

In Proc. of the 5th IEEE International Conference on Cluster Computing (Cluster 2003), Hong Kong, Dec. 1-4, 2003.

Towards Load Balancing Support for I/O-Intensive Parallel
Jobs in a Cluster of Workstations

Xiao Qin Hong Jiang Yifeng Zhu David R. Swanson
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115, {xqin, jiang, yzhu, dswanson}@cse.unl.edu

Abstract

While previous CPU- or memory-centric load balancing

schemes are capable of achieving the effective usage of
global CPU and memory resources in a cluster system,
the cluster exhibits significant performance drop under
I/O-intensive workload conditions due to the imbalance of
I/O load. To tackle this problem, we have developed two
simple yet effective I/O-aware load-balancing schemes,
which make it possible to balance I/O load by assigning
I/O intensive sequential and parallel jobs to nodes with
light I/O loads. Moreover, the proposed schemes
judiciously take into account both CPU and memory load
sharing in the cluster, thereby maintaining a high
performance for a wide spectrum of workload. Using a
set of real I/O-intensive parallel applications in addition
to synthetic parallel jobs, we show that the proposed
schemes consistently outperform the existing non-I/O-
aware load-balancing schemes for a diverse set of
workload conditions. Importantly, the performance
improvement becomes much more pronounced when the
applications are I/O-intensive.

1. Introduction

In a system consisting of a cluster of workstations, load-
balancing schemes can improve system performance by
attempting to assign work, at run time, to machines with
idle or under-utilized resources. Several distributed load-
balancing schemes, based on this architecture, have been
presented in the literature, primarily considering CPU [9],
memory [1], network [6], a combination of CPU and
memory [22], or a combination of CPU and network [3].
Although these policies have been effective in increasing
the utilization of resources in distributed systems, they
have ignored disk I/O. The impact of disk I/O on overall
system performance is becoming increasingly significant
due to the rapidly growing I/O demands of data-intensive
and/or I/O-intensive applications [24] and the widening
gap between CPU and disk I/O speeds. This makes
storage devices a likely performance bottleneck.

Therefore, we believe that for any dynamic load
balancing scheme to be effective in this new application
environment, it must be made “ I/O-aware” [18].

In the first part of this study, we propose a simple yet
effective I/O-aware load-balancing scheme for both
sequential and parallel jobs, IOCM-RE, which is able to
balance the load of a cluster in such a way that CPU,
memory, and I/O resources at each node can be
simultaneously well utilized under a wide spectrum of
workload. For the second part of the study, we apply a
preemptive migration technique into IOCM-RE, and
develop a scheme that is referred to as IOCM-PM. The
experimental results, generated from extensive
simulations driven by both synthetic and real-application
traces, indicate that, IOCM-RE and IOCM-PM
significantly improve the performance of the existing load
balancing schemes that only consider CPU and memory.

The rest of the paper is organized as follows. In the
section that follows, related work in the literature is
briefly reviewed. Section 3 and Section 4 propose two
I/O-aware load-balancing policies for parallel jobs, and
evaluate the performance of the proposed schemes.
Finally, Section 5 summarizes the main contributions of
this paper and comments on future directions for this
work.

2. Related work

The issue of distributed load balancing for CPU and

memory resources has been extensively studied and
reported in the literature in recent years. Harchol-Balter et
al. [9] proposed a CPU-based preemptive migration
policy that was more effective than non-preemptive
migration policies. Zhang et al. [22] focused on load
sharing policies that consider both CPU and memory
services among the nodes. The experimental results show
that their policies not only improve performance of
memory-intensive jobs, but also maintain the same load
sharing quality of the CPU-based policies for CPU-
intensive jobs [22].

A large body of work can be found in the literature that
addresses the issue of balancing the load of disk I/O

[12][23]. Lee et al. [12] proposed two file assignment
algorithms that balance the load across all disks. The I/O
load balancing policies in these studies have been shown
to be effective in improving overall system performance
by fully utilizing the available hard drives. Zhang et al.
proposed three I/O-aware scheduling schemes that are
aware of the job’s spatial preferences [23]. While the
above approaches address the issue of load balancing for
explicit I/O load, our technique tackles the problem by
considering both explicit I/O invoked by application
programs and implicit I/O induced by page faults.

Many researchers have shown that I/O cache and buffer
are useful mechanisms to optimize storage systems. Ma et
al. have implemented active buffering to alleviate the I/O
burden by using local idle memory and overlapping I/O
with computation [13]. We have developed a feedback
control mechanism to improve the performance of a
cluster by adaptively manipulating the I/O buffer size
[17]. Forney et al. have investigated storage-aware
caching algorithms for heterogeneous clusters [8].
Although we focus solely on balancing disk I/O load in
this paper, the approach proposed here is also capable of
improving the buffer utilization of each node. The
schemes presented in this paper is complementary to the
existing caching/buffering techniques in the sense that our
approaches are able to offer additional performance
improvement when combined with active buffering,
storage-aware caching, and a feedback control
mechanism.

3. I/O-aware Load-Balancing Scheme with
Remote Execution (IOCM-RE)

3.1 Infrastructure for Load Balancing

We consider the problem of distributed dynamic load

balancing among a cluster of nodes (the terms node and
workstation are used interchangeably) connected by a
high-speed network, where a centralized node (or “head
node”) could apply a broadcast mechanism (e.g., gather
and scatter like operations) to handle load distribution in
a dedicated computing cluster. As the head node becomes
increasingly overloaded with the growth of cluster size,
the system will inevitably suffer a significant performance
drop when the head node becomes a severe bottleneck. To
effectively alleviate the potential burden of the head node,
load-balancing schemes can be individually applied to
each node, thereby distributing some of the head node’s
workload among other nodes.

For simplicity, we assume that all nodes are
homogeneous. This simplifying assumption should not
restrict the generality of the proposed model. This is
because the proposed scheme can be extended to handle
heterogeneous system by considering variations in the

performance characteristics of computing power, memory
capacity, and disk speed [16].

We assume that, in a realistic cluster structure, every job
has a “home” workstation that it prefers for execution
[11]. The rationale behind this home model is two-fold:
(1) the input data of a job has been stored in the home
node and, (2) the job was created on its home node. When
a sequential or parallel job is submitted through the client
service (which may be managed and housed by the head
node) to its home node, the load manager assigns the job
to a workstation (for the sequential job) or a group of
workstations (for the parallel job) with the least load. The
load manager continues to receive reasonably up-to-date
global load information from the head node, which
monitors resource utilizations of the cluster and
periodically broadcasts global load information to other
nodes of the cluster. If the load manager detects that the
local node is heavily loaded, a migration will be carried
out to transfer an eligible process to a node with the
lightest load.

3.2 Design of the IOCM-RE Scheme

In this section, we present IOCM-RE, an effective

dynamic I/O-aware load-balancing scheme. Each parallel
job consists of a number of tasks, and the terms process
and task are used interchangeably throughout this paper.
The tasks of a parallel job are assumed to synchronize
with one another [7]. Specifically, each task of a parallel
job serially computes for some period of time, then a
barrier is performed so that each task starts exchanging
messages with other processes of the parallel job. Each
task is described by its requirements for CPU, memory,
and I/O, measured, respectively, by the total time spent on
CPU, Mbytes, and number of disk accesses per ms. Each
workstation serves several tasks in a time-sharing fashion
so that the tasks can dynamically share the cluster
resources.

For a parallel job, arriving in its home workstation via
the client services, the IOCM-RE scheme attempts to
balance three different resources simultaneously in the
following manner.

(1) When the I/O load of a node is greater than zero,
tasks running on the node are likely to experience waiting
time on I/O processing. To alleviate the problem of
unevenly distributed I/O load, IOCM-RE selects a group
of nodes with lighter I/O load. If there are a number of
choices, the one with the smallest value of memory load
will be chosen to break the tie. The tasks of the parallel
job are assigned to the selected remote nodes satisfying a
criterion based on remote execution cost, in addition to
load distribution. The criterion guarantees that the
response time of the expected execution on the selected
remote node is less than the local execution. Formally, the
criterion is described as: r(i, j) > r(k, j) + cj(i, k), where

r(i, j) and r(k, j) are the expected response times of task j
on the local node i and on the remote node k, respectively.
cj(i, k) is the remote execution cost. More precisely, given
a task j arrived in node i and a candidate remote node k,
the expected remote execution cost, cj(i, k), can be
estimated as follows,

�
�
�

�
�
�
�

�
+++=

k
disk

i
disk

ik
net

INIT
jj

bbb
dekic

111
),(. (1)

where e is the fixed cost of migrating the job and

executing it on another node, ik
netb denotes the available

bandwidth of the network link between node k and l,
i
diskb is the available disk bandwidth in node i. In

practice, kl
netb and k

diskb can be measured by a

performance monitor [3]. Accordingly, the simulator

discussed in Section 3.3 estimates kl
netb and k

diskb by

storing the most recent values of the disk and network
bandwidth. dj

INIT represents the amount of data initially
stored on disk to be processed by job j, and this amount of
data is referred to as initial data. Thus, the second term on
the right hand side of the above equation represents the
time spent in transmitting data over the network and on
accessing source and destination disks. In our system
model, we assume that all the initial data of a job is
transmitted if the job encounters a migration. This
assumption is conservative, since the performance of the
proposed approach can be further improved if the amount
of initial data that must be migrated can be accurately
predicted by a monitor at run time.

(2) If no I/O load is imposed on the node, the IOCM-RE
scheme considers the node’s memory load, defined as the
sum of the memory space allocated to the tasks running
on the node. When the memory load exceeds the amount
of available memory space, the IOCM-RE policy
transfers the tasks of the newly arrived parallel job from
the overloaded node to the remote nodes that are lightly
loaded with respect to memory.

(3) If both the disk I/O and memory resources of the
node are well balanced, IOCM-RE attempts to evenly
distribute the CPU load. Specifically, if the node is
overloaded in terms of CPU resource, the IOCM-RE
policy transfers the tasks of the newly arrived job to the
remote node with the lightest CPU load. Therefore,
IOCM-RE is capable of resulting in a balanced CPU load
distribution for systems under a CPU-intensive workload.

3.3 Simulations

To evaluate the performance of the I/O-aware load-

balancing scheme presented above, we have performed a
large number of trace-driven simulations. We simulate a

time-sharing environment, where a cluster comprises 32
workstations. The workload we used is represented by
trace files extrapolated from those reported in [9][22].
Specifically, the traces used in our experiments consist of
the arrival time, arrival node, request memory size, the
actual running time, and I/O access rate. To simulate a
multi-user time-sharing environment where a mixture of
sequential and parallel jobs are running, the number of
parallel jobs in each trace are chosen, respectively, to be
30% and 60% of the total number of jobs in the trace. The
number of tasks in each parallel job is randomly
generated according to a uniform distribution between 2
and 32. We simulate a bulk-synchronous style of
communication, where processes concurrently compute
during a computation phase, and then processes will be
synchronized at a barrier so that messages can be
exchanged among these processes during the
communication phase [7]. In our simulation, the time
interval between two consecutive synchronization phases
is 100 ms.

Although the durations and memory requirements of the
jobs are specified in trace data, the I/O access rate of each
job is randomly generated according to a uniform
distribution. This simplification deflates any correlations
between I/O requirement and other job characteristics, but
we are able to control the mean I/O access rate as a
parameter and examine its impact on system performance.
Data sizes of the I/O requests are randomly generated
based on a Gamma distribution with the mean size of
256Kbyte, which reflects typical data characteristics for
many data-intensive applications [15][19].

The performance metric used in our experiments is the
mean slowdown [9][22] of all the jobs in a trace. The
slowdown of a job is defined as the ratio between the
job’s execution time in a resource-shared setting and its
execution time running in the same system but without
any resource sharing.

3.4 Evaluation of the IOCM-RE Scheme

In this section, we compare IOCM-RE against a simple

centralized load balancing approach used in a space-
sharing cluster, where the nodes of the cluster are
partitioned into disjoint sets and each set can only run one
parallel job at a time. Since this approach is commonly
used for batch systems, we term this load-balancing
scheme as BS (Batch System), or PBS-like [4].

To stress the I/O-intensive workload in this experiment,
the page fault rate is fixed at a low value of 0.5 No./ms.
This workload reflects a scenario where memory-
intensive jobs exhibit high temporal and spatial locality of
access. A realistic system is likely to have a mixed
workload, where some jobs are I/O-intensive and other
jobs are either CPU- or memory-intensive. Therefore, we

randomly choose 10% of jobs from the trace to be non-
I/O-intensive by setting their I/O access rate to 0.

Figure 1 and 2 plot slowdown as a function of the mean

I/O access rate. While Fig. 1 reports the results for seven
traces that only contain sequential jobs, Fig. 2 illustrates
the mean slowdown of another seven traces where 30% of
the jobs in each trace are parallel. Fig. 1 and 2 indicate
that both IOCM-RE and BS experience an increase in the
mean slowdown when the mean I/O access rate increases.
This is because, as CPU load and memory demands are
fixed, high I/O load leads to a high utilization of disks,
causing longer waiting time on I/O processing.

We observe from Fig. 1 and 2 that, under the I/O-
intensive workload, IOCM-RE is significantly better than
BS. The main reason is that it is more difficult to utilize
dedicated clusters as efficient, multiuser time-sharing
platforms to execute I/O-intensive jobs. Fig. 2 shows that
the performance of I/O-intensive jobs drops considerably
when a number of parallel jobs are waiting in the queue of
the centralized node to be executed. This is because the
synchronizations among processes of parallel jobs further
decrease the utilization of resources in the system.

In what follows, we compare the performance of
IOCM-RE with two existing schemes, namely, CPU-
based and memory-based policies. For the purpose of
comparison, we have also simulated a so-called NLB
(Non-Load Balancing) policy that makes no effort to
alleviate the problem of imbalanced load in any resource.

Figure 3 and 4 plot slowdown as a function of the mean

I/O access rate in the range between 0.8 and 1.25 No./ms
with increments of 0.05 No./ms. First, Figure 3 and 4
reveal that the mean slowdowns of the four policies all
increase with the I/O load. Second, the results show that
the IOCM_RE scheme significantly outperforms the
CPU-based and memory-based policies, suggesting that
these two policies are not suitable for I/O-intensive
workloads. This is because CPU-based and Memory-
based policies only balance CPU and memory load,
ignoring the imbalanced I/O load under the I/O intensive
workload conditions.

After comparing Figure 3 with Figure 4, we realize that,
if the mean I/O access rate is fixed, the mean slowdowns
of the four policies all increase with the percentage of
parallel jobs. This is because a higher percentage of
parallel jobs leads to more concurrently running tasks,

Figure 1. Mean slowdown as a function of the I/O
access. Page fault rate is 0.5 No./ms. The traces
only contain sequential jobs.

1

10

100

1000

10000

100000

0.8 0.9 1 1.1 1.2 1.3 1.4

BS
IOCM-RE

Mean I/O access rate (No./ms)

Mean Slowdown

1

10

100

1000

10000

100000

0.8 0.85 0.9 0.95 1 1.05 1.1

BS
IOCM-RE

Mean I/O access rate (No./ms)

Mean Slowdown

Figure 2.Mean slowdown as a function of the
I/O access rate on the traces with 30% parallel
jobs. Page fault rate of 0.5No./ms.

Figure 3. Mean slowdown as a function of the I/O
access rate on the traces with 30% parallel jobs. Page
fault rate is 0.5 No./ms.

0

50

100

150

200

250

0.8 0.8
5 0.9 0.9

5 1
1.0

5 1.1 1.1
5 1.2 1.2

5

NLB
CPU-based
memory-based
IOCM-RE

Mean I/O access rate (No./ms)

Mean Slowdown

0

50

100

150

200

0.8 0.8
5 0.9 0.9

5 1
1.0

5 1.1 1.1
5 1.2 1.2

5

NLB
CPU-based
memory-based
IOCM-RE

Mean I/O access rate (No./ms)

Mean Slowdown

Figure 4. Mean slowdown as a function of the I/O
access rate on the traces with 60% parallel jobs.
Page fault rate is 0.5 No./ms

which in turn increase the overhead in both
synchronization and competing with the resources of the
cluster. Consequently, waiting time in both CPU and I/O
processing becomes longer.

We now turn our attention to memory-intensive

workloads. To simulate a memory intensive workload, the
mean I/O access rate is fixed at a low value of 0.01
No./ms, keeping the I/O demands of all jobs at a very low
level. In practice, the page fault rates of applications
range from 1 to 10 [22]. The results of the mean
slowdown as a function of the page fault rate are
summarized in Fig. 5 and 6.

As can be seen in Figure 5 and 6, when page fault rate is
high and I/O rate is very low, the IOCM-RE and memory-
based policies outperform the CPU-based and NLB
schemes considerably. These results can be explained by
the following reasons. First, the IOCM-RE and memory-
based schemes consider the effective usage of global

memory, attempting to balance the implicit I/O load,
which makes the most significant contribution to the
overall system load when page fault rate is high and the
explicit I/O load is low. Second, the CPU-based scheme
improves the utilization of CPU, ignoring the implicit I/O
load resulting from page faults.

4. IO-aware Load Balancing with Preemptive
Migration (IOCM-PM)

4.1 Design of the IOCM-PM Scheme

We are now in a position to study IOCM-PM, another
I/O-aware load-balancing scheme that improves the
performance by considering not only incoming jobs but
also currently running jobs.

For a newly arrived job at its home node, the IOCM-PM
scheme balances the system load in the following manner.
First, IOCM-RE will be invoked to assign the tasks of the
newly arrived parallel job to a group of suitable nodes.
Second, if the home node is still overloaded, IOCM-PM
determines a set of currently running processes that are
eligible for migration. The migration of an eligible task is
able to potentially reduce the slowdown of the task, and
this step substantially improves the performance over the
IOCM-RE scheme with non-preemptive migration. The
set of eligible migrant tasks is:

 { }),(),(),(),(kicjkrjirMjkiEM ji +>∈= , (2)

where r(i, j) and r(k, j) are the expected response time of
task j on the local node i and on the remote node k,
respectively, and cj(i, k) is the migration cost of task j. In
other words, each eligible migrant’s expected response
time on the source node is greater than the sum of its
expected response time on the destination node and the
expected migration cost. Finally, the eligible processes are
preempted and migrated to a remote node with lighter
load, and the load of the home node and remote nodes is
updated accordingly.

Recall that cj(i, k) is the cost of task j migrated from
node i to node k, and cj(i, k) is modeled as follows,

),(kicj

��
�

�
��
�

�
+++

k
disk

i
disk

ik
net

INIT
j bbb

de
111 if remote execution (3)

= () ��
�

�
��
�

�
+++++

k
disk

i
disk

ik
net

W
j

INIT
j

net

j

bbb
dd

b

m
f

111 otherwise,

Figure 5. Mean slowdown as a function of the
page fault rate on the traces with 30% parallel
jobs. Mean I/O access rate is 0.01No./ms.

0

10

20

30

40

50

60

5.6 5.7 5.8 5.9 6 6.1 6.2 6.3 6.4 6.5

NLB
CPU-based
memory-based
IOCM-RE

Mean page fault rate (No./ms)

Mean Slowdown

Figure 6. Mean slowdown as a function of the
page fault rate on the traces with 60% parallel
jobs. Mean I/O access rate is 0.01No./ms.

0

10

20

30

40

50

60

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

NLB
CPU-based
memory-based
IOCM-RE

Mean page fault rate (No./ms)

Mean Slowdown

where f is the fixed cost for preemptive migration. Like
equation (1), the last three terms of both the upper and the
bottom line of Equation (3) represent the migration time
spent on transmitting data over the network and on
accessing source and destination disks, respectively. The
second term of the bottom line of Equation (3) is the
memory transfer cost. dj

W and mj in Equation (3) denote
the amount of disk (I/O) data and of main memory data
generated at the runtime by the job, respectively. Disk
data dj

W is proportional to the number of write operations
that has been issued by the job at the runtime and the
average amount of data dj

RW stored by the write
operations. dj

W is inversely proportional to the data re-
access rate rj. Thus, dj

W is defined by the following
equation,

1+

×××
=

j

RW
jjjjW

j r

dwa
d

λ , (4)

where wj is the percentage of I/O operations that store
data to the local disk, and the number of write operations
is a product of aj, λj, and wj in the numerator. In some
I/O-intensive applications, numerous snapshots are
spawned by write-only operations. Since the permanent
data of snapshots will not be read again by the same job,
there is no need to move such write-only data when the
job is migrated.

4.2 Evaluation of the IOCM-PM Scheme

To evaluate the IOCM-PM performance, we compare it

against the CPU-based, memory-based, and IOCM-RE
schemes under 20 I/O-intensive traces, which use the
same configurations given in Section 3.3. The results of
10 traces, in which 30 percent of the jobs in each trace are
parallel, are plotted in Fig. 7. Similarly, Fig. 8 illustrates
the mean slowdowns of other 10 traces where 60 percent
of the jobs in each trace are parallel.

It is observed from Fig. 7 and 8 that IOCM-PM
consistently performs the best among all the schemes. For
example, IOCM-PM improves the performance over
IOCM-RE, memory-based and CPU-based schemes by up
to 112.8%, 142.6%, and 146.1%, respectively. These
results indicate that load-balancing schemes with
preemptive migration outperform those schemes with
non-preemptive migration under I/O-intensive workload
conditions. Consequently, the slowdowns of the CPU-
based, memory-based, and IOCM-RE are more sensitive
to I/O access rate than IOCM-PM. This performance
improvement of IOCM-PM over the IOCM-RE schemes
can be explained by the following reasons. First, one
problem encountered in the IOCM-RE policy is that
IOCM-RE only considers newly arrived jobs for
migration, completely ignoring the running tasks that

might take advantages of migration from their overloaded
node to a remote node with lighter load. In other words, in
the non-preemptive schemes, once a task with high I/O
demand misses the opportunity to migrate it will never
have a second chance. Second, I/O demand of the tasks in
a newly arriving job may not be high enough to offset the
migration overhead. Third, IOCM-PM provides better
migratory opportunities by considering all the running
tasks on a node, in addition to the tasks of a newly arrived
job.

4.3 Real I/O-intensive Parallel Applications

The experimental results reported in the previous

sections are obtained from parallel jobs with synthetic I/O
requests. To validate the results based on the synthetic I/O
workload, we simulate a number of real I/O-intensive
parallel applications using five sets of I/O traces collected
from the University of Maryland [20]. In particular, we
evaluate the mean slowdowns of the following five
applications, including both scientific and non-scientific
applications with diverse disk I/O demands.

(1) Data mining (Dmine): This application extracts
association rules from retail data [14].

Figure 7. Mean slowdown as a function of the I/O
access rate on the traces with 30% parallel jobs.
Page fault rate is 0.5 No./ms.

0

50

100

150

200

250

0.8 0.8
5 0.9 0.9

5 1
1.0

5 1.1 1.1
5 1.2 1.2

5

CPU-based
memory-based
IOCM-RE
IOCM-PM

Mean I/O access rate (No./ms)

Mean Slowdown

0

50

100

150

200

0.8 0.8
5 0.9 0.9

5 1
1.0

5 1.1 1.1
5 1.2 1.2

5

CPU-based
memory-based
IOCM-RE
IOCM-PM

Mean I/O access rate (No./ms)

Mean Slowdown

Figure 8. Mean slowdown as a function of the I/O
access rate on the traces with 60% parallel jobs.
Page fault rate is 0.5 No./ms.

(2) Parallel text search (Pgrep): This application is used
for partial match and approximate searches, and it is a
modified parallel version of the agrep program from the
University of Arizona [21].

(3) LU decomposition (LU): This application tries to
compute the dense LU decomposition of an out-of-core
matrix [10].

(4) Titan: This is a parallel scientific database for
remote-sensing data [5].

(5) Sparse Cholesky (Cholesky): This application is
capable of computing Cholesky decomposition for sparse,
symmetric positive-definite matrices [2].

To simulate these I/O-intensive parallel applications, we
generate five job traces where the arrival patterns of jobs
are extrapolated based on the job traces collected from the
University of California at Berkeley [9]. The main
purpose of conducting this experiment is to measure the
impact of the I/O-aware load balancing schemes on a
variety of real applications and, therefore, each job trace
consists of one type of I/O-intensive parallel application
described above. A 32-node cluster is simulated to run the
applications with different I/O demands in each trace.

Figure 9 shows the mean slowdowns of the five job

traces scheduled by four load-sharing policies. We make
three observations. First, the I/O-aware load balancing
schemes benefit all I/O intensive applications, and offer a
23.6-88.0% performance improvement in mean slowdown
over the non-I/O-aware policies. The performance gain is
partially attributed to the low migration cost by virtue of
duplicating read-only data. Note that these applications
present a very small I/O demand for writes, and the I/O
request rates for writes are uniformly low.

 Second, IOCM-RE and IOCM-PM yield approximately
identical performances. We attribute this result to the fact
that, since all jobs running on the cluster in this
experiment belong to the same application and have
nearly identical CPU and I/O demands, the tasks of a
newly arrived parallel job are most likely to become the
suitable task for migration due to their low migration cost.

In other words, both IOCM-RE and IOCM-PM attempt to
migrate the tasks of newly arrived jobs when the local
node in the cluster is overloaded and, as a result, IOCM-
PM reduces to IOCM-RE when the variance in CPU and
I/O demand is minimum.

Third, the trace with LU applications exhibits a larger
mean slowdown than the other four traces. Given a fixed
job arrival pattern, the mean slowdowns of jobs in a trace
depends partially on jobs’ total execution time, which in
turn is affected by the CPU and I/O execution times of
jobs running on a dedicated cluster. Since the total
execution time of LU is considerably longer than the
other applications, an LU application is expected to spend
more time than other applications sharing resources with
other jobs running on the cluster. Consequently, there is a
strong likelihood that each LU job in the trace will
experience a higher slowdown.

Importantly, it is observed from Fig. 9 that the benefits
gained from the I/O-aware load balancing schemes are
pronounced for Cholesky, Titan, Pgrep, and Dmine, and
the performance improvements for these applications are
more than 53%. In contrast, the proposed approaches only
improve performance in slowdown by 24% for the
workload with the LU applications. The reason behind
this observation is that LU exhibits a low CPU utilization,
thus making most of the running LU jobs in the cluster
compete for disk I/O resources.

5. Conclusions

 In this paper, we have proposed two IO-CPU-Memory

Based load-balancing policies, referred to as IOCM-RE
(without preemptive migration) and IOCM-PM (with
preemptive migration), for a cluster of workstations.
IOCM-RE employs remote execution facilities to improve
system performance, whereas IOCM-PM utilizes a
preemptive migration strategy to boost the performance.
In addition to CPU and memory utilization, both IOCM-
RE and IOCM-PM consider I/O load, leading to a
performance improvement over the existing CPU- and
Memory-based policies under I/O-intensive workload
conditions. Using five real I/O-intensive parallel
applications in addition to a set of synthetic parallel jobs
with a wide variety of I/O demands, we have
demonstrated that applying IOCM-RE and IOCM-PM to
clusters of workstations for I/O-intensive workload is not
only necessary but also highly effective. Specifically, the
proposed schemes offer 24-88% performance
improvements in mean slowdown for I/O-intensive
applications including LU decomposition, Sparse
Cholesky, Titan, Parallel text searching, and Data Mining.
When I/O load is low or well balanced, the proposed
schemes are able to maintain the same level of
performance as the existing non-I/O-aware schemes.

Figure 9. Mean slowdowns of four policies on
five applications.

0

10

20

30

40

50

60

70

Dmine Pgrep LU Titan Cholesky

CPU-based
memory-based
IOCM-RE
IOCM-PM

M
ea

n
Sl

ow
do

w
n

Due to long run times, we have studied the performance
of a cluster with 32 workstations. Therefore, future
research will deal with a rigorous testing experiment
where the performance of a cluster with more than 1000
workstations will be evaluated.

6. Acknowledgements

This work was partially supported by an NSF grant

(EPS-0091900), a Nebraska University Foundation grant
(26-0511-0019), and a UNL Academic Program Priorities
Grant. Work was completed using the Research
Computing Facility at University of Nebraska-Lincoln.
We are grateful to the anonymous referees for their
insightful suggestions and comments.

References

[1] A. Acharya and S. Setia, “Availability and Utility of Idle
Memory in Workstation Clusters,” Proceedings of the ACM
SIGMETRICS Conference on Measuring and Modeling of
Computer Systems, May 1999.
[2] A. Acharya et al., “Tuning the performance of I/O-intensive
parallel applications,” Proceedings of the 4th IOPADS,
Philadelphia, PA, May 1996, pp. 15-27.
[3] J. Basney and M. Livny, "Managing Network Resources in
Condor," Proceedings of the Ninth IEEE Symposium on High
Performance Distributed Computing (HPDC9), Pittsburgh,
Pennsylvania, August 2000, pp. 298-299.
[4] B. Bode, D. M. Halstead, R. Kendall, and Z. Lei, “The
Portable Batch Scheduler and the Maui Scheduler on Linux
Clusters,” Proceedings of the 4th Annual Linux Showcase &
Conference, 2000.
[5] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and
J. Saltz. “Titan: a High-Performance Remote-Sensing
Database,” Proceedings of the 13th International Conference on
Data Engineering, Apr 1997.
[6] J. Cruz and Kihong Park, “Towards Communication-
Sensitive Load Balancing,” Proceedings of the 21st
International Conference on Distributed Computing Systems
(ICDCS 2001), Apr. 2001.
[7] A.C. Dusseau, R.H.Arpaci, and D.E. Culler, “Effective
Distributed Scheduling of Parallel Workload,” Proceedings of
the ACM SIGMETRICS Conference on Measuring and
Modeling of Computer Systems, pp.25-36, May 1996.
[8] B. Forney, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Storage-Aware Caching: Revisiting Caching for
Heterogeneous Storage Systems,” Proceedings of the 1st
USENIX Conference on File and Storage Technologies (FAST
2001), 2001.
[9] M. Harchol-Balter and A. Downey, “Exploiting Process
Lifetime Distributions for Load Balacing,” ACM Transactions
on Computer Systems, vol. 3, no. 31, 1997.
[10] B. Hendrickson and D. Womble, “The torus-wrap mapping
for dense matrix calculations on massively parallel computers,”
SIAM J. Sci. Comput., 15(5), Sept. 1994.
[11] R. Lavi and A. Barak, “The Home Model and Competitive
Algorithm for Load Balancing in a Computing Cluster,”

Proceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS 2001), Apr. 2001.
[12] L. Lee, P. Scheauermann, and R. Vingralek, “File
Assignment in Parallel I/O Systems with Minimal Variance of
Service time,” IEEE Trans. on Computers, Vol. 49, No.2,
pp.127-140, 2000.
[13] X. Ma, M. Winslett, J. Lee, and S. Yu, “Faster Collective
Output through Active Buffering,” Proceedings of the
International Symposium on Parallel and Distributed
Processing, (IPDPS 2002), 2002.
[14] A. Mueller, “Fast sequential and parallel algorithms for
association rule mining: A comparison,” Technical Report CS-
TR-3515, University of Maryland, College Park, August 1995.
[15] B. K. Pasquale and G.C. Polyzos, “Dynamic I/O
Characterization of I/O Intensive Scientific applications,”
Proceedings of the Supercomputing 1994, pp. 660 - 669.
[16] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “Dynamic Load
Balancing for I/O-Intensive Tasks on Heterogeneous Clusters,”
Proceedings of the 10th International Conference on High
Performance Computing (HiPC 2003), December 17-20, 2003,
Hyderabad, India.
[17] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “Dynamic Load
balancing for I/O- and Memory-Intensive workload in Clusters
using a Feedback Control Mechanism,” Proceedings of the 9th
International Euro-Par Conference on Parallel Processing
(Euro-Par 2003), Klagenfurt, Austria, August 26- 29, 2003, pp.
224-229.
[18] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “A Dynamic
Load Balancing Scheme for I/O-Intensive Applications in
Distributed Systems,” Proceedings of the 32nd International
Conference on Parallel Processing Workshops (ICPP Workshop
2003), Oct. 6-9, 2003.
[19] J.O. Roads, et al., “A Preliminary Description of the
Western U.S. Climatology” , Proceedings of the Ninth Annual
Pacific Climate (PAClim) Workshop, September 8, 1992.
[20] M. Uysal, A. Acharya, and J. Saltz. “Requirements of I/O
Systems for Parallel Machines: An Application-driven
Study,” Technical Report, CS-TR-3802, University of Maryland,
College Park, May 1997.
[21] S. Wu and U. Manber, “agrep - A fast approximate pattern-
matching tool,” USENIX Conference Proceedings, pp. 153–162,
San Francisco, CA, Winter 1992. USENIX.
[22] X. Zhang, Y. Qu, and L. Xiao, “ Improving Distributed
Workload Performance by Sharing both CPU and Memory
Resources,” Proceedings of the 20th International Conference
on Distributed Computing Systems (ICDCS 2000), Apr. 2000.
[23] Y. Zhang, A. Yang, A. Sivasubramaniam, and J. Moreira,
“Gang Scheduling Extensions for I/O Intensive Workloads,”
Proceedings of the 9th Workshop on Job Scheduling Strategies
for Parallel Processing, 2003.
[24] Y. Zhu, H. Jiang, X. Qin, and D. Swanson, “A Case Study
of Parallel I/O for Biological Sequence Analysis on Linux
Clusters", Proceedings of the 5th IEEE International
Conference on Cluster Computing (Cluster 2003), Hong Kong,
December 1-4, 2003.

