload representative of I/O traf-
fic in production storage systems. The novelty of this new
model is that it has the capability of characterizing both
self-similar Gaussian and non-Gaussian workloads. Ex-
perimental results show that this model can accurately cap-
ture the complex I/O behaviors of real storage systems and
more faithful than conventional models, particularly the
burstiness and heavy-tail characteristics under the Gaus-
sian and non-Gaussian workloads.

1. Introduction

Modeling I/O workloads accurately is one of the most
fundamental aspects of performance evaluation in storage
systems. However, I/O burstiness in workloads in produc-
tion systems imposes significant challenges to this model-
ing process, thus making it difficult to accurately predict
and effectively overcome the I/O performance bottleneck
brought by I/O burstiness.

Previous studies on traces collected in production envi-
ronments have shown a complex variety of I/O behaviors.
In some environments, I/O inter-arrival times of requests

are uncorrelated to one another, and consequently the I/O
arrival process can be modeled as independently and iden-
tically distributed (IID) [27], such as the Poisson process.
In other environments, there are strong correlations in I/O
inter-arrival times, and many researchers found that I/O
activities in these workloads appear to be evidently self-
similar [8, 9, 26]. Therefore, a versatile disk I/O workload
model is needed to accurately synthesize the disk workload
in both environments.

For I/O workloads with the presence of self-similarity,
I/O burstiness is almost ubiquitous over their lifetime span.
However, I/O burstiness in some workloads appears to be
Gaussian, while I/O burstiness in some other workloads
appears to be non-Gaussian. If the distinction between
the Gaussian and non-Gaussian property is ignored in the
synthesizing of workloads, it is difficult to truthfully and
accurately represent the real degree of I/O burstiness in
real workloads, thus causing potential mis-prediction of
workloads. Therefore, a good model for I/O workload
with self-similarity should not only be able to character-
ize the I/O bursty activities in Gaussian condition, but also
in non-Gaussian condition. This paper proposes a stochas-
tic model based on the α-stable process that meets this re-
quirement.

Particularly, this paper analyzes the search engine I/O
trace collected in 2002 [3] and three typical disk I/O traces
(tpc-d, cello96, cello99) collected in different environments
by HP Laboratories [1]. We examine the correlations of
inter-arrival times in every workload, and study the Gaus-
sian property of self-similar workload. Through distribu-
tion matching we find that I/O arrivals in each workload be-
long to the α-stable distribution. An I/O workload model
based on the α-stable process is then presented. To the
best of our knowledge, little research work has been done
on this topic. This paper takes a first step toward using



an I/O workload model based on the α-stable process to
synthesize I/O workloads. This paper makes the following
conclusions.

1. Through studying the auto-correlation functions of
each workload, we find that I/O arrivals are largely
uncorrelated in tpc-d and search engine I/O, but sig-
nificantly corrected in both cello96 and cello99.

2. For those workloads with self-similarity, the Gaussian
characteristic exhibits high variability. Interestingly,
we find that cello96 appears to be Gaussian while
cello99 is non-Gaussian. Thus it is important to se-
lect a traffic model capable of characterizing both the
Gaussian and non-Gaussian property in order to accu-
rately synthesize workload and obtain unbiased per-
formance evaluation.

3. By using Quantile-Quantile plot and Probability-
Probability plot, we find that I/O arrivals in all work-
loads studied in this paper follow the α-stable dis-
tribution. In addition, we quantify the parameters
of the provided α-stable process by the maximum-
likelihood estimate.

4. Based on the observation of the α-stable process,
this paper develops an α-stable disk I/O workload
model that can not only clearly represent the long-
range dependence in self-similar disk traffics, but also
accurately synthesize I/O workload with short-range
dependence. This model is a powerful and versa-
tile stochastic tool to generate synthetic I/O work-
load in which I/O arrivals can be either independent
identically distributed, Gaussian self-similar, and non-
Gaussian self-similar. Our experimental results show
that this model is accurate and more faithful than con-
ventional models.

The rest of this paper is organized as follows. Section 2
gives an overview of the related work. Section 3 presents
our motivations for using the α-stable process to model
disk traffics. Section 4 then presents the α-stable disk I/O
workload model. Section 5 describes the rationality of us-
ing α-stable distribution with real traces. Section 6 com-
pares the workloads synthesized by the proposed model
with real traces and others synthetic workloads. Section
7 concludes this paper.

2. Related Work

Two basic approaches are widely used to obtain repre-
sentative I/O workloads. One is to collect I/O traces in a
production environment and then carefully replay the traces
during simulation or experiment [24]. The other is to use

synthetic I/O requests that emulate the behaviors of actual
workloads [4]. The second approach allows us to flexibly
study the effects of some workload parameters [12].

Prior works in the literature have shown that the data
traffic burstiness in many workloads exhibits the property
of self-similarity, such as the multimedia traffic [19], Eth-
ernet [13] and web [5] traffic. Various self-similar models
have been proposed to emulate the burstiness, but they all
have limitations. For example, FARIMA [7] is proposed
to generate synthetic Variable Bit Rate (VBR) video traces
but it is not intrinsically bursty. The FBM model used
by several researchers [12, 16, 22] is easy to construct and
can model the self-similarity under the Gaussian condition.
However, the FBM model cannot represent both the long-
range and short-range dependence simultaneously.

To emulate the burstiness in storage systems, models
that aggregate multiple ON/OFF sources have been pro-
posed [8–10]. Specifically, Gomez et al. [8, 9] demonstrate
that disk-level I/O requests are self-similar in nature, and
perform a structural modeling showing that the self-similar
behavior can be explained by combining two different ap-
proaches: an ON/OFF source model and Cox’s model [18].
Gribble et al. [10] find that sources of short-term file sys-
tem traces exhibit ON/OFF behavior and proposes a simple
technique for synthesizing a stream of events that exhibit
the same self-similar short-term behaviors as was observed
in the file system traces. The ON/OFF model is easy to con-
struct, and its parameters have physical meanings. How-
ever, the ON/OFF model only adapts to synthesize partic-
ular classes of traffic and constructing the model often re-
quires significant computational effort [26].

Wang et al. [25] proposed a two-dimensional model that
characterizes both the temporal and spatial behaviors of
data accesses. In addition, by using the joint entropy of
the two-dimensional disk request arrival events (time and
space), this model can model the spatio-temporal correla-
tions. However, the Gaussian property characterized by
this model belongs to the spatial domain, not the tempo-
ral domain. Wang et al. [26] further propose to use the
b-model to model bursty disk traffic. The model only de-
pends upon a single parameter, bias p, which can be esti-
mated from real traces. However, Hong et al. [11] claim
that it may not be realistic to monitor any disk workload
and model it accurately with some small number of param-
eters. Hong et al. [11] then use binomial multifractal to
generate synthetic arrival patterns at relatively small time
scales, improving the accuracy of trace generation, but not
to synthesize workload at long time scales. In general, it is
challenging to accurately model I/O workloads for traffic
prediction and performance evaluation in storage systems.

Based on the α-stable process, this paper proposes an
I/O workload model to generate synthetic disk I/O requests,
with a focus on precisely emulating the burstiness that is



often observed in real systems. Our model is flexible to
represent both long-range dependence and short-range de-
pendence. In addition, this model can accurately character-
ize the I/O burstiness in disk workloads under the Gaussian
conditions as well as the non-Gaussian conditions.
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Figure 1. Auto-correlation functions (ACFs)
of I/O request inter-arrival times for search en-
gine I/O, tpc-d, cello96 and cello99, respectively.

3. Why The α-stable Process?

Burstiness in disk I/O arrivals exists prevalently at all
time scales [8]. And one of the main characteristics in
the α-stable process is its ability to represent precisely the
burstiness in stochastic phenomenon. That directly moti-
vates us to develop a new model based on the α-stable pro-
cess.

This section studies the auto-correlation functions
(ACF) of inter-arrival times [6, 27], and shows the corre-
lations of I/O inter-arrival times in search engine I/O, tpc-d
and cello workloads. ACF is a widely-used mathematical
tool to study the correlations, i.e., measure if earlier values
in a time sequence X = {Xi|i = 1, . . . ,N} have some rela-
tion to later values. The correlation coefficient at lag k is
defined as

ck =
1

N−K

N−k

∑
i=1

(Xi− X̄)(Xi+k− X̄) (1)

where X̄ is the expectation of the time series X . Then the
ACF(k), with a lag of k is

ACF(k) =
ck

c0
(2)

As shown in Fig. 1(a), there is a slight correlation for I/O
inter-arrival times in the tpc-d and search engine I/O work-
loads only for a very short-term time scales (lag=20 for
tpc-d and lag=5 for search engine I/O). However, both are
largely not correlated in longer time scales. Taking the
search engine I/O workload for an example in Fig. 1(b),
nearly all of the correlation coefficients of I/O inter-arrival
time are equal to zero. This indicates there is little cor-
relation for I/O inter-arrival time in long-term time scales

(lag=2000). As shown in Fig. 1(b), the correlation of I/O
inter-arrival times in the cello workload is evident in long-
term time scales (lag=2000), especially for cello96. This
shows that the correlations of inter-arrival times in differ-
ent workloads are different with one another. The α-stable
process is just the right model to adequately represent the
short-range and long-range dependence.
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Figure 2. Examine the Gaussian property
of cello96 and cello99 workloads through QQ
plots of sample data versus standard normal.

Prior studies have concluded that the cello workloads
are self-similar in nature [8,9,11]. In self-similar I/O work-
loads, there are long-range dependence and heavy-tail dis-
tribution characteristics, both of which render the variance
of I/O arrival stochastic process infinite. In addition, the
maximum of I/O inter-arrival times in clients’ requests ap-
proaches infinity theoretically, which also makes the vari-
ance unbounded. According to the generalized central limit
theorem (GCLT), the normalized aggregation of infinitely
independent and identically distributed sources with infi-
nite variance converges to a family of α-stable marginal
distributions if its marginal distributions converge. Conse-
quently, using the α-stable process to model disk I/O work-
loads becomes a nature choice.

For the self-similar cello traces, by using the normal
quantile plots (QQ plots) to measure the Gaussian prop-
erty [22], as shown in Fig. 2, we find that cello96 is Gaus-
sian and cello99 is non-Gaussian. In Fig. 2(a), all of the
scatter points corresponding to an I/O arrival event given
in the traces evidently follow a straight line, indicating that
cello96 is Gaussian. In Fig. 2(b), all of the scatter points ev-
idently don’t fall into a straight line but an increasing curve,
indicating that cello99 is non-Gaussian. The results above
show interestingly that some self-similar I/O workloads
have the Gaussian property while others do not. Therefore,
the model used to capture the I/O burstiness in cello should
be able to represent both the Gaussian and non-Gaussian
properties. The α-stable process can not only meet this re-
quirement, but also generate synthetic I/Os that better emu-
late the I/O burstiness seen in real systems, as demonstrated
later.



In summary, the α-stable process has a solid theoreti-
cal basis for synthesizing disk I/O workloads. This motives
us to explore the α-stable process in I/O modeling, with
an aim to improve our understanding of disk I/O burstiness
characteristics and design a better synthetic trace generat-
ing tool for performance evaluation of storage systems.

4. The α-stable Disk I/O Workload Model

In most stable distributions, densities and distribution
functions are not known in closed forms. Thus, in gen-
eral α-stable distributions are defined by their characteris-
tic functions.

Definition 4.1 A random variable X is said to have a sta-
ble distribution if there exist parameters 0 < α ≤ 2, σ > 0,
−1≤ β ≤ 1, and µ ∈ R such that its characteristic function
has the following form [21]:

E[eiθX ] =
{

e−σα |θ |α (1−iβ signθ tan πα
2 )+iµθ , α 6= 1

e−σ |θ |(1+iβ signθ ln |θ |)+iµθ , α = 1
(3)

where signθ =





1, θ > 0
0, θ = 0
−1, θ < 0

, α , β , σ and µ are char-

acteristic exponent, skewness parameter, scale and loca-
tion parameters, respectively.

The characteristic exponent α represents the level of
burstiness in the distribution. The distribution can be
skewed if the skewness parameter β is different from zero.
Variables σ and µ are called the scale and location parame-
ters, respectively, and represent the deviation and the mean
of the distribution. A random variable X that follows an
α-stable distribution with the above parameters is denoted
by X ∼ Sα

σ ,β ,µ [21].
If 0 < α < 2, the characteristic function of α-stable dis-

tribution is one class of non-Gaussian functions. If α = 2,
the characteristic function will degenerate to a Gaussian
one, shown as E[eiθX ] = exp{−σ2θ 2 + iµθ}. In fact, this
is the characteristic function of a Gaussian stochastic pro-
cess, with a constant mean µ , and variance 2σ2, β be-
comes of no meaning due to β tanπ = 0, according to the
characteristic function of α-stable process. Therefore, by
changing α , the α-stable process is able to represent the
stochastic process under Gaussian condition as well as non-
Gaussian condition.

The stochastic process studied in this paper is a class of
the α-stable process that has both the self-similarity and
the stable increments. Extending FBM under the α-stable
condition, we can obtain various forms, of which one is
the Linear Fractional Stable Motion (LFSM) [20]. LFSM
shares all properties of the α-stable process, and its incre-
ment process is called the Linear Fractional Stable Noise

(LFSN). The LFSN process can be expressed in a discrete
domain, which makes it one of the most common mathe-
matical modeling tools [23].

Due to the fact that realistic modeling exists usually in
discrete states, the LFSN process expression in continuous
states above needs to be transformed to a discrete expres-
sion, replacing the integral with a sum function. Through
the discrete transformation of the properties of the α-stable
process [21], we can express a LFSN process as a linear
convolution as follows:

Nα,β ,H(i) = (hd ·Sα
1,β ,0)(i)

=
Km

∑
k=1

hd(
k
m

) ·Sα
( 1+β

2 )
1
α ,1,0

(i− k
m

)

−
Km

∑
k=1

hd(
k
m

) · S̃α
( 1−β

2 )
1
α ,1,0

(i− k
m

) (4)

where hd(x) =
{

xd − (x−1)d , x≥ 1
xd , 0 < x≤ 1

, d = H− 1
α ,

S(i) is an α-stable stochastic variable that is independently
and identically distributed, hd is the discrete inner-kernel
function, m is the grid parameter in the integral-discreting
scheme, K is the integral stop point. Nα,β ,H(i) represents
the discrete form of the stable LFSN process (i.e. a class
of the α-stable process satisfying σ = 1,µ = 0), Sα

1,1,0
and S̃α

1,1,0 represent two independently and identically dis-
tributed discrete stochastic variables, the common distribu-
tion is Sα

1,1,0. H is the Hurst parameter, and gives a mea-
sure of the degree of self-similarity of a given time-series,
0 < H < 1. The Hurst parameter to a set of observations can
be estimated by R/S analysis (i.e., Pox plot), and a detailed
description of this method can be found in [5, 7, 13].

Since the marginal distribution of a LFSN process is an
α-stable process, the LFSN process has the basic proper-
ties of the α-stable process. This paper provides a novel
model directly based on the LFSN process theory. Accord-
ing to the properties of the α-stable process, we construct
an α-stable I/O workload model, and its formalization is
expressed as follows:

IOs(i) = v ·Nα,β ,H(i)+δ (5)

where IOs(i) represents the number of I/O requests in the
ith unit time, v and δ are real numbers above zero.

This model includes five parameters, and the physical
meaning of each parameter is given as: α measures the de-
gree of I/O burstiness, β represents the degree of heavy tail
in the I/O traffic, H measures the degree of self-similarity,
v represents the I/O mean velocity of the disk traffic, and δ
represents the deviation degree relative to I/O mean veloc-
ity of disk traffic.

In the following section we will analyze realistic I/O
traces, and then carefully scrutinize the rationality of adopt-
ing the α-stable process with credible experimental data.



Table 1. Estimates the parameter of α-stable distribution based on maximum-likelihood estimate.
Data Set Search Engine I/O Sample Trace α β σ µ

1 WebSearch1 2.0000 � 55.0372 332.000
2 WebSearch2 2.0000 � 58.1822 301.000
3 WebSearch3 1.7284 −0.9004 55.9710 184.168

Data Set Tpc-d Sample Trace α β σ µ
4 Q2 1.3377 1.0000 100.365 456.644
5 Q3 0.7838 0.1142 61.4298 980.686
6 Q4 1.8810 -1.0000 107.589 1937.13
7 Q6 0.6950 -0.6929 51.4305 2114.49
8 Q8 1.6504 1.0000 1159.70 1197.01

Data Set Cello96 Sample Trace α β σ µ
9 10-15-09 2.0000 � 38.7881 2.0000

10 10-28-11 2.0000 � 30.9257 8.0000
11 12-02-16 2.0000 � 60.2789 77.0000
12 12-02-17 2.0000 � 76.5279 60.0000
13 12-02-20 2.0000 � 59.7547 18.0000

Data Set Cello99 Sample Trace α β σ µ
14 04-16-11 1.5973 1.0000 11.4362 15.2522
15 05-11-21 0.8398 1.0000 0.8223 -0.4903
16 06-29-13 1.1961 1.0000 4.3797 0.8807
17 09-10-12 0.4018 1.0000 0.1832E-01 -0.4786
18 12-31-11 0.8295 1.0000 0.4893 -1.3384

After that we will use real I/O traces to examine whether
real trace data follow the α-stable distribution.

5. Examination of α-stable Distribution

To examine whether I/O arrivals specified in an I/O trace
follow the α-stable distribution, we first estimate the pa-
rameters of a given α-stable distribution by measuring the
dataset, then compare the estimated distribution against the
real distribution of the I/O traces. There are various mathe-
matical methods to estimate the parameters of an α-stable
distribution. In this section, three typical methods are cho-
sen, including the maximum-likelihood estimate, the quan-
tile method and the sample characteristic function [15]. In
addition, two different statistical analysis methods are used
to compare the estimated and real distributions. These dif-
ferent methods can compensate one another and reduce the
estimation errors.

5.1. Estimation of the Parameters

Search engine I/O includes three I/O traces from a popu-
lar search engine, i.e., WebSearch1, WebSearch2 and Web-
Search3 [3]. There are 17 queries in tpc-d, and these
queries last different amounts of time. While 46 data sets
in cello96 were collected during one and half months, the
data sets in cello99 spread over a time period of approx-
imately one year. Both cello96 and cello99 consist of 24

subtraces, with each one lasting one hour. We compute the
number of I/O arrivals per second. For each workload, we
randomly select three or five data sets.

First, the maximum-likelihood estimation method is
used to estimate the parameter values of the α-stable dis-
tribution provided for these 18 data sets. In Table 1, dates
for the cello traces are in the MM-DD-HH format, and each
row includes the sequence number of data set, sample data
set and the estimates of four parameters. Due to the fact
that the α-stable distribution will degenerate to a Gaussian
stochastic process if α = 2, with mean value µ and variance
2σ2, β will be meaningless (see section 4). Accordingly in
Table 1, a slash will fill in the place of β if α = 2. This
measurement results prove the validity of Fig. 2(a) again,
i.e., the cello96 workload is Gaussian. According to the
parameter estimates, we can obtain the relevant α-stable
distribution and further check whether the given α-stable
distribution is consistent with the I/O arrival process in real
workloads. Due to the space constraint, this paper only dis-
cusses the results of the first , sixth, twelfth and fourteenth
data set from Table 1.

5.2. Distribution Test

Based on a given α-stable distribution, through QQ
(Quantile-Quantile) plots [14] we can judge whether the
given α-stable distribution matches the probability distri-
bution of given data set.
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Figure 3. QQ plots of search engine I/O, tpc-
d, cello96 and cello99 sample data versus α-
stable distribution, respectively.

In order to examine the matching degree between the α-
stable distribution and real data, the QQ plots of the given
data set and α-stable distribution are illustrated in Fig. 3.
As shown in Fig. 3, the X-axis shows the quantile value of
the hypothetical α-stable distribution, and the Y-axis de-
notes the quantile value of the given data set. Fig. 3(a)-(d)
illustrate the matching results corresponding to the selected
four data sets. Through analyzing the QQ plots, we find
that a majority of data points line along an approximate
straight line. Therefore, it is reasonable to consider that the
hypothetical α-stable distribution is consistent with the real
data distribution.

While QQ plot is an effective tool, it has some limita-
tions. First of all, as shown in Fig. 3, most of the points
are compressed in a very narrow range in both dimensions,
which limits our visual observation directly. Secondly, the
tail of data points often fluctuate around the theoretical
straight line and even beyond the target straight line area
in Fig. 3(c), which is induced by the accumulative effect
brought by the heavy-tail distribution.

In order to overcome the limitations of QQ plot, PP
(Probability-Probability) plot [14] is deployed. As shown
in Fig. 4, the X-axis shows the probability point of the hy-
pothetical α-stable distribution, and the Y-axis denotes the
probability point of the given data set. Instead of the quan-
tile points in QQ plot by the probability point, PP plot is
able to avoid the accumulative effect brought by the heavy-
tail distribution. In Fig. 4, a majority of data points are lo-
cated on a line of 45 degrees, i.e., the hypothetical α-stable
distribution is consistent with the real data distribution.

In summary, the two different methods presented
above give the same conclusion that the hypothetical α-
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Figure 4. PP plots of search engine I/O, tpc-
d, cello96 and cello99 sample data versus α-
stable distribution, respectively.

stable distribution is consistent with the real data dis-
tribution. In addition, we have also used the quantile
method and the sample characteristic function instead of
the maximum-likelihood estimation, to perform all experi-
ments conducted above. The results are consistent with the
maximum-likelihood estimation. Thus, we conclude that
I/O arrivals in disk I/O workloads can be modeled as an
α-stable distribution.

6. Synthesizing the Disk Traffics

For cello99, the subtrace in each day includes 24 data
subsets. We take a subset as a testing unit and accordingly
each subtrace is divided into 24 testing units. For each test-
ing unit, we compute the I/O arrival rate, i.e., the number of
I/O arrivals per second. We put all arrival rates in a group
of stochastic numbers. The maximum-likelihood method
is used to estimate the parameters of the α-stable process
corresponding to the data sets needed to be measured. And
the relevant I/O workload can be synthesized correspond-
ing to the data sets based on the constructed model. Then
we are able to synthesize the I/O workload using the α-
stable workload model.

The algorithm for synthesizing workload by the α-
stable disk I/O workload model is given below.

ALPHA-STABLE-SYNTHETIC-TRACE-GENERATION
INPUT: I/O mean velocity v, the deviation degree of I/O

mean velocity δ , grid parameter m, integral
stop point K, original trace data file f.

OUTPUT: an access series (IOs(1), IOs(2), · · · , IOs(n)).
ALGORITHM:



for each f
//ALPHA-STABLE-PARAMETER-ESTIMATE
Use maximum-likelihood estimate to estimate the
parameter value α , β , σ and µ of the given α-stable
distribution for data sets in f ;
if α /∈ (0,2] or β /∈ [−1,1] or σ ≤ 0

then break;
else

use Pox plot to estimate the Hurst value H
if H /∈ (0,1) or H = 1/α

then break;
else calculate d = H−1/α , and then hd(x)

Set the initial values of m and K, and obtain
{Nα,β ,H(i) : i = 1,2, · · · ,n} using Equation (4)
Set the initial value of v and δ , and obtain
{IOs(i) : i = 1,2, · · · ,n} using Equation (5)

end for

In order to check the effect of disk I/O workload model
based on the α-stable process, this section takes search en-
gine I/O, tpc-d, cello96 and cello99 as targets to synthesize
I/O workload, respectively. The synthetic workload will be
compared with real disk traffics and the workload synthe-
sized by the conventional traffic models.

Table 2. The trimmed mean of errors.
Data Set α-stable Normal Poisson Lognorm

Search Engine I/O
1 2.47 3.16 6.43 3.21
2 2.79 1.49 2.32 5.02
3 0.28 4.17 7.45 �

Tpc-d
4 24.26 34.94 47.10 �
5 14.84 25.08 99.24 �
6 5.25 21.66 26.30 48.35
7 6.43 157.29 233.79 183.09
8 5.98 31.51 645.45 �

6.1. Analysis of Errors

According to the 18 data sets in Table 1, we use the
proposed model and conventional models to synthesize the
various workloads one by one. Because a badly skewed da-
tum in a data set can potentially render the mean of the set
arbitrarily skewed from the centers of the remaining data
in the set, the trimmed mean [14] is used to evaluate the
matching degrees between each real workload and the cor-
responding synthetic workloads. The trimmed mean of a
data set is the arithmetic mean after trimming a small por-
tion off each of the two ends of the sample data, making it

Table 3. The trimmed mean of errors.
Data Set α-stable FBM FARIMA ON/OFF

Cello96
9 12.82 2.94 15.92 16.22

10 21.02 17.48 17.17 17.73
11 8.88 112.01 61.22 3.02
12 18.00 75.00 61.18 20.04
13 41.83 96.44 38.71 24.98

Cello99
14 0.41 126.68 20.24 5.60
15 1.45 49.71 1.15 5.07
16 3.28 187.13 5.61 7.25
17 0.69 74.92 0.45 3.15
18 1.76 75.67 0.85 7.26

more stable and resilient to abnormal data than the conven-
tional average of samples expectation such as the arithmetic
mean.

The trimmed mean of errors are illustrated in Table 2
and Table 3. First, we use the α-stable, Normal, Poisson,
and Lognorm methods to synthesize the workloads corre-
sponding to the search engine I/O and tpc-d traces, respec-
tively. As shown in Table 2, a slash means that the Log-
norm method is not able to synthesize workload due to the
fact that in the relevant workloads the number of I/O ar-
rivals in a resolution is zero. As can be seen from Table
2, generally the trimmed mean of error between the real
workload and the α-stable synthetic workload is minimum,
with the exception in which the trimmed mean of error be-
tween the 2nd data set and the α-stable synthetic workload
is 2.79. This is understandable since the α-stable model is
developed to capture the essence of all workloads syntheti-
cally way, not any one specific workload. Nevertheless, the
matching degree of the α-stable synthetic workload for the
2nd data set is still reasonably good.

Next, we use the α-stable, FBM, FARIMA and ON/OFF
models to synthesize the workloads corresponding to
cello96 and cello99 traces, respectively. As shown in Table
3, for cello99, the trimmed mean of error between the real
workload and the α-stable synthetic workload is minimum.
And for some of the data sets in cello96, the trimmed mean
of error between the real workload and the α-stable syn-
thetic workload is minimum or close to minimum, e.g., the
9th, 11th and 12th data sets. In addition, the trimmed mean
of error for the α-stable synthetic workload corresponding
to the 13th data set is close to the maximum, especially the
trimmed mean of error for the α-stable synthetic workload
corresponding to the 10th data set. However, either for the
13th data set or the 10th data set, the error is only slightly
larger than the corresponding minimum error. Especially
for the 10th data set, the trimmed mean of error for the α-
stable synthetic workload is larger than others, but only by
a margin of 3.85 over the minimum error, indicating that
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Figure 5. CDFs of synthetic I/O traces and real trace for search engine I/O and tpc-d.
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Figure 6. CDFs of synthetic I/O traces and real trace for cello96 and cello99.

the matching degree between the real workload and the α-
stable synthetic workload is still reasonably good.

6.2. Empirical Study

In order to intuitively present the synthetic workloads
and comparative results, without the loss of generality, we
select one group of the synthetic workloads from the search
engine I/O, tpc-d, cello96 and cello99, respectively. The
cumulative distribution functions (CDFs) of the selected
workloads, the 1st, 6th, 12th and 14th data sets, are illus-
trated in Fig. 5 and Fig. 6, the X-axis shows the I/O ar-
rival numbers per second (thereinto, the X-axis in Fig. 6(b)
shows the logscale), and the Y-axis denotes the percentage
of the number of I/O arrivals. A point (x;y) in the cumula-
tive distribution curve indicates that y% of arrival rates are
less than or equal to an arrival rate of x.

As can be seen from Fig. 5, the disk I/O workload syn-
thesized by the α-stable model very closely matches the
real trace data, especially for tpc-d. A quantitative ap-
proach to evaluate the improvement is to analyze the error.
Taking the I/O workload synthesized by the Poisson model
for an example, using the Maximum-likelihood estimate
method to obtain the parameter value of Poisson distribu-
tion provided for those data sets in search engine I/O and
tpc-d, we get the values of 27.1, 1.8999e+003, respectively.
For search engine I/O and tpc-d, the trimmed means of er-
rors between the real data set and the synthesized workload

through the Poisson model with these parameter values are
6.43, and 26.3, respectively, and the trimmed means of er-
rors between the real data set and the synthesized workload
through our proposed model are 2.47, and 5.25, respec-
tively. Accordingly, our proposed model can reduce the
trimmed mean of error of the Poisson models by 61.6%,
and 80%, respectively.

As can be seen from Fig. 6, the disk I/O workload syn-
thesized by the α-stable model very closely matches the
real trace data, especially for cello99. Taking the I/O work-
load synthesized by the ON/OFF model for an example, for
cello96 and cello99, the trimmed means of errors between
the real data set and the synthesized workload through the
ON/OFF model are 20.04, and 5.6, respectively, and the
trimmed means of errors between the real data set and the
synthesized workload through our proposed model is 18,
and 0.41, respectively. Accordingly, our proposed model
can reduce the trimmed mean of error of the ON/OFF
model by 10%, and 92.6%, respectively.

6.3. Discussion

The comparative analysis above shows that the α-stable
I/O workload model is able to synthesize various disk-level
I/O workloads accurately and flexibly. However, besides
the disk-level I/O workload, there are still other various
classes of I/O workloads such as file-level I/O workloads
studied in Ref. [10], I/O workloads for scientific applica-
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Figure 7. From (a) to (c): plot (a) illustrates the ACFs of I/O request inter-arrival times for ior2-strided.
Plot (b) and (c) show the CDFs of synthetic I/O traces and real trace for ior2-strided, respectively.

tions studied in Ref. [17], etc.. Then whether the α-stable
I/O workload model is also able to synthesize file-level I/O
workloads and characterize the I/O behavior of scientific
applications as accurately as it does for the I/O burstiness
in the disk-level I/O workload remains unknown.

In our preliminary study of the parallel I/O workloads
in the 2003 LLNL trace (including three scientific appli-
cations: ior2, f1 and m1, and detailed description of these
applications can be found in Ref. [2].) collected in a large-
scale scientific computing environment, we find that the
correlations of inter-arrival times in the I/O workloads for
some of the application nodes are evident but unnoticeable
in others. Taking ior2-strided (a subtrace of ior2) for an
example, the correlations of inter-arrival times in the I/O
workloads for some application nodes are strong, while
there is little correlation of inter-arrival times in some oth-
ers, as shown in Fig. 7(a). This result indicates that the
arrivals series in some nodes are independently and identi-
cally distributed but not in all nodes. Thus it is reasonable
to doubt the rationality of using the Markov model to model
and predict I/O requests for scientific applications [17].

In this case, a generic traffic model is necessary to effec-
tively synthesize these I/O workloads in scientific applica-
tions. This paper uses the α-stable IO workload model to
synthesize the ior2 I/O workload and compares the work-
load synthesized by our proposed model with the Markov
model in Fig. 7(b)-(c). In Fig. 7(b), the trimmed means of
errors between the real data set and the synthesized work-
load through the Poisson and our proposed models are 1.3,
and 1.56, respectively. As shown in Fig. 7(b), the matching
degree of our proposed model is comparable to the Markov
model, due to the fact that the I/O arrival process is inde-
pendently and identically distributed and I/O arrival pro-
cess can be modeled by the Markov model as described
in Ref. [17]. However, as can be seen from Fig. 7(c), the
matching degree of our proposed model is better than the
Markov model. In Fig. 7(c), the trimmed means of er-
rors between the real data set and the synthesized work-
load through the Poisson and our proposed models are 22,
and 14.9, respectively. For the workload synthesized by
the Markov model, an evident deficiency is that it is diffi-

cult for the Markov model to capture the burstiness in I/O
workloads. This indicates that the α-stable I/O workload
model is very likely to be useful in synthesizing the I/O
workload in the scientific computing environment, and our
proposed model has good potential to be explored and ex-
ploited to provide useful insight into the synthesis of vari-
ous I/O workloads.

7. Conclusions

The ability to accurately model disk I/O workloads
mathematically is important and valuable to systems de-
signers and practitioners since it can help reveal intrinsic
relationships between the I/O traffic characteristics and the
basic phenomenon in I/O workload (e.g., I/O burstiness)
and provide the theoretical basis to predict I/O workloads,
thus facilitating and guiding possible design optimizations,
such as resource distribution and bottleneck identification
and removal, to improve I/O performance and assure QoS.
Unfortunately, accurately modeling disk I/O workloads re-
mains an challenging issue due to the Burstiness in the ar-
rival process. This paper proposed and evaluated a novel
and generic mathematical model, the α-stable disk I/O
workload model, to accurately synthesize I/O workloads.

Through studying the correlations of I/O inter-arrival
times in some representative disk workloads, examining
the Gaussian property of self-similar workloads and com-
paring with other I/O workload model, and simulation ex-
periments, we has shown that our α-stable disk I/O work-
load can accurately describe the I/O arrival process with
the property of either independent identically distribution,
or Gaussian self-similarity, or non-Gaussian self-similarity.
We compare our model against conventional models, in-
cluding the Normal, Poisson and Lognorm methods for
the IID workloads, and the FBM, FARIMA, ON/OFF for
self-similar workloads. Experiment results show that the
synthetic traces generated by our model can more faith-
fully emulate the I/O bursty arrival behaviors than the other
methods. Specifically our model can more generally de-
scribe the heavy-tail characteristic in self-similar I/O traf-



fics. In addition, our model has five input parameters and
each one has its physical meaning, allowing us to conve-
niently turn the I/O workload model for different environ-
ments. For example, we can change the values of parame-
ter α so that our model is flexible to characterize the bursti-
ness in disk I/O workload under both the Gaussian and non-
Gaussian conditions.
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