
HBA: Distributed Metadata Management for
Large Cluster-Based Storage Systems

Yifeng Zhu, Member, IEEE, Hong Jiang, Member, IEEE,

Jun Wang, Member, IEEE, and Feng Xian, Student Member, IEEE

Abstract—An efficient and distributed scheme for file mapping or file lookup is critical in decentralizing metadata management within

a group of metadata servers. This paper presents a novel technique called Hierarchical Bloom Filter Arrays (HBA) to map filenames

to the metadata servers holding their metadata. Two levels of probabilistic arrays, namely, the Bloom filter arrays with different levels

of accuracies, are used on each metadata server. One array, with lower accuracy and representing the distribution of the entire

metadata, trades accuracy for significantly reduced memory overhead, whereas the other array, with higher accuracy, caches partial

distribution information and exploits the temporal locality of file access patterns. Both arrays are replicated to all metadata servers

to support fast local lookups. We evaluate HBA through extensive trace-driven simulations and implementation in Linux. Simulation

results show our HBA design to be highly effective and efficient in improving the performance and scalability of file systems in

clusters with 1,000 to 10,000 nodes (or superclusters) and with the amount of data in the petabyte scale or higher. Our implementation

indicates that HBA can reduce the metadata operation time of a single-metadata-server architecture by a factor of up to 43.9 when

the system is configured with 16 metadata servers.

Index Terms—Distributed file systems, file system management, metadata management, Bloom filter.

Ç

1 INTRODUCTION

RAPID advances in general-purpose communication net-
works have motivated the deployment of inexpensive

components to build competitive cluster-based storage
solutions to meet the increasing demand of scalable
computing [1], [2], [3], [4], [5], [6]. In the recent years,
the bandwidth of these networks has been increased by
two orders of magnitude [7], [8], [9], which greatly
narrows the performance gap between them and the
dedicated networks used in commercial storage systems.
This significant improvement offers an appealing oppor-
tunity to provide cost-effective high-performance storage
services by aggregating existing storage resources on each
commodity PC in a computing cluster with such networks
if a scalable scheme is in place to efficiently virtualize
these distributed resources into a single-disk image. The
key challenge in realizing this objective lies in the
potentially huge number of nodes (in thousands) in such
a cluster. Currently, clusters with thousands of nodes are
already in existence, and clusters with even larger
numbers of nodes are expected in the near future.

Since all I/O requests can be classified into two

categories, that is, user data requests and metadata requests,

the scalability of accessing both data and metadata has to be
carefully maintained to avoid any potential performance
bottleneck along all data paths. To divert the high volume of
user data traffic to bypass any single centralized component,
the functions of data and metadata managements are
usually decomposed, and metadata is stored separately on
different nodes away from user data. Although previous
work on cluster-based storage mainly focuses on optimizing
the scalability and efficiency of user data accesses by using a
RAID-style striping [3], [10], caching [11], scheduling [12],
[13], and networking [14], little attention has been drawn to
the scalability of metadata management.

Yet, the efficiency of metadata management is critical for
the overall performance of cluster-based storage systems. It
not only provides file attributes and data block addresses
but also synchronizes concurrent updates, enforces access
control, supports recovering from node failures, and
maintains consistency between user data and file metadata.
A study on the file system traces collected from different
environments over a course of several months shows that
requests targeting metadata can account for up to 83 percent
of the total number of I/O requests [15]. Under such
skewed loads to metadata, a centralized metadata manage-
ment system certainly will not scale well with the cluster
size. As the number of files or I/O requests increases, the
throughput of metadata operations on a single metadata
server (MS) can be severely limited.

This paper proposes a novel scheme, called Hierarchical
Bloom Filter Arrays (HBA), to evenly distribute the tasks of
metadata management to a group of MSs. A Bloom
filter (BF) is a succinct data structure for probabilistic
membership query. Our analysis led us to the conclusion
that a straightforward adoption of BFs is impractical due to
the memory space overhead when the number of files is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008 1

. Y. Zhu is with the Department of Electrical and Computer Engineering,
University of Maine, Orono, ME 04473. E-mail: zhu@eece.maine.edu.

. H. Jiang and F. Xian are with the Department of Computer Science and
Engineering, University of Nebraska, Lincoln, NE 68588.
E-mail: {jiang, fxian}@cse.unl.edu.

. J. Wang is with the School of Electrical Engineering and Computer Science,
University of Central Florida, Orlando, FL 32816.
E-mail: jwang@eecs.ucf.edu.

Manuscript received 28 June 2006; revised 2 Mar. 2007; accepted 20 June
2007; published online 12 Oct. 2007.
Recommended for acceptance by A. Pietracaprina.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0173-0606.
Digital Object Identifier no. 10.1109/TPDS.2007.70788.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

very large. By exploiting the temporal locality of metadata

accesses, we propose the use of two levels of BF arrays. At

the first level, a small array with a high accuracy is used to

capture the destination MS information of frequently

accessed files to keep high management efficiency while

reducing the memory overhead. At the second level, an

array with lower accuracy in favor of memory efficiency is

used to maintain the destination metadata information of all

files. Full pathnames are used for BF hashing. Both arrays

are replicated to all MSs to facilitate fast local lookups. As

the system evolves, as a result of events such as file creation

and deletion, workload variations, and changes in server

configurations, a BF is updated locally, and the changes are

propagated to its remote replicas periodically to improve

the lookup accuracy. Our trace-driven simulations show

that our HBA design has a strong scalability in decentraliz-

ing metadata management. Our preliminary results are

published in [16]. This paper incorporates our experimental

results based on a real implementation in Linux.
This paper has the following technical contributions:

. It analyzes the performance of the pure BF array
(PBA) approach by using both theoretical models
and trace simulations. The efficiency and scalability
of this approach are examined under different
workloads and cluster configurations.

. It proposes and evaluates a hybrid approach that
uses hierarchical structures. It explores the impacts
of different parameters to optimize the trade-off
between the efficiency of metadata distribution
and management, and the memory and network
overhead.

. It compares both the HBA and PBA schemes using
two artificially scaled-up large file system traces that
emulate file systems of up to 1,300 nodes and
710 active users.

. HBA attempts to optimize the trade-off between the
efficiency and the network and memory overhead.
To achieve high metadata lookup efficiency, PBA
with high accuracy must be used, and thus, it suffers
severely from large memory overhead. On the other
hand, to maintain the same efficiency, a scheme
using only pure LRU lists has to be updated very
frequently, and thus, it suffers from enormously
large network traffic overhead. HBA employs a
hierarchical structure integrating a PBA of lower
accuracy (to significantly reduce memory overhead)
with a pure LRU scheme of lower update frequency
to achieve a good trade-off between the efficiency
and the memory and network overhead. As a result,
HBA achieves a high efficiency without significant
memory or network overhead.

The rest of this paper is organized as follows: Section 2

outlines the existing approaches to decentralizing metadata

management in large cluster-based file systems. Section 3

describes the proposed architecture and the design objec-

tives. Section 4 presents in detail the design of the HBA

scheme. The simulation methodology and performance

evaluation are presented in Sections 5 and 6, respectively.

Section 7 describes our prototype implementation in Linux

and discusses the experimental results. Section 8 concludes
this paper.

2 RELATED WORK AND COMPARISON OF

DECENTRALIZATION SCHEMES

Many cluster-based storage systems employ centralized
metadata management. Experiments in GFS show that a
single MS is not a performance bottleneck in a storage
cluster with 100 nodes under a read-only Google searching
workload. PVFS [3], which is a RAID-0-style parallel file
system, also uses a single MS design to provide a
clusterwide shared namespace. As data throughput is the
most important objective of PVFS, some expensive but
indispensable functions such as the concurrent control
between data and metadata are not fully designed and
implemented. In CEFT [6], [10], [13], [17], which is an
extension of PVFS to incorporate a RAID-10-style fault
tolerance and parallel I/O scheduling, the MS synchronizes
concurrent updates, which can limit the overall throughput
under the workload of intensive concurrent metadata
updates. In Lustre [1], some low-level metadata manage-
ment tasks are offloaded from the MS to object storage
devices, and ongoing efforts are being made to decentralize
metadata management to further improve the scalability.

Some other systems have addressed metadata scalability
in their designs. For example, GPFS [18] uses dynamically
elected “metanodes” to manage file metadata. The election is
coordinated by a centralized token server. OceanStore [19],
which is designed for LAN-based networked storage
systems, scales the data location scheme by using an array
of BFs, in which the ith BF is the union of all the BFs for all of
the nodes within i hops. The requests are routed to their
destinations by following the path with the maximum
probability. Panasas ActiveScale [20] not only uses object
storage devices to offload some metadata management tasks
but also scales up the metadata services by using a group of
directory blades. Our target systems differ from the three
systems above. Although GPFS and Panasas ActiveScale
need to use their specially designed commercial hardware,
our target systems only consist of commodity components.
Our system is also different from OceanStore in that the
latter focuses on geographically distributed storage nodes,
whereas our design targets cluster-based storage systems,
where all nodes are only one hop away.

The following summarizes other research projects in
scaling metadata management, including table-based map-
ping, hash-based mapping, static tree partitioning, and
dynamic tree partitioning.

2.1 Table-Based Mapping

Globally replicating mapping tables is one approach to
decentralizing metadata management. There is a salient
trade-off between the space requirement and the granularity
and flexibility of distribution. A fine-grained table allows
more flexibility in metadata placement. In an extreme case,
if the table records the home MS for each individual file,
then the metadata of a file can be placed on any MS.
However, the memory space requirement for this approach
makes it unattractive for large-scale storage systems. A back-
of-the-envelope calculation shows that it would take as much

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

as 1.8 Gbytes of memory space to store such a table with
108 entries when 16 bytes are used for a filename and 2 bytes
for an MS ID. In addition, searching for an entry in such a
huge table consumes a large number of precious CPU cycles.
To reduce the memory space overhead, xFS [21] proposes
a coarse-grained table that maps a group of files to an MS.
To keep a good trade-off, it is suggested that in xFS, the
number of entries in a table should be an order of magnitude
larger than the total number of MSs.

2.2 Hashing-Based Mapping

Modulus-based hashing is another decentralized scheme.
This approach hashes a symbolic pathname of a file to a
digital value and assigns its metadata to a server according
to the modulus value with respect to the total number of
MSs. In practice, the likelihood of serious skew of metadata
workload is almost negligible in this scheme, since the
number of frequently accessed files is usually much larger
than the number of MSs. However, a serious problem arises
when an upper directory is renamed or the total number of
MSs changes: the hashing mapping needs to be reimple-
mented, and this requires all affected metadata to be
migrated among MSs. Although the size of the metadata
of a file is small, a large number of files may be involved. In
particular, the metadata of all files has to be relocated if an
MS joins or leaves. This could lead to both disk and network
traffic surges and cause serious performance degradation.
LazyHybrid [2] is proposed to reduce the impact of
metadata migration by updating lazily and also incorporat-
ing a small table that maps disjoint hash ranges to MS IDs.
The migration overhead, however, can still overweigh the
benefits of load balancing in a heavily loaded system.

2.3 Static Tree Partitioning

Static namespace partition is a simple way of distributing
metadata operations to a group of MSs. A common partition
technique has been to divide the directory tree during the
process of installing or mounting and to store the informa-
tion at some well-known locations. Some distributed file
systems such as NFS [22], AFS [23], and Coda [24] follow
this approach. This scheme works well only when file
access patterns are uniform, resulting in a balanced work-
load. Unfortunately, access patterns in general file systems
are highly skewed [25], [26], [27], [28], and thus, this
partition scheme can lead to a highly imbalanced workload

if files in some particular subdirectories become more
popular than the others.

2.4 Dynamic Tree Partitioning

Weil et al. [29] observe the disadvantages of the static tree
partition approach and propose to dynamically partition
the namespace across a cluster of MSs in order to scale up
the aggregate metadata throughput. The key design idea is
that initially, the partition is performed by hashing
directories near the root of the hierarchy, and when a
server becomes heavily loaded, this busy server automa-
tically migrates some subdirectories to other servers with
less load. It also proposes prefix caching to efficiently
utilize available RAM on all servers to further improve the
performance. This approach has three major disadvantages.
First, it assumes that there is an accurate load measurement
scheme available on each server and all servers periodically
exchange the load information. Second, when an MS joins
or leaves due to failure or recovery, all directories need to
be rehashed to reflect the change in the server infrastruc-
ture, which, in fact, generates a prohibitively high over-
head in a petabyte-scale storage system. Third, when the
hot spots of metadata operations shift as the system
evolves, frequent metadata migration in order to remove
these hot spots may impose a large overhead and offset the
benefits of load balancing.

2.5 Comparison of Existing Schemes

Table 1 summarizes the existing state-of-the-art approaches
to decentralizing metadata management and compares
them with the HBA scheme, which will be detailed later
in this paper. Each existing solution has its own advantages
and disadvantages. The hashing-based mapping approach
can balance metadata workloads and inherently has fast
metadata lookup operations, but it has slow directory
operations such as listing the directory contents and
renaming directories. In addition, when the total number
of MSs changes, rehashing all existing files generates a
prohibitive migration overhead. The table-based mapping
method does not require any metadata migration, but it
fails to balance the load. Furthermore, a back-of-the-
envelope calculation shows that it would take as much as
1.8 Gbytes of memory to store such a table with 100 million
files. The static tree balance approach has zero migration
overhead, small memory overhead, and fast directory

ZHU ET AL.: HBA: DISTRIBUTED METADATA MANAGEMENT FOR LARGE CLUSTER-BASED STORAGE SYSTEMS 3

TABLE 1
Comparison of HBA with Existing Decentralization Schemes

n and d are the total number of files and partitioned subdirectories, respectively.

operation. However, it cannot balance the load, and it has a
medium lookup time, since hot spots usually exist in this
approach. Similar to the hashing-based mapping, dynamic
tree partition has fast lookup operations and small memory
overhead. However, this approach relies on load monitors
to balance metadata workloads and thus incurs a large
migration overhead. To combine their advantages and
avoid their disadvantages, a novel approach, called HBA,
is proposed in this paper to efficiently route metadata
requests within a group of MSs. The detailed design of HBA
will be presented later in this paper.

3 ARCHITECTURAL CONSIDERATIONS AND DESIGN

OBJECTIVES

In this paper, we focus on a generic cluster, where a number
of commodity PCs are connected by a high-bandwidth low-
latency switched network. Each node has its own storage
devices. There are no functional differences between all
cluster nodes. The role of clients, MSs, and data servers can
be carried out by any node. A node may not be dedicated to
a specific role. It can act in multiple roles simultaneously.
Fig. 1 shows the architecture of a generic cluster targeted in
this study.

In this study, we concentrate on the scalability and
flexibility aspects of metadata management. Some other
important issues such as consistency maintenance, syn-
chronization of concurrent accesses, file system security and
protection enforcement, free-space allocation (or garbage
collection), balancing of the space utilizations, management
of the striping of file contents, and incorporation of fault
tolerance are beyond the scope of this study. Instead, the
following objectives are considered in our design:

. Single shared namespace. All storage devices are
virtualized into a single image, and all clients share
the same view of this image. This requirement
simplifies the management of user data and allows
a job to run on any node in a cluster.

. Scalable service. The throughput of a metadata
management system should scale with the computa-
tional power of a cluster. It should not become a
performance bottleneck under high I/O access
workloads. This requires the system to have low
management overhead.

. Zero metadata migration. Although the size of meta-
data is small, the number of files in a system can be
enormously large. In a metadata management
system that requires metadata to migrate to other
servers in response to the file system’s evolution such
as renaming of files or directories, or topology
changes involving server arrivals or departures, the
computational overhead of checking whether a
migration is needed and the network traffic overhead
due to metadata migration may be prohibitively
high, hence limiting the efficiency and scalability.

. Balancing the load of metadata accesses. The manage-
ment is evenly shared among multiple MSs to best
leverage the available throughput of these severs.

. Flexibility of storing the metadata of a file on any MS.
This flexibility provides the opportunity for fine-
grained load balance, simplifies the placement of
metadata replicas, and facilitates some performance
optimizations such as metadata prefetching [34],
[35]. In a distributed system, metadata prefetching
requires the flexibility of storing a group of
sequentially accessed files on the same physical
location to save the number of metadata retrievals.

4 HIERARCHICAL BLOOM FILTER ARRAYS

4.1 Bloom Filters

A BF is a lossy but succinct and efficient data structure
to represent a set S, which processes the membership query,
“Is x in S?” for any given element x with a time complexity
ofOð1Þ. It was invented by Burton Bloom in 1970 [36] and has
been widely used for Web caching [37], network routing [38],
and prefix matching [39]. The storage requirement of a
BF falls several orders of magnitude below the lower bounds
of error-free encoding structures. This space efficiency is
achieved at the cost of allowing a certain (typically nonzero)
probability of false positives or false hits; that is, it may
incorrectly return a “yes,” although x is actually not in S.

4.2 Hierarchical Bloom Filter Array Design

4.2.1 Pure Bloom Filter Array Approach

A straightforward extension of the BF approach to
decentralizing metadata management onto multiple MSs
is to use an array of BFs on each MS. The metadata of each
file is stored on some MS, called the home MS. In this design,
each MS builds a BF that represents all files whose metadata
is stored locally and then replicates this filter to all other
MSs. Including the replicas of the BFs from the other
servers, a MS stores all filters in an array. When a client
initiates a metadata request, the client randomly chooses a
MS and asks this server to perform the membership query
against this array. The BF array is said to have a hit if exactly
one filter gives a positive response. A miss is said to have
occurred whenever no hit or more than one hit is found in
the array. The desired metadata can be found on the MS
represented by the hit BF with a very high probability.

We denote this simple approach as PBA. PBA allows a
flexible metadata placement, has no migration overhead,
and balances metadata workloads. PBA does not rely on
any property of a file to place its metadata and thus allows
the system to place any metadata on any server. This makes

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

Fig. 1. Cluster-based storage architecture.

it feasible to group metadata with strong locality together
for prefetching, a technique that has been widely used in
conventional file systems [34], [35]. During the evolution of
file system and its cluster topology, not all metadata needs
to migrate to new locations. When a file or directory is
renamed, only the BFs associated with all the involved files
or subdirectories need to be updated. Although a MS leaves
or joins the system, a single associated BF is added or
deleted from the Bloom arrays on all other MSs. Since each
client randomly chooses a MS to look up for the home MS of
a file, the query workload is balanced on all MSs.

The following theoretical analysis shows that the
accuracy of PBA does not scale well when the number of
MSs increases. When an existing file is searched against a
group of BFs, a false-positive hit from any filter can lead to
multiple hits and accordingly causes the search to fail.
Assuming that all BFs are perfectly updated, the expected
hit rate for an existing file is the probability that all BFs have
no false-positive hits, given as follows:

hitoldfile ¼ ð1� fÞp�1 ¼ 1� ð0:6185Þm=n
� �p�1

; ð1Þ

where m is the length of a BF in bits, n is the number of files
that a single MS represents, p is the total number of MSs,
and f is the optimal false rate of a single BF, as analyzed
in [40]. Fig. 2 shows the relationship between hitoldfile and
m=n under different numbers of MSs.

For new files, a false hit happens when exactly one BF
gives a false-positive response. The false positive will be
discovered eventually when the desired metadata actually
does not exist on the falsely identified MS. The expected
false-hit rate can be expressed as

falsenewfile ¼ pfð1� fÞp�1

¼ pð0:6185Þm=n 1� ð0:6185Þm=n
� �p�1

:

Given a constant p, falsenewfile reaches its maximum
value ð1� 1

pÞ
p�1 when f ¼ 1

p , that is, m=n ¼ 2:0792 ln p. This
maximum value approaches asymptotically to e�1 � 0:3679.
This trend of falsenewfile with respect to m=n under
different numbers of MSs is given in Fig. 3. This trend
shows a special characteristic of a single BF array that is

different from that of a single BF. Although in a BF,
increasing the filter length always reduces its false-hit rate,
the false-hit rate of a BF array actually increases with the filter
size until reaching its maximum false-hit rate. This observation
is important in optimizing the bit/file ratio for BF arrays.

While optimizing the trade-off between the space
efficiency and the query accuracy, more weight is put on
improving hitoldfile than decreasing falsenewfile, since
almost all I/O requests are targeted at existing files in a
typical file system. This biased optimization might not
work well in any special environment, where the operations
of file creation account for a considerably high percentage
of the total file accesses.

The above analysis shows that the accuracy of PBA, even
when optimized for existing file and new file lookup,
degrades quickly with the increase in the number of BFs,
that is, the number of MSs. This leads to the major
disadvantage of PBA. To achieve satisfactory hit rates, BFs
with large sizes need to be used, thus increasing the
memory space requirement on each MS. For example, if
there are 200 MSs in a supercluster, 16 bits per file are
required in each BF to maintain a hit rate of approximately
90 percent for old files and a false-hit rate of 10 percent for
new files. If there are 500 million files stored in this cluster,
the BF array would take around 16� 500 Mbits ¼ 1 Gbyte
of memory space on each MS. This memory requirement is
underestimated, since in practice, the hit rates can be lower
than the theoretical estimation. This implies that an even
higher bit/file ratio needs to be employed. In a Web caching
design system [37], a ratio of 32 bits per object is suggested.

4.2.2 Hierarchical Bloom Filter Array Design

To achieve a sufficiently high hit rate in the PBA described
above, the high memory overhead may make this approach
impractical. A large bit-per-file ratio needs to be employed
in each BF to achieve a high hit rate when the number of
MSs is large. In this section, we present a new design called
HBA to optimize the trade-off between memory overhead
and high lookup accuracy.

The novelty of HBA lies in its judicious exploitation of
the fact that in a typical file system, a small portion of files
absorb most of the I/O activities. Floyd [26] discovered that
66 percent of all files had not been accessed in over a month

ZHU ET AL.: HBA: DISTRIBUTED METADATA MANAGEMENT FOR LARGE CLUSTER-BASED STORAGE SYSTEMS 5

Fig. 2. Theoretical hit rates for existing files.
Fig. 3. Theoretical false-hit rates for new files.

in a Unix environment, indicating that the entire I/O
accesses were focused on at most 34 percent of the file
system. Staelin [28] found that 0.1 percent of the total space
used by the file system received 30 percent to 60 percent of
the I/O activity. Cate and Gross [25] showed that most files
in Unix file systems were inactive, and only 3.6 percent to
13 percent of the file system data was used in a given day,
and only 0.2 percent to 3.6 percent of the I/O activity went
to the least active 75 percent part of the file system. A recent
study [5] on a file system trace collected in December 2000
from a medium-sized file server found that only 2.8 percent
and 24.2 percent of files were accessed during a continuous
course of 12 hours and 10 days, respectively.

Fig. 4 shows the structure of the HBA design on each MS,
which includes two levels of BF arrays. In the design, each
MS maintains a Least Recently Used (LRU) list that caches
names of recently visited files whose metadata is stored
locally on that MS. Each BF at the top level, called an LRU BF,
represents all the files cached in the LRU list of the
corresponding MS. Each LRU BF is globally replicated
among all MSs. Whenever an overflow happens in the
LRU list, an eviction based on the LRU replacement policy
triggers both an addition operation and a deletion operation
to its corresponding LRU BF. Only when the amount of
changes made to a LRU BF has exceeded some threshold will
the LRU BF be multicast to all the MSs to update all its
replicas. Since the number of entries in LRU is relatively
small, it is affordable to use a high bit/file ratio to achieve a
low false-hit rate. In addition, the BFs in the lower level
represent the metadata distributions of all MSs. Since the
total number of files is typically very large, a low bit/file ratio
is used to reduce the memory overhead. A miss in the
top level array leads to a query to the lower level. An
unsuccessful query in the lower level array will cause a
broadcast to be issued to all the other metadata severs. Note
that the penalty for a miss or a false hit can be very expensive,
relative to the hit time, since it entails, among other things,
a broadcast over the interconnection network, a query on
a second MS, and an acknowledgment across the network.

To perform a query into the BFs, filenames are
transformed into digital indices of the Bloom array by first
calculating the MD5 signature of the full pathname and
then hashing the MD5 signature into indices by using the
universal hash functions [41]. The MD5 approach is chosen
because of its available fast implementation. The universal
hash functions are employed to keep the independence of
hash indices, a requirement for BFs to minimize the false-
hit rate.

Locating the metadata by hashing the full pathname will
complicate the access control, since all parent directories are
bypassed. The same technique used in [2] can be employed
here to deal with the access control issue. Two Unix-style
access permission codes, including the permission code
of the file per se and the intersection of access permissions
of all parent directories, are maintained in the metadata of
each file and checked for each file access. A file is only
accessible when both codes permit. A downside of this
solution is that populating the permission changes of a
directory to its children may potentially result in a large
number of network messages.

Our HBA scheme can support the five objectives
described in Section 3:

1. The two-layered BF arrays on each MS form an
integral component to facilitate file lookup in a
single shared namespace.

2. The simulation results presented in Section 6 in-
dicate that HBA can achieve comparable lookup
accuracy, with only 50 percent of the memory
overhead of PBA. Our experimental results based
on a real implementation with multiple MSs present
superlinear speedup over a single MS, as will be
described in detail in Section 7. This superlinear
speedup, although complicated in its causes (includ-
ing effects such as reduced working set and network
contention as a result of decentralized management),
is clearly related to the effectiveness of the decen-
tralized metadata management.

3. When a file or directory is renamed or the
MS configuration changes, no metadata migration is
needed to maintain the lookup correctness. Instead,
only local BFs are updated, and changes are propa-
gated to their remote replicas if needed. To minimize
the number of broadcasts while renaming an upper
directory, the names of files and subdirectories
(not including the files of subdirectories) are recorded
as part of the metadata of their parent directory.

4. Random placement is chosen in HBA to initially
place metadata on a server. When the total number
of files are significantly larger than the number of
MSs, the file query workload can be coarsely
balanced among all MSs. When a new MS is added,
our design is currently insufficient to offload a
partial workload to the new server, and some future
research work is needed.

5. Similar to PBA, HBA allows the metadata of a file to
be placed on any MS without any restriction.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

Fig. 4. Structure of HBA on the MS node i. n is the total number of MSs.

5 TRACE-DRIVEN SIMULATION

To the best of our knowledge, there are no publicly
available file system traces that have been collected from
a large-scale cluster with thousands of nodes, let alone
those also containing sufficient amount of metadata
operations. Most available traces only focus on recording
data read and write operations [42], [43]. To emulate the
I/O behavior of such a large system and facilitate a
meaningful simulation, we intentionally scale up the
workload presented in the RES trace collected at the
University of California, Berkeley, in 1997 and in the HP
file system trace collected at the Hewlett-Packard
Laboratories in December 2001.

Throughout January 1997, the RES trace [15] was
collected on a cluster of 13 machines used by an academic
research group consisting of 50 users. The HP file system
trace [27] is a 10-day trace of all file system accesses to
several disk arrays, with a total of 500 Gbytes of storage.
These arrays were attached to a four-way HP-UX time-
sharing server and were used by 236 users. Since both the
RES and HP traces collected all I/O requests at the file
system level, any requests not related to metadata opera-
tions such as read, write, and execution are filtered out in
our simulation.

To emulate the workload of a large cluster with
thousands of nodes, we choose to scale up the workloads
in the RES and HP traces available to us. The conventional
approach to scale up workloads is to simply replay I/O
traces at an accelerated rate by dividing the time stamps by
a constant speedup factor. When a large number of users
are running concurrently on shared file servers, this
approach cannot appropriately reflect the increase in
working set and user number. Accordingly, we choose to
stress MSs by a combination of spatial scale-up and
temporal scale-up in our simulation study. We decompose
a trace into subtraces and add a subtrace number in each
trace record in order to have disjoint group ID, user ID, and
working directories. Specifically, we divide each daily trace
collected from 8:00 a.m. to 4:00 p.m., which was usually the
busiest period during the day, into four 2-hour subtraces.
The timing relationships among the requests within a
subtrace are preserved to faithfully maintain the semantic

dependencies among trace records. These subtraces are

replayed concurrently by setting the same start time. As a
result, the metadata traffic can be spatially and temporally

scaled up by a different factor, depending on the number of
subtraces replayed simultaneously. Note that the combined

trace maintains similar histogram of file system calls. The
percentages of all system calls such as open, close, and fstate

remain unchanged. The intensified HP and RES traces
retain similar distributions in cumulative metadata ac-

cesses, as shown in Fig. 5. A point ðx; yÞ in the cumulative
distribution curve indicates that x percentage of file or

directory metadata receives y percentage of the total
metadata accesses. The results show that 7 percent of

metadata absorbs 78 percent to 92 percent of metadata
traffic, which is consistent with the results of workload
studies summarized in Section 4.2.2; that is, a small portion

of files absorb most of the I/O activities. The number of
subtraces replayed concurrently is denoted as the

Trace Intensifying Factor (TIF). Tables 2 and 3 summarize
the characteristics of the original and scaled-up traces.

We have developed a trace-driven simulator to emulate

the behavior of the metadata management system on MSs.
Some trace events that are not directly related to metadata

are filtered out in the simulation. For example, since
metadata is usually accessed through the system calls such

as open, close, and stat, the data read and write events do
not retrieve or modify the relevant metadata in a typical file

system, and thus, they are skipped in the simulation.

6 PERFORMANCE EVALUATION

We simulate the MSs by using the two traces introduced in

Section 5 and measure the performance in terms of hit rates
and the memory and network overhead. Since the decen-

tralized schemes of table-based mapping and modulus-
based hashing are simple and straightforward and their

performance was already discussed qualitatively, the
simulation study in this paper will be focused on the
schemes of PBA, HBA, and pure LRU BF to obtain

quantitative comparison and conclusions.

ZHU ET AL.: HBA: DISTRIBUTED METADATA MANAGEMENT FOR LARGE CLUSTER-BASED STORAGE SYSTEMS 7

Fig. 5. Cumulative distributions of metadata access.

TABLE 2
Comparison of the Original RES Trace Fragment

and Two Scaled-Up Ones

TABLE 3
Comparison of the Original HP Traces with a Scaled-Up One

6.1 Research Workload Traces

6.1.1 Pure Bloom Filter Array Approach

Figs. 6 and 7 depict the relationships, as obtained by our
theoretical analysis and simulation, between the hit rates
and the computation cost in terms of the number of hash
functions used in the PBA approach. In these simulations,
100 trace fragments were replayed simultaneously in a
cluster with 10 and 100 MSs, respectively, and the BFs used
different combinations of the bit/file ratio and the number
of hash functions. The PBA approach achieves its best hit
rate when the number of hash functions optimizes a
single BF. In the simulations presented in the rest of this
paper, the number of hash functions is always kept at a
value that optimizes the hit rate for a given bit/file ratio.
The close agreement between the theoretical and simulation
results lends more confidence and credence to our
theoretical analysis and simulation results. More impor-
tantly, these experiments show that to maintain a high hit
rate in a large cluster with 100 or more MSs, a large bit/file
ratio such as 16 bits/file becomes necessary.

Table 4 shows the impact of the propagation threshold,
that is, the percentage of bits in a BF that must be changed
before updating its replicas in other MSs, on the hit rates in
the scenario of 10 MSs and a bit/file ratio of 8. With the
decrease in the threshold, the hit rate increases slightly. This

unexpected low sensitivity of hit rate to threshold is due to
the fact that the frequency of file renaming, creation, or
deletion is very low in the RES trace. We might under-
estimate the impact of the propagation threshold, since the
events of directory renaming cannot be fully and truthfully
simulated for the given trace. The original file or directory
names in the RES trace are hashed to a single level of
namespace to protect the privacy, and thus, the hierarchical
directory tree cannot be reconstructed from the trace. Hence,
it is infeasible to truly simulate a directory renaming.

6.1.2 Hierarchical Bloom Filter Array Approach

Figs. 8 and 9 show the hit rate of HBA with different sizes
of LRU lists in a cluster with 10 and 100 MSs, respectively,
when the TIF increases gradually from 10 to 100. In HBA, the
two levels of BF arrays adopt different bit/file ratios, giving
rise to different accuracies. Although the second-level
BF array, which stores the distribution information of all
files, employs a bit/file ratio of 8, the LRU BF in the
first level adopts a bit/file ratio of 20. The bars in these
figures represent the average hit rates of all MSs in the HBA

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

Fig. 6. Comparison of the theoretical and simulation results of the

hit rates of PBA in a cluster with 10 MSs.

Fig. 7. Comparison of the theoretical and simulation results of the

hit rates of PBA in a cluster with 100 MSs.

TABLE 4
Impact of the Propagation Thresholds on the Hit Rate in PBA

Fig. 8. Comparison of hit rates of HBA under various LRU sizes and TIFs

in the RES traces in a cluster with 10 MSs.

Fig. 9. Comparison of hit rates of HBA under various LRU sizes and TIFs

in the RES traces in a cluster with 100 MSs.

approach. For convenience of comparison, the optimal hit
rates in PBA with different bit/file ratios are also given in
these figures and are shown as horizontal lines. In HBA, a
small LRU can significantly improve the overall hit rates.
The LRU lists with sizes of 300, 100, and 50 file entries in the
clusters with 10 and 100 MSs, respectively, can boost the
hit rates of HBA with a bits/file ratio of 8 or higher than
those of PBA of the same configurations but with a bits/file
ratio of 16. In real applications of HBA, the size of a LRU list
can adaptively increase from some small initial value until a
satisfying hit rate is achieved.

Table 5 gives the relative storage space overhead of
various HBA and PBA configurations, normalized to that of
PBA with a bits/file ratio of 8. On each MS, the extra
overhead of HBA introduced by an LRU list and an LRU BF
is only a negligible portion of the space requirement of its
PBA counterpart. This is because millions of files are stored
in the BF array in PBA, but only hundreds or thousands of
files are stored in the LRU list and LRU BF. An HBA that
achieves the same hit rate as a PBA with a bits/file ratio
of 16 requires only 50 percent of the space required by PBA.

6.2 Hewlett-Packard Laboratories File System
Traces

Fig. 10 shows the hit rates of PBA, LRU list, and HBA when
the number of MSs changes from 10 to 100, with a step of 10.
HBA combines an LRU list with a size of 1,600 entries and a
BF array with a bit/file ratio of 8. In these experiments,
40 trace fragments are replayed simultaneously, and there
are a total of 710 active users in the traces. When the
number of metadata severs increases, the load on each MS
decreases accordingly, thus slightly increasing the hit rate

of LRU lists. In the experiments with less than 30 MSs,
the hit rate of HBA is slightly better than that of PBA with
a bit/file ratio of 16. Although the hit rate of HBA is
around 1 percent to 5.7 percent lower than that of PBA with
a bit/file ratio of 16 when the number of MSs increases
from 30 to 100, it is still 1.5 percent to 9.9 percent higher
than that of PBA with a bit/file ratio of 12 and 17.7 percent
to 330 percent higher than PBA with a bit/file ratio of 8.

The impact of the LRU size on the overall hit rate of HBA
is presented in Fig. 11. It is shown that the benefit of
increasing the LRU size is significant initially but di-
minishes gradually. Doubling the LRU size from 1,600 to
3,200 only results in up to 2 percent of improvement in the
hit rate. As indicated previously, in real implementations of
HBA, the size of LRU can be dynamically determined by
gradually increasing from some initial value until a
predefined hit rate goal is reached.

Table 6 presents the relative memory requirement
normalized to PBA with a bit/file ratio of 8 when the
number of MSs changes from 10 to 100. The extra memory
overhead introduced in HBA by LRU and LRU BF is up to
0.1 percent and only takes tens of kilobytes.

There is a clear trade-off between the network traffic
overhead and hit rate in HBA. With a smaller propagation
threshold, LRU BFs are updated more frequently so that the
likelihood of having a hit in an LRU BF is increased, but the
updating traffic takes away some network bandwidth.
Fig. 12 shows the relationship between the hit rate and the
number of multicast messages per second in the entire
cluster when the propagating threshold increases from
0.001 percent to 100 percent. A threshold of 1 percent is

ZHU ET AL.: HBA: DISTRIBUTED METADATA MANAGEMENT FOR LARGE CLUSTER-BASED STORAGE SYSTEMS 9

TABLE 5
Relative Space Overhead Normalized to PBA

with a Bits/File Ratio of 8

Fig. 10. Hit rate comparison between LRU BFs, HBA with a bits/file ratio

of 8, and PBA with bits/file ratios of 8, 12, and 16 under different

numbers of MSs ðTIF ¼ 40Þ.

Fig. 11. Hit rate comparison of HBA with different LRU sizes under

various number of MSs ðTIF ¼ 40Þ.

TABLE 6
Relative Space Overhead Normalized to PBA

with a Ratio of 8 in the HP Traces

found to have a good balance of this trade-off. Fig. 13 gives
the network traffic under this threshold when both the
number of MSs and the size of LRU list changes. When the
size of LRU is larger than 1,600, the total network traffic
overhead introduced by HBA in most cases of
MS configurations are less than 1 multicast per second.
This overhead is marginal in a modern network.

7 IMPLEMENTATION OF HIERARCHICAL BLOOM

FILTER ARRAYS

We implement the HBA prototype on the Linux ker-
nel 2.4.21 as an I/O daemon running on each MS. All
internal communications use TCP/IP, and the request
forwarding between MSs is implemented by using IP-IP
encapsulation [44], [45]. Currently, our client-side compo-
nent is not able to directly intercept the user system I/O
calls. A system call trapping mechanism, similar to the one
used in PVFS [3], has not been implemented yet. Instead,
we provide a C library that includes functions analogous to
the Unix/POSIX functions such as HBA_open, HBA_close,
and HBA_stat. We run experiments on the Sandhills cluster
that has 40 nodes, each equipped with dual AMD
processors. Due to the limitations of available hardware
resource and client-side I/O interfaces, we could not

evaluate our design by running real large-scale applica-
tions, in which thousands of clients access the MSs
concurrently. To overcome this limitation, we choose to
use I/O traces to drive the client applications, in which the
events are replayed through the library functions.

A challenging issue in replaying the trace is to
realistically model timing effects that specify how fast the
trace should be replayed. This difficulty stems from the fact
that the arrival of subsequent I/O requests usually depends
upon the completion of previous I/Os, and such depen-
dency information cannot be easily extracted from a system
and recorded in the traces [46]. There are two widely used
models, that is, the closed model and the open model, that have
been employed to solve the timing issue, as shown in
Fig. 14. In the open model, I/O requests are issued at
predetermined times specified in the traces, without
considering the performance of storage systems. This model
tends to ignore the dependencies among requests and
continuously issue new requests, regardless whether their
previous dependent requests have finished or not. Clearly,
this does not truly reflect requests’ behavior in real systems.
In addition, the open model is impractical for long-time
traces, since the experiments require the same amount of
time as the trace collected. In the closed model, on the other
hand, new requests are only issued when their previous
dependent requests are being served. Although this model
considers the load feedback from storage systems, it tends
to smooth out the burstiness and reduce the number of
outstanding requests.

In this work, we choose to use the closed model because
of three main reasons. First, metadata operations are highly
dependent on one another. For example, locating a file
needs searching the metadata of parent directories recur-
sively until reaching the root. Second, metadata operations
are synchronous [15], [47], which implies that subsequent
processes have to wait until current I/Os are finished.
Third, our traces are collected over a period of 1 month, and
it is not practical for us to replay the traces with the exact
speed at which the trace was collected.

All metadata is stored in the local file system of each MS.
Similar to PVFS, the metadata attributes of a file are stored
as a metadata file with the same full pathname on its
home MS. The metadata attributes of each file are split into

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

Fig. 12. Trade-off between hit rate and network overhead (50 MSs,

1,600 entries in LRU, and TIF ¼ 40).

Fig. 13. Network overhead of HBA with different LRU sizes

ðTIF ¼ 40; and LRU BF Threshold ¼ 1 percentÞ.

Fig. 14. Two models to replay I/O traces in real systems.

two parts: some attributes such as ownership and creation
time are exactly the attributes of its metadata file and are
managed through local file systems, whereas the other
attributes, including file size and data locations, are stored
as the content of the metadata file, and they are managed by
the HBA server daemons.

We store directory metadata in a way different from
PVFS. Although both PVFS and HBA follow conventional
file system hierarchical directory structures, HBA stores
the names of files and subdirectories as part of the
metadata of their parent directories. The names of files in
all subdirectories are not included in the metadata of their
parent directories. Note that we only store them as an
unsorted list instead of the B-tree or extensible hashing
used in enterprise file systems [48], [49]. This is because
HBA does not rely on directory metadata to support file
lookup. Directory metadata is used to reduce the overhead
of directory renaming and list operations such as “ls.”
When a directory is renamed, the home MS of that
directory iterates the list and updates corresponding BFs
that might be stored on other servers. Recursively, the
home MSs of subdirectories also perform the same
operations. An improvement to our current design could
be explained as follows: When the target directory is close
to the root or has a large number of files, the home MS can
first retrieve the latest BFs from other servers, then perform
renaming in the filter array stored locally, and finally
propagate the changes in their replicas in other MSs. The
attributes of subdirectories and files are not included to
avoid frequent updates. Thus, an “ls -l” command can
potentially induce a flood of network traffic to multiple
servers in our current implementation.

We choose to use the larger traces, that is, the HP traces,
instead of the RES traces, to evaluate our design. Before the
experiments, all MSs and the PBA are initially populated
with existing files with inferred attributes from the traces.
The traces are scaled up with a factor of 40 by the same
approach presented previously in Section 5. In order to
stress the MSs, we use up to 20 client nodes to concurrently
replay the subtraces. These client nodes do not serve as any
MS. There is a separate thread for each subtrace. When the
total number of subtraces exceeds 20, multiple threads may
run simultaneously on all client nodes. All records in a
subtrace are played back in a sequential order, and we do

not use multithreading to explicitly emulate the parallelism
of different users within each subtrace. All MSs are initially
populated randomly.

Figs. 15 and 16 compare the average latency and the
average aggregate throughput of metadata operations in a
conventional single-metadata-server design with those in
the HBA schemes with 2, 4, 8, and 16 MSs, respectively,
where the aggregate throughput represents the total
number of metadata operations that can be completed by
all MSs per time unit. The results are measured under
various numbers of clients, that is, the total number of users
in subtraces replayed simultaneously. Each measurement is
performed in a quiet environment, with no other applica-
tions running, and is repeated three times. The arithmetic
averages are reported here, and the maximum deviation
from the median was always below 10.6 percent of the
reported value. From the simulation results, we can draw
the following observations.

1. When the workload increases, the throughput of
all configurations increases initially and then
decreases dramatically after saturating the servers’
processing capacities. Compared with the single-
metadata-server system, the peak throughput of
the HBA schemes with 2, 4, 8, and 16 MSs is 1.7,
2.8, 3.8, and 4.4 times higher, respectively.

2. The latency reduction becomes more significant with
the increase in workload. Under the heaviest work-
load studied in our experiments, a configuration of
16 MSs reduces the response time of a single-
metadata-server architecture by a factor of 43.9.
Fig. 17 shows the speedups of our HBA scheme under
different workloads, where speedup is defined as

speedup of HBA ¼
average latency in HBA

average latency in a single metadata server
:
ð2Þ

Under heavy workloads, our HBA scheme can
exhibit a superlinear speedup.

3. Under light workloads, the HBA scheme with
16 MSs surprisingly performs up to 14.7 percent
inferior to the scheme with eight MSs in the average

ZHU ET AL.: HBA: DISTRIBUTED METADATA MANAGEMENT FOR LARGE CLUSTER-BASED STORAGE SYSTEMS 11

Fig. 15. Average latency of metadata operations. Fig. 16. Average throughput of metadata operations.

aggregate throughput and 13.6 percent inferior in
the average response time. When the number of MSs
increases, the probability of false positives in a
BF array also increases, which increases the number
of multicasts to resolve the false positives. Such
increased overhead generated by extra multicasts
offsets the benefits of load sharing when the work-
load is not heavy.

In summary, the experimental results based on our
prototype implementation indicate that the HBA scheme
maintains a strong scalability in increasing the aggregate
throughput and reducing the latency of metadata opera-
tions. We might underestimate the benefits of the
HBA design, since a closed model is employed to replay
the traces in real systems. In such models, I/O is issued
only when its previous I/Os have completed. This certainly
decreases the number of outstanding I/O requests and
hence reduces the queuing time of I/O requests. Applica-
tions may be able to achieve higher speedups than the ones
reported in our experiments due to HBA’s ability to quickly
absorb (or dissipate) requests waiting in the queues.

8 CONCLUSION

This paper has analyzed the efficiency of using the
PBA scheme to represent the metadata distribution of all
files and accomplish the metadata distribution and manage-
ment in cluster-based storage systems with thousands of
nodes. Both our theoretic analysis and simulation results
indicated that this approach cannot scale well with the
increase in the number of MSs and has very large memory
overhead when the number of files is large.

By exploiting the temporal access locality of file access
patterns, this paper has proposed a hierarchical scheme,
called HBA, that maintains two levels of BF arrays, with the
one at the top level succinctly representing the metadata
location of most recently visited files on each MS and the one
at the lower level maintaining metadata distribution
information of all files with lower accuracy in favor of
memory efficiency. The top-level array is small in size but has
high lookup accuracy. This high accuracy compensates for
the relatively low lookup accuracy and large memory

requirement in the lower level array. Our extensive trace-
driven simulations show that the HBA scheme can achieve an
efficacy comparable to that of PBA but at only 50 percent of
memory cost and slightly higher network traffic overhead
(multicast). On the other hand, HBA incurs much less
network traffic overhead (multicast) than the pure LRU BF
approach. Moreover, simulation results show that the net-
work traffic overhead introduced by HBA is minute in
modern fast networks. We have implemented our
HBA design in Linux and measured its performance in a
real cluster. The experimental results show that the perfor-
mance of HBA is very promising. Under heavy workloads,
HBA with 16 MSs can reduce the metadata operation time of a
single-metadata-server architecture by a factor of up to 43.9.

Compared with other existing solutions to decentralizing
metadata management, HBA retains most of their advan-
tages while avoiding their disadvantages. It not only
reduces the memory overhead but also balances the
metadata management workload, allows a fully associative
placement of metadata of files, and does not require
metadata migration during file or directory renaming and
node additions or deletions.

We have also designed an efficient and accurate
metadata prefetching algorithm to further improve meta-
data operation performance [50]. We are incorporating this
prefetching scheme into HBA.

There are several limitations in this research work:

. Our workload trace does not include metadata
operations of parallel I/Os used in scientific applica-
tions. This is mainly due to the lack of long-term
traces that include sufficient amount of metadata
operations.

. When a new MS is added, a self-adaptive mechan-
ism is needed to automatically rebalance the
metadata spatial distribution. For the purpose of
this paper, we assume that such a mechanism is
available.

ACKNOWLEDGMENTS

This work is partially supported by the US National
Science Foundation (NSF) Funds (CCF 0621493, 0621526,
0754951, CNS 0619430, 0723093, 0646910, 0646911, and DRL
0737583), US Department of Energy (DoE) Early Career
Award DE-FG02-07ER25747, Maine NASA Space Grant,
Chinese NSF 973 Project under Grant 2004cb318201, and
equipment donations from SUN. The authors greatly
appreciate Dong Li for developing preliminary trace
transformation codes, HP Labs and the University of
California, Berkeley, for providing them the file system
traces, and the reviewers for their constructive comments
and suggestions.

REFERENCES

[1] P.J. Braam, “Lustre White Paper,” http://www.lustre.org/docs/
whitepaper.pdf, 2005.

[2] S.A. Brandt, L. Xue, E.L. Miller, and D.D.E. Long, “Efficient
Metadata Management in Large Distributed File Systems,” Proc.
20th IEEE Mass Storage Symp./11th NASA Goddard Conf. Mass
Storage Systems and Technologies (MSS/MSST ’03), pp. 290-298,
Apr. 2003.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

Fig. 17. Speedup under different workloads.

[3] P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur, “PVFS:
A Parallel File System for Linux Clusters,” Proc. Fourth Ann. Linux
Showcase and Conf., pp. 317-327, 2000.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” Proc. 19th ACM Symp. Operating Systems Principles
(SOSP ’03), pp. 29-43, 2003.

[5] H. Tang and T. Yang, “An Efficient Data Location Protocol
for Self-Organizing Storage Clusters,” Proc. ACM/IEEE Conf.
SuperComputing (SC ’03), p. 53, Nov. 2003.

[6] Y. Zhu and H. Jiang, “CEFT: A Cost-Effective, Fault-Tolerant
Parallel Virtual File System,” J. Parallel and Distributed Computing,
vol. 66, no. 2, pp. 291-306, Feb. 2006.

[7] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W.-K. Su, “Myrinet: A Gigabit-per-Second Local
Area Network,” IEEE Micro, vol. 15, no. 1, pp. 29-36, 1995.

[8] D.H. Carrere, “Linux Local and Wide Area Network Adapter
Support,” Int’l J. Network Management, vol. 10, no. 2, pp. 103-112,
2000.

[9] C. Eddington, “Infinibridge: An Infiniband Channel Adapter
with Integrated Switch,” IEEE Micro, vol. 22, no. 2, pp. 48-56,
2002.

[10] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson, “Exploiting
Redundancy to Boost Performance in a RAID-10 Style Cluster-
Based File System,” Cluster Computing: The J. Networks, Software
Tools and Applications, vol. 9, no. 4, pp. 433-447, Oct. 2006.

[11] M. Vilayannur, A. Sivasubramaniam, M. Kandemir, R. Thakur,
and R. Ross, “Discretionary Caching for I/O on Clusters,” Proc.
Third IEEE/ACM Int’l Symp. Cluster Computing and the Grid
(CCGRID ’03), pp. 96-103, May 2003.

[12] W.B. Ligon III and R.B. Ross, “Server-Side Scheduling in Cluster
Parallel I/O Systems,” Calculateurs Paralleles, special issue on
parallel I/O for cluster computing, Oct. 2001.

[13] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson, “Scheduling
for Improved Write Performance in a Cost-Effective, Fault-
Tolerant Parallel Virtual File System (CEFT-PVFS),” Proc.
Fourth LCI Int’l Conf. Linux Clusters, June 2003.

[14] J. Wu, P. Wyckoff, and D. Pandac, “PVFS over InfiniBand: Design
and Performance Evaluation,” Proc. Int’l Conf. Parallel Processing
(ICPP ’03), pp. 125-132, Oct. 2003.

[15] D. Roselli, J.R. Lorch, and T.E. Anderson, “A Comparison
of File System Workloads,” Proc. Ann. Usenix Technical Conf.,
June 2000.

[16] Y. Zhu, H. Jiang, and J. Wang, “Hierarchical Bloom Filter Arrays
(HBA): A Novel, Scalable Metadata Management System for
Large Cluster-Based Storage,” Proc. IEEE Int’l Conf. Cluster
Computing (CLUSTER ’04), pp. 165-174, Sept. 2004.

[17] Y. Zhu, H. Jiang, X. Qin, and D. Swanson, “A Case Study of
Parallel I/O for Biological Sequence Search on Linux Clusters,”
Proc. IEEE Int’l Cluster Computing (CLUSTER ’03), pp. 308-315,
Dec. 2003.

[18] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” Proc. First Usenix Conf. File and Storage
Technologies (FAST ’02), pp. 231-244, Jan. 2002.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, C. Wells,
and B. Zhao, “Oceanstore: An Architecture for Global-Scale
Persistent Storage,” Proc. Ninth Int’l Conf. Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’00),
pp. 190-201, 2000.

[20] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
Storage Cluster: Delivering Scalable High Bandwidth Storage,”
Proc. ACM/IEEE Conf. Supercomputing (SC ’04), p. 53, 2004.

[21] T. Anderson, M. Dahlin, J. Neefe, D. Pat-terson, D. Roselli,
and R. Wang, “Serverless Network File Systems,” Proc. 15th
ACM Symp. Operating System Principles (SOSP ’95), pp. 109-126,
Dec. 1995.

[22] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and
D. Hitz, “NFS Version 3: Design and Implementation,” Proc.
Usenix Summer Technical Conf., pp. 137-151, 1994.

[23] J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H. Howard,
D.S. Rosenthal, and F.D. Smith, “Andrew: A Distributed
Personal Computing Environment,” Comm. ACM, vol. 29,
no. 3, pp. 184-201, 1986.

[24] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki,
E.H. Siegel, and D.C. Steere, “Coda: A Highly Available File
System for Distributed Workstation Environments,” IEEE Trans.
Computers, vol. 39, no. 4, Apr. 1990.

[25] V. Cate and T. Gross, “Combining the Concepts of Compression
and Caching for a Two-Level File System,” Proc. Fourth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’91), pp. 200-211, Apr. 1991.

[26] R. Floyd, “Short-Term File Reference Patterns in a Unix Environ-
ment,” Technical Report TR-177, Computer Science Dept., Univ. of
Rochester, Mar. 1986.

[27] E. Riedel, M. Kallahalla, and R. Swaminathan, “A Framework for
Evaluating Storage System Security,” Proc. First Usenix Conf. File
and Storage Technology (FAST ’02), pp. 15-30, Mar. 2002.

[28] C.H. Staelin, “High Performance File System Design,” PhD
dissertation, Dept. Computer Science, Princeton Univ., Oct. 1991.

[29] S.A. Weil, K.T. Pollack, S.A. Brandt, and E.L. Miller, “Dynamic
Metadata Management for Petabyte-Scale File Systems,” Proc.
ACM/IEEE Conf. Supercomputing (SC ’04), p. 4, 2004.

[30] P.F. Corbett and D.G. Feitelson, “The Vesta Parallel File System,”
ACM Trans. Computer Systems, vol. 14, no. 3, pp. 225-264, 1996.

[31] P.J. Braam and P.A. Nelson, “Removing Bottlenecks in Distributed
Filesystems: Coda and InterMezzo as Examples,” Proc. Linux Expo,
May 1999.

[32] T.E. Anderson, M.D. Dahlin, J.M. Neefe, D.A. Patterson,
D.S. Roselli, and R.Y. Wang, “Serverless Network File Systems,”
ACM Trans. Computer Systems, vol. 14, no. 1, pp. 41-79, 1996.

[33] M.N. Nelson, B.B. Welch, and J.K. Ousterhout, “Caching in the
Sprite Network File System,” ACM Trans. Computer Systems, vol. 6,
no. 1, pp. 134-154, 1988.

[34] M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S. Fabry, “A Fast File
System for Unix,” ACM Trans. Computer Systems, vol. 2, no. 3,
pp. 181-197, 1984.

[35] M. Rosenblum and J.K. Ousterhout, “The Design and Implemen-
tation of a Log-Structured File System,” Proc. 13th ACM Symp.
Operating Systems Principles (SOSP ’91), pp. 1-15, 1991.

[36] B.H. Bloom, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[37] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking, vol. 8, no. 3, pp. 281-293, 2000.

[38] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Proc. 40th Ann. Allerton Conf. Comm.,
Control and Computing, Oct. 2002.

[39] S. Dharmapurikar, P. Krishnamurthy, and D.E. Taylor, “Longest
Prefix Matching Using Bloom Filters,” Proc. ACM SIGCOMM ’03,
pp. 201-212, Aug. 2003.

[40] J.K. Mullin, “A Second Look at Bloom Filters,” Comm. ACM,
vol. 26, no. 8, pp. 570-571, 1983.

[41] M.V. Ramakrishna, “Practical Performance of Bloom Filters
and Parallel Free-Text Searching,” Comm. ACM, vol. 32, no. 10,
pp. 1237-1239, 1989.

[42] F. Wang, Q. Xin, B. Hong, S.A. Brandt, E.L. Miller, D.D.E. Long,
and T.T. McLarty, “File System Workload Analysis for Large Scale
Scientific Computing Applications,” Proc. 21st IEEE Mass Storage
Symp./12th NASA Goddard Conf. Mass Storage Systems and
Technologies (MSS/MSST ’04), Apr. 2004.

[43] M.P. Mesnier, M. Wachs, R.R. Sambasivan, J. Lopez, J. Hendricks,
G.R. Ganger, and D. O’Hallaron, “//TRACE: Parallel Trace
Replay with Approximate Causal Events,” Proc. Fifth Usenix Conf.
File and Storage Technologies (FAST ’07), pp. 153-167, Feb. 2007.

[44] C. Perkins, IP Encapsulation within IP, 1996.
[45] L. Aversa and A. Bestavros, “Load Balancing a Cluster of Web

Servers Using Distributed Packet Rewriting,” technical report,
1999.

[46] W.W. Hsu and A.J. Smith, “The Performance Impact of I/O
Optimizations and Disk Improvements,” IBM J. Research and
Development, vol. 48, no. 2, pp. 255-289, 2004.

[47] C. Ruemmler and J. Wilkes, “Unix Disk Access Patterns,” Proc.
Usenix Winter Technical Conf., pp. 405-502, 1993.

[48] XFS: A High-Performance Journaling Filesystem, http://oss.sgi.
com/projects/xfs/, Feb. 2007.

[49] Red Hat Global File System, http://www.redhat.com/software/
rha/gfs/, Feb. 2007.

[50] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: A Novel Weighted-
Graph-Based Group Prefetching Algorithm for Metadata Servers
in Petabyte Scale Storage Systems,” Proc. Sixth IEEE Int’l Symp.
Cluster Computing and the Grid (CCGRID ’06), pp. 409-416, May
2006.

ZHU ET AL.: HBA: DISTRIBUTED METADATA MANAGEMENT FOR LARGE CLUSTER-BASED STORAGE SYSTEMS 13

Yifeng Zhu received the BSc degree in electrical
engineering from Huazhong University of
Science and Technology, Wuhan, China, in
1998 and the MS and PhD degrees in computer
science from the University of Nebraska, Lincoln,
in 2002 and 2005, respectively. He is currently
an assistant professor in the Department of
Electrical and Computer Engineering, University
of Maine. His research interests include parallel
I/O storage systems, supercomputing, energy-

aware memory systems, and wireless sensor networks. He served as the
program chair of SNAPI ’07 and the committee of various international
conferences, including ICDCS, ICPP, and NAS. He received Best Paper
Award at IEEE CLUSTER ’07 and several research and education grants
from the US National Science Foundation HECURA, ITEST, REU, and
MRI. He is a member of the ACM, the IEEE, the IEEE Computer Society,
and the Francis Crowe Society.

Hong Jiang received the BSc degree in com-
puter engineering from Huazhong University of
Science and Technology, Wuhan, China, in
1982, the MASc degree in computer engineering
from the University of Toronto in 1987, and the
PhD degree in computer science from the Texas
A&M University, College Station, in 1991. Since
August 1991, he has been with the University of
Nebraska, Lincoln, where he is currently a
professor in the Department of Computer

Science and Engineering. His research interests include computer
architecture, computer storage systems and parallel I/O, parallel/
distributed computing, cluster and grid computing, performance evalua-
tion, real-time systems, middleware, and distributed systems for distance
education. He has more than 135 publications in major journals and
international conference proceedings in these areas, and his research
has been supported by the US National Science Foundation (NSF), US
Department of Defense (DoD), and the State of Nebraska. He is a
member of the IEEE, the ACM, and the ACM SIGARCH.

Jun Wang received the BEng degree in com-
puter engineering from Wuhan University
(formerly Wuhan Technical University of
Surveying and Mapping), the MEng degree in
computer engineering from Huazhong University
of Science and Technology, Wuhan, China, and
the PhD degree in computer science and
engineering in 2002 from the University of
Cincinnati. He is currently an assistant professor
in the School of Electrical Engineering and

Computer Science, University of Central Florida. His research interests
include I/O architecture, file and storage systems, parallel and
distributed computing, cluster and P2P computing, and performance
evaluation. He has received several major research grants from the
US National Science Foundation and the US Department of Energy
Early Career Principal Investigator Award Program. He is a member of
the IEEE, the ACM, the Usenix, and the SNIA.

Feng Xian received the bachelor’s degree from
Chongqing University of Posts and Telecommu-
nications, Chongqing, China, in 1999 and the
master’s degree from Huazhong University of
Science and Technology, Wuhan, China, in
2003. He is currently working toward the PhD
degree in the Department of Computer Science
and Engineering, University of Nebraska, Lin-
coln. His research interests include memory
management and programming languages, dis-

tributed systems, and network security. He is a student member of the
IEEE and the ACM SIGPLAN.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 4, APRIL 2008

