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Abstract—Random accesses are generally harmful to perfor-
mance in hard disk drives due to more dramatic mechanical
movement. This paper presents the design, implementation,and
evaluation of Hot Random Off-loading (HRO), a self-optimizing
hybrid storage system that uses a fast and small SSD as a by-
passable cache to hard disks, with a goal to serve a majority
of random I/O accesses from the fast SSD. HRO dynamically
estimates the performance benefits based on history access
patterns, especially the randomness and the hotness, of individual
files, and then uses a 0-1 knapsack model to allocate or migrate
files between the hard disks and the SSD. HRO can effectively
identify files that are more frequently and randomly accessed
and place these files on the SSD. We implement a prototype of
HRO in Linux and our implementation is transparent to the rest
of the storage stack, including applications and file systems. We
evaluate its performance by directly replaying three real-world
traces on our prototype. Experiments demonstrate that HRO
improves the overall I/O throughput up to 39% and the latency
up to 23%.

I. INTRODUCTION

The increasingly widening speed gap between hard disks
and memory systems is a major performance bottleneck in
computer systems. Under random accesses, disk heads fre-
quently move to different noncontiguous physical locations
and such slow mechanical movements introduce significant
delay. Many researchers have made great efforts to improve
the random access latency, such as group disk layout [1], [2],
prefetch [3], [4] and I/O scheduler [5], [6]. This paper exploits
solid state devices (SSDs) to address the performance issue.
Unlike magnetic hard disks, SSDs use non-volatile memory
chips and contain no moving components. The read and write
performance of SSD is asymmetric but their response time is
almost constant. While SSDs have the overhead of erasure-
before-write, the write latency in SSD has recently been
dramatically improved. Currently, the random read and write
performance of SSD is one to two orders of magnitude better
than hard disks, as shown in Figure 2(c).

Nowadays SSDs, especially high-end ones, are still much
more expensive than hard disks in terms of gigabytes per
dollar [7]. Combined with the concerns of reliability due
to limited numbers of erasure cycles, the cost of SSDs has
impeded their applications as the major storage media, espe-
cially in enterprise systems. Thus SSDs cannot replace hard
disks as the primary storage media in the industry in the near
future. On the other hand, throughput-price ratio of SSD is
approximately 2 orders of magnitude better than hard disks if
one measures random I/Os per second per dollar [8]. SSDs

provide extraordinarily fast performance for workloads with
intensive random accesses. Such workloads are notoriously
harmful to performance for hard disks. This key advantage
gives us an exciting opportunity to build a hybrid system
composed of one or more slow but large-capacity hard disk(s)
and a small but fast SSD. The capacity of the SSD in such
a hybrid storage system can be as small as 1% of the disk
capacity. For example, it may consist of a SSD with a capacity
of only ten gigabytes and disks with multiple terabytes. The
hybrid storage leverages the fast random access performance in
SSDs to boost the overall I/O performance without generating
a large cost overhead.

The key challenging research issue in such a hybrid storage
system is how to dynamically allocate or migrate data between
the SSD and the disks in order to achieve the optimal perfor-
mance gain. In this paper, we propose a hybrid storage archi-
tecture that treats the SSD as a by-passable cache to hard disks,
and design an online algorithm that judiciously exchanges data
between the SSD and the disks. Our basic principle is to place
hot and randomly accessed data on the SSD, and other data,
particularly cold and sequentially accessed data on hard disks.
Our hybrid storage system, called Hot Random Off-loading
(HRO), is implemented as a simple and general user-level
layer above conventional file systems in Linux and supports
standard POSTIX interfaces, thus requiring no modifications
to underneath file systems or users applications. This prototype
is comprehensively evaluated by using a commodity hard disk
and SSD.

HRO dynamically and transparently places data on either
SSD or disks based on the history I/O activities, including
the randomness and the hotness. The randomness measures
how far the target data of two consecutive requests typically
are isolated in disk physical or virtual layout, and the hotness
estimates how often data are accessed. Since the SSD used in
our hybrid storage system is limited in capacity, we model the
data allocation issue as a classic 0-1 knapsack problem. We
exploit a simple but fast approximate solution to dynamically
migrate data between SSD and hard drives. Data migration
is not executed very frequently and is only triggered when
the storage system is mostly idle, such as midnights, thus
incurring little interference to foreground applications. After
the migration, future accesses to these data are automatically
and transparently redirected to the corresponding devices. As a
result of data migration and traffic redirection, HRO achieves
the following I/O performance benefits:



(a) Original disk layout. Accesses are made in the order from 1 to 8. Due to
the long inter-file distance between file 1 and file 3, long seeks occur if accesses
to these files are interleaved.

(b) Expected hybrid layout. By offloading random accesses to SSD, most hot
random accesses are served by SSD, and most sequential accesses are served
by the hard disk. Long-distance seeks are eliminated in thisexample.

Fig. 1. A simple example motivating our research
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(a) I/O access traces captured at the block level.
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(b) Average seek distance comparison.
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(c) Log scale I/O latency of hard disk and SSD.

Fig. 2. Plota gives a snapshot of the access sequence of disk sectors captured by a tool calledblktrace when replaying the mail server workload. It shows
that even after the I/O scheduler in the operating systems reorders and merges I/O requests, there still exists a large variety of random accesses to the hard
disk. The virtual time is defined as the number of references issued so far and is incremented for each request. In plotb, it is observed that if we filter out
random accesses, the average disk seek distance is reduced significantly. Plotc clearly shows that random operation latency of the hard diskis much inferior
to SSD.

• Hot random accesses are off-loaded from slow hard disks
to fast SSD, i.e., a random access is served by the SSD
with a very large likelihood. This is motivated from
the fact that random access in SSD are two orders of
magnitude faster than hard disks as shown in Figure 2(c).

• The access locality of data traffic to hard disks becomes
stronger when most random accesses are filtered out and
redirected to the SSD. Accordingly, seek and rotational
latencies in hard disks are significantly reduced.

We evaluate our design and implementation by first recon-
structing the file systems image and then replaying these traces
on the constructed image. We use three I/O intensive work-
loads, including a mail server workload, a research workload,
and an office workload. Experimental results show that HRO
improves the overall I/O throughput up to 39% and the latency
up to 23%.

The key contributions of this paper are summarized as
follow. (1) We design and implement a hybrid storage system
in Linux, called HRO, which is shown to significantly improve
the storage system performance, under three representative
workloads tested in this paper. (2) We develop a 0-1 knapsack
optimization model that is based on the estimates of random-
ness and hotness to dynamically migrate files between disks
and the SSD, with a goal to redirect hot and random accesses
to SSD.

The rest of the paper is organized as follows. Motiva-
tion and characteristics of I/O workloads are discussed in
Section II. Design and implementation details are given in

Section III. Experimental results are presented in SectionIV.
Section V summarizes related work. Conclusions are made in
Section VI.

II. RESEARCH MOTIVATIONS

A. Motivations

Hard drive disks often do not perform well in a multi-task
environment due to the loss of access locality caused by the
interleaving of multiple disk I/O streams. For example, on a
typical server, such as a file server, a mail server, or a web
server, many processes run independently in a time-sharing
fashion. Even if data requested by each process is sequentially
stored on a disk, we find that multiplexing between requests
from different processes degrades the I/O performance sig-
naficantly. Although disk scheduling algorithms, such as CFQ
and anticipatory scheduling [6], has been used to reduce the
impact of multiplexing, the access locality is still difficult to
preserve due to the intrinsic nature of time-sharing and fairness
enforcement.

We use a simple example to illustrate that disk performance
suffers when multiple I/O processes concurrently access the
shared storage system, no matter whether these accesses are
sequential or random. In Figure 1(a), there are three hot
files, including file 1, 2 and 3, which are often accessed in
that order. Each black circle in the figure is an I/O access.
Assume that file 1 and file 2 are sequentially accessed, and
file 3 is randomly accessed. These files are assumed to be
placed non-contiguously on disks, as shown in Figure 1(a).
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(c) Random hot access.

Fig. 3. Cumulative distribution function (CDF) of access frequencies, file sizes, randomness.In plot a, a very small percentage of files attract a majority
of I/O accesses. Plotb show that three workloads have totally different distributions of file sizes. Plotc indicates that non-sequential accesses exist in three
workloads.

One can easily observe that while the sequentiality on file 2
benefits disk performance, the disk suffers from three aspects.
Long-distance seek operations occur between file 1 and file
3. Accesses to file 1 becomes pseudo-sequentially as they are
interfered by the accesses of file 2 and 3. Disk heads have to
move back and forth when serving requests to file 3.

These observations motivate us to offload random accesses
to SSD to improve the sequentality of accesses to disks. As
illustrated in Figure 1(b), if file 1 and file 3 are placed on
SSD, the disk accesses become completely sequential. In real
systems, disk access patterns are more complicated than this
example. However, the simple example intuitively illustrates
how seek time and rotational delays can be significantly
reduced via offloading hot and random accesses.

In real systems we often observe such similar harmful ac-
cess patterns. Figure 2(a) presents the access sequence of disk
sectors captured byblktrace [9] when replaying a mail server
workload. In this workload, multiplexed I/O requests from
different users are often not arranged into a fully sequential
I/O request by the I/O scheduler or disk firmware. We conduct
simple experiments to estimate how much improvement can
potentially be achieved if all random accesses are filtered out.
We remove most of the random accesses when replaying the
mail server workload and compare the performance results
to that of the original workload. Figure 2(b) computes the
moving average of hard disk head seek distance in the original
workload and the filtered workload. The results show that in
the filtered workload the seek distances measured in sectors
are significantly reduced, and some of them are reduced to
almost zero.

B. Characteristics of Workloads in Real Systems

In this section, we examine the basic characteristics of
typical server I/O workloads and elaborate on those charac-
teristics that directly motivate our work. We focus on three
modern server workloads [10], including a campus mail server
workload (Mail), a department research workload (Research)
and a department office workload (Office). Some statistics of
these three workloads are summarized in Table I.

We find that a hot file tends to remain as hot in the
near future in real systems. We identify the top 10%, 20%,
30%, and all most frequently accessed files of each day, and
calculate the percentage of hot files in the following days that
are also hot files of the first day. The results show that all

TABLE I
STATISTICS OFTHREE WORKLOADS STUDIED

Office Mail Research
Trace period One week One week One week

Total ops 211,308,494 187,974,468 29,550,778
Metadata ops 66% 14% 75%

Read 24% 65% 10%
Write 10% 21% 15%

Read (MB) 833,135 845,123 32,498
Write (MB) 242,376 313,987 61,488
R/W Ratio 3.4 2.5 0.5

workloads exhibit large overlaps of hot files across successive
days during a weeklong period. This indicats that popularity
is consistent across multi-day periods. In addition, we observe
that only a very small subset of files are hot. In Figure 3(a),
the hot files are only less than 3 percent of the total files. This
is consistent with the conventional wisdom that a very small
percentage of files attract most of the I/O accesses. Figure 3(b)
shows the distributions of file sizes in the three workloads.
In these three workloads, no very large files exist and most
files are in KBs or MBs. As a result, a SSD with a small
capacity might be sufficient to cache hot files, thus reduce the
price overhead of a hybrid storage system. In Figure 3(c),
the randomness of three workloads are compared. We can
see that randomness exists in all cases, and especially in the
top accessed files. Thus, HRO can migrate random access
dominated data to mitigate the hard disk seek overhead.

III. DESIGN AND IMPLEMENTATION

In this section, we present more practical and realtistic
details in our implementation of HRO. Figure 4 presents the
architecture of HRO and its relation to the rest of the storage
stack. HRO is built above Fuse [11] in Linux at the user
space level, and is similar to the structure of Umbrella [12].
We implement HRO with about 4000 lines of C++ code. It
automatically organizes files stored in different file systems
into a single and shared virtual namespace. HRO supports
the standard POXIS interface for the unified namespace. It
automatically de-multiplexes the namespace operations among
underneath native file systems. Users can mount the hybrid
storage systems without knowing details of the storage struc-
ture and all the HRO background migration is transparent to
the end user.

Positioning HRO above the file system layer and operating
at the granularity of files is important for two important



reasons. First, by operating above the file system layer, HRO
becomes independent of the file system, and can thereby work
seamlessly with any native file systems. It can also support
multiple active file systems and mount-points simultaneously.
Second, working at the file level can simplify the manage-
ment complexity of the virtual hybrid layer, and reduce the
performance and memory overhead significantly.

HRO consists of five components: data collector, mapping
table, randomness calculator, allocation module and migrator.
The following discusses each component in detail.

DATA COLLECTOR captures all access requests on the
system call I/O path and collects these information for the
randomness calculator. HRO intercepts every I/O request and
identifies the corresponding physical file location from the
mapping table, then sends the I/O request to the lower VFS
and file system. At the same time, all requests are sent to the
data collector and the randomness calculator. The allocation
algorithm studies these requests information and identifies the
data to be migrated. This execution is shown in Figure 4 as
step 1 to 9.

Fig. 4. HRO architecture. HRO is built by using FUSE and it is composed
of five components: data collector, mapping table, randomness calculator,
migrator, and allocation module.

The MAPPING TABLE is a hash table in memory to
identify in which storage device, SSD or disks, a specific fileis
stored. The structure of the mapping table is shown in Figure5.
Specifically, it translates the logical file location to the physical
file location which is indicated byDeviceID andInode. The
hash key is the logical file location and each hash entry is a
special data structure as explained in Table II. To benefit from
the allocation of data, we must be able to quickly find them and
send the actual I/O request to the corresponding storage device.
The mapping table is composed of the hash entries for all files.
The lookup, delete and add operations on the hash table are
designed for high speed. In addition, the mapping table has
a very small memory overhead. Only a total of 50 bytes are
needed for each file entry in the table. A mapping table of
50MB can keep track of 1,000,000 frequently accessed files.
As most of todays computer systems have multiple gigabytes
of memory, it is usually not a problem to keep all hash entries
in memory. For extremely large systems, the mapping table can
be flushed to hard disks and loaded into memory on demand.

The RANDOMNESS CALCULATOR mainly evaluates
the randomness of each individual file. Information such as last

Fig. 5. Mapping table structure. The mapping table is composed ofN
hash entry, each hash entry is a data structure explained in Table II.

TABLE II
EXPLANATION OF FIELDS IN A HASH ENTRY

Field Explanation
Device ID File located device ID (8 bits)
Inode File inode number in the file system (48 bits)
Count File randomness count number (32 bits)
Size File size (64 bits)
Frequency File access frequency (32 bits)
Type File last access type (8 bits)
Time File last access time (32 bits)
Offset File last access offset (64 bits)
End File last access end (64 bits)

file access time, last access type, file size, file access frequency
are updated upon each file access. In order to recognize the
file random/sequential access pattern, Algorithm 1 is designed
to logically merge sequential I/O requests that arrive within a
short time window. The algorithm counts the total number of
merged requests. Similar to the block-level I/O scheduler in
many operating systems, we merge small requests into a larger
sequential segment and keep independent random requests as
they are. If the arrival interval of two requests is larger than a
predefined threshold 0.5 second, then we treat these requests
as non-sequential. After merging the requests, the total number
of access segments remained for a given file is defined as the
randomness count of that file. For example, if the total number
of segments equals to the access frequency, then this file is
accessed fully randomly, because no requests are merged. If
the segment number equals to one, then all the requests are
merged into one because of the perfect sequentiality of the
requests.

In Algorithm 1, for each new request, we first locate the
corresponding hash entry in the mapping table. From line
3 to line 5, the algorithm compares the sequentiality of
the new request with previous I/Os. If the read/write type,
access interval as well as the access offset match, then we
just update the last I/O information and merge them as a
sequential segment as shown in line 6 and 7. Otherwise, the
new request is treated as a random one, the algorithm increases
the randomness countRi for file i and uses the new I/O request
as the last I/O request as shown in line 11 and 12.

The MIGRATOR handles data movement between SSD
and disks. It compares the new placement of data generated
from the file allocation algorithm to their old placement, and
identifies files that need to be migrated. It then schedules and
optimizes the migration. Because migrations cause additional
I/O traffic, thus care must be taken so that they do not affect
the foreground I/O performance. In our design, HRO conducts
migrations during system idle time such as midnight. For



simplicity, in our experiments, all the allocation algorithms are
executed only once each day and migrations are performed at
midnight.

Algorithm 1 : I/O requests merge and count algorithm
Input : A new I/O request info.
Output : Updated hash entry information

foreach New I/O request do1

Find the corresponding hash entry;2

if I/O type equals to the last access type then3

if I/O interval time smaller than 0.5s then4

if New I/O start address equals to last I/O5

end address then
Last I/O end← new I/O end;6

Update last I/O access time;7

end8

end9

else10

Replace the last I/O info. with new I/O info.;11

Ri = Ri + 1;12

end13

end14

The ALLOCATION ALGORITHM is specially designed
to maximize the utilization of SSD in our hybrid storage
systems. The capacity of SSD is small in our hybrid systems
since SSD are much more expensive than disks. Which data
and how much data should be placed on SSD is a key issue
for improving the overall performance. We find that there
is a similarity between HRO data placement issue and the
classic 0/1 knapsack problem. The placement problem can be
summarized as following: Given a set of files, each with a
size and a benefit value, determine the selection of files to
be included in a container so that the total size is less than a
given limit and the total value is as large as possible.

We create a 0/1 knapsack problem model for HRO to
optimize the data allocation efficiency. First, we need to
determine what is the benefit value of storing a file on SSD.
Because hard disks are slow for random accesses and SSD
is extraordinary fast for random accesses, we should take the
randomness and hotness into considerations. Intuitively,the
benefit of storing a file on SSD increases if the file is more
randomly accessed and/or the file is more frequently accessed.
As a result, the benefit valuevi of file i is empirically defined
as follows in this paper

vi =
fi
si
·Ri (1)

wherefi is the access frequency of filei, si is the file size, and
theRi is the file random access count calculated in Algorithm
1. The benefit valuevi is defined as the multiplication of access
frequency per unit size with the randomness countRi, which
means that if a file has a high access frequency, a small file
size, and a large the randomness countRi, then it is regarded
as a high benefit value file.

Mathematically the 0-1-knapsack data allocation problem
can be formulated as the following equations. In HRO, we have

n different files. Each filei has a benefit value ofvi and a size
of si. The variablexi indicates the target device of each file.xi

is either 0 or 1; 0 means placing the file on the hard disk, and
1 means storing the file in SSD. HRO selects a combination of
files to maximize the total benefit value with the subject to the
SSD capacity limitation. This model is capable of finding the
most valuable files from previous I/O workloads and choosing
them as candidates for migration.

Maxmize

n∑

i=1

xivi

Subject to :

n∑

i=1

sixi ≤ CAPACITYssd, xi ∈ {0, 1}

However, the 0-1-knapsack is a classic NP-complete
problem and no efficient algorithms have been found.
In all three workloads studied in this paper, the real
file system image contains millions of files, and thus
the non-polynomial-time solution is unacceptable in
real systems. In HRO, we deployed a polynomial-time
approximation algorithm to keep the problem simple
while achieving a reasonably good migration performance.

Algorithm 2 : Data allocation algorithm
Input : Mapping table, FileSetssd
Output : SETssd, SEThdd

MoveSet← empty;1

TotalSize← 0;2

forall Mapping table entry do3

Sort all items in the decreasing order ofvi/si;4

end5

for i ← 1 to n and TotalSize<CAPACITYssd do6

if TotalSize + sizei ≤ CAPACITYssd then7

TotalSize← TotalSize+ sizei;8

xi ← 1;9

Add i to MoveSet;10

end11

end12

SETssd ←MoveSet− (MoveSet
⋂
FileSetssd);13

SEThdd ← FileSetssd − (MoveSet
⋂
FileSetssd);14

In Algorithm 2, the input is the mapping table and the file
set FileSetssd which includes all the files currently stored
on SSD. The output is the file setSETssd( files need to
be migrated to SSD from HDD) and file setSEThdd(files
need to move from SSD to HDD). It setsMoveSet to
empty, which is the moving set generated by HRO allocation
algorithm without comparing with previous actual file location.
TotalSize is set to zero initially, which is the total size of
files that is scheduled to move. First it calculates and sorts
the file value in decreasing order, as shown in line 4. Then
files to be moved to SSD are selected according to its value
in a greedy way. For all the remaining best value files, if
the file size plus currentTotalSize is smaller than the SSD
capacity, thenTotalSize increases and the file is indicated to
be stored on SSD, as shown in line 6 to line 12. After the



TABLE III
CONFIGURATION OFSTORAGE SERVER

Components Specification
Operating system Ubuntu 10.04 with kernel 2.6.31
File system Ext3
CPU AMD Opteron dual core 1000 Hz
Memory 1G DDR2 667Hz
SSD OCZ-AGILITY2

Capacity 60GB
Sequential Read/Write 20us/70us
Random Read/Write 270us/375us

Hard Disk 3* WDC WD7500AAKS
Capacity 750GB
Rotational speed 7200RPM
Read Seek 8.9ms
Track-to-track Seek 2ms
Full Stroke Read Seek 21ms

loop, we compare the moving set with the file set currently
on SSD, and add files that are in theMoveSet but not on
SSD into SETssd. Similarily, files that need to be moved
to hard drives are added toSEThdd. The complexity of this
algorithm is onlyO (n · logn). This allocation algorithm is
only an approximation solution to our problem. However, we
found that it is efficient and achieves very good performance
in our experiments.

IV. EXPERIMENTAL STUDY

We use three representative workloads to evaluate our
design in this section. We compare HRO against two basic
systems: a conventional storage system based on disks, and a
hybrid storage systems in which the SSD stores the most fre-
quently accessed files. Note that the placement policy in HRO
considers both hotness and randomness. In our experiments,
the usable storage capacity of SSD is set approximately 5%
of the size of file system images and less than 1% of the hard
disk capacity, in order to minimize the cost overhead. The
same type of disks is used in HRO and the baseline systems.
The SSD in HRO is used as a by-passable cache to disks. We
do not compare HRO with hybrid systems that simply organize
SSDs and disks into storage RAIDs since such systems require
SSDs with a very large storage capacity.

In this section, we evaluate HRO and the baseline systems
by using two performance metrics: the I/O bandwidth and the
I/O latency. In order to examine the impact of off-loading, we
record all block-level requests issued by the disk scheduler at
runtime and calculate average seek distances. Since most of
randomly accessed files are allocated to the SSD and most of
sequentially accessed data are kept on disks, the average seek
distance on disks is expected to decrease significantly.

A. Experimental Setup

Our test bed is composed of two machines: the monitor
machine and the storage server. The storage server config-
uration is given in Table III. The memory size is set to
1GB to minize the impact of the buffer cache and the buffer
cache is cleared during each experiments. In order to remove
the interference of requests that are not issued by our test
benchmarks, the operating system is installed on a separate
hard disk. Another two hard disks and a SSD are used in

our experiments. NFS traces, collected in three large servers,
are replayed on our prototype implementation via a modifed
replay tool calleddbench [13]. The description of these traces
have been given in section II. At the same time, block-level
requests are captured byblktrace [9] and these requests are
sent to the monitor machine for block level analysis. We have
developed a small toolkit to analyze the I/O traces and then
reconstruct the original file system image. The toolkit also
translates the original NFS traces into the dbench [13] NFS
replay format.

While the original I/O traces are collected over a period of
several weeks, due to time limitation, we only replay a subset
of traces for each workload, with each subset containing one
week of I/O activities. Migration is trigged during midnight
when the system is typically idle. We use an unlimited
acceleration factor to reduce the experiment time and the
next workload request is issued as soon as the pervious one
completes. The trace replay acceleration factor is reducedto
1X when the migration is performed. While the capacity of
SSD used in our experiment has 60GB, we artificially limit the
usable space on SSD to 5% of the total file system images, i.e.,
2.5GB for the mail workload, 12GB for the office workload
and 7GB for the research workload. The capacity of SSD is
less than 1% of hard disk, which is cost efficient for the HRO
hybrid architecture.

B. System Bandwidth

HRO successfully outperforms the two baseline systems
and achieves much higher bandwidth in three workloads
tested in this paper, as shown in Figure 8. The baseline of
conventional disk based system is denoted as HDD, and the
hybrid storage system with frequency only based migration
strategy is denoted as HOT in the rest of this paper. For the
mail server workload, HRO outperforms HDD and HOT by
up to 15% and 6%, respectively, in bandwidth. With a very
small size SSD, HRO improves the bandwidth significantly
compared with HDD, and the improvement is mainly made by
migration of hot random data to SSD. In the office workload,
the read/write ratio is about 3.5, and it is the busiest workload
in our experiment. As a result, the performance improvement
is the most significant over the three workloads. For all seven
days, the HRO bandwidth is consistently better than that
of HDD and HOT. In average, the bandwidth of HRO in
the office workload is 39% and 21% better than HDD and
HOT, respectively. The research workload is dominated by
writes, and the read/write traffic ratio is about 0.5, which is
not friendly for SSD because of heavy background garbage
collection on SSD. In addition, this workload contains a large
amount of metadata operations. Therefore, compared with
the other two workloads, the HRO improvement is relatively
smaller in the research workload.

C. System Latency

Figure 6(a) compares the latencies of these three systems
under the mail server workload. HRO improves the average
latency of HDD and HOT by 12% and 8% respectively. Most
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Fig. 6. Average latency in three workloads.
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(c) HRO

Fig. 7. Disk seek distance over the time under the mail server workload. By offloading hot random data to SSD, HRO significantly mitigates the hard
disk seek distance.

importantly, HRO can reduce the read latency of HDD and
HOT by 22% and 10%, and reduce the write latency of HDD
by 13%. The significant read/write improvement indicates that
HRO can successfully capture hot and random data and place
them on SSD. For metadata operations, these three schemes
almost have the same performance.

For the office workload, HRO reduces the average latency
of HDD and HOT by 23% and 17% respectively as shown
in Figure 6(b). The average read latency is reduced by 24%
and 16% while the average write latency is reduced by 29%
and 14%. Metadata operation performance is also improved
correspondingly, because there exists a large amount of meta-
data operations in this workload. Figure 6(c) shows the average
system latency improvement. HRO reduces the average latency
of HDD and HOT by 16% and 10%, the average read latency
by 21% and 15%, and the average write latency by 26% and
14%.

D. Reduce disk seek distances analysis

When replaying the file-level I/Os specified in the traces
during the experiments, we also capture the actual block-level
access sequences to the disks and the requests served by the
buffer cache are not included in the sequence. Due to the
space limitation, we only take the mail server workload as
an example to illustrate the experiment results.

Figure 7 plots the disk seek distances observed in three
schemes. Apparently, HDD has the largest amount of long-
distance seek operations caused by the random accesses and
long-distance seeks are reduced by HOT. Impressively, most
of large seeks occurred in the HDD system is now eliminated
in HRO, as shown in Figure 7. Figure 9 compares the moving
average of seek distances of these three schemes and the
moving window size is set as 5 requests. This figure clearly
shows that HRO can successfully mitigate most of the random
access and reduce the disk head seek distance of HDD and
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Fig. 9. Disk seek distance runtime average.

HOT with an average of 69% and 53%, respectively. The
reduction in disk seek distances is then directly translated into
the performance gain.

V. RELATED WORK

A. Adaptive Disk Layout

Many researchers have made great efforts to reduce or hide
long-seek operations in disks. FFS [14] and its successors [15]



improve disk bandwidth and latency by placing related data
objects (e.g., data blocks and inodes) physically close to each
other on a disk drive. BORG [1] is a self-optimizing storage
system that performs automatic block reorganization basedon
the observed I/O workload. Related blocks are moved together
to mitigate the disk seek distance. FS2 [2] proposes replication
of frequently accessed blocks based on disk access patterns
in file system free space to reduce seek distance and energy
consumption. C-FFS [16] advocates co-locating inodes and
file blocks for small files, which can reduce the latency by
accessing inodes and file data together. HFS [17] combines
the strengths of FFS and LFS while avoiding their weaknesses.
This is accomplished by distributing file system data into two
partitions based on their size and type.

B. Hybrid Storage and Cache Technique

In [18], the authors create a hybrid system composed of
a SSD and a hard disk used in a database environment.
All operations are treated as fixed size random operations.
It places read dominated blocks on the SSD while allocates
write dominated blocks on the hard disk. Another work [19]
configures a SSD-based multi-tier system with the optimal
number of devices per tier to achieve performance goals at
minimum cost. Umbrella [12] is a file system level approach
to combine multiple device in a unified namespace. [20]
allocates data block according to the optimization equations
to maximize the hybrid system performance. DCD [21] uses
a small log disk, referred to as cache-disk, as a secondary
disk cache to optimize disk write performance. Write off-
loading [22] allows write requests on spun-down disks to be
temporarily redirected to persistent storage elsewhere inthe
data center to save energy. Griffin [23] extends SSD life time
and maintains acceptable system performance. FlashVM [24]
is a system architecture and a core virtual memory subsystem
built in the Linux kernel that uses dedicated flash for paging.

VI. CONCLUSION

This paper presents a cost-effective hybrid storage system
that leverages the fast SSD as a by-passable cache of slow
disks to offload workloads that are harmful to disk perfor-
mance. Our hybrid storage system, called HRO, takes both
the randomness and hotness into considerations when deciding
what data should be stored on SSD. Specially, HRO places data
files that are accessed most frequently and in a random fashion
to the SSD with a goal to reduce the number of long-distance
seek operations on disks. We design an allocation algorithm
based on the classic 0-1 knapsack optimization problem to
dynamically migrate files between disks and the SSD. We
implement our design in Linux and our implementation is
transparent to underneath file systems and user applications.
We evaluate our design and implementation by replaying
three representative workloads on our implementation. Our
experiments show that a SSD of a very small capacity (1% of
the capacity of disks) can very effectively improve the overall
I/O performance of disks by up to 39% and the latency up to
23%.
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