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Abstract 
 
While previous CPU- or memory-centric load balancing 

schemes are capable of achieving the effective usage of 
global CPU and memory resources in a cluster system, 
the cluster exhibits significant performance drop under 
I/O-intensive workload conditions due to the imbalance of 
I/O load. To tackle this problem, we have developed two 
simple yet effective I/O-aware load-balancing schemes, 
which make it possible to balance I/O load by assigning 
I/O intensive sequential and parallel jobs to nodes with 
light I/O loads. Moreover, the proposed schemes 
judiciously take into account both CPU and memory load 
sharing in the cluster, thereby maintaining a high 
performance for a wide spectrum of workload. Using a 
set of real I/O-intensive parallel applications in addition 
to synthetic parallel jobs, we show that the proposed 
schemes consistently outperform the existing non-I/O-
aware load-balancing schemes for a diverse set of 
workload conditions. Importantly, the performance 
improvement becomes much more pronounced when the 
applications are I/O-intensive. 
 
 
1. Introduction 
 

In a system consisting of a cluster of workstations, load-
balancing schemes can improve system performance by 
attempting to assign work, at run time, to machines with 
idle or under-utilized resources. Several distributed load-
balancing schemes, based on this architecture, have been 
presented in the literature, primarily considering CPU [9], 
memory [1], network [6], a combination of CPU and 
memory [22], or a combination of CPU and network [3]. 
Although these policies have been effective in increasing 
the utilization of resources in distributed systems, they 
have ignored disk I/O. The impact of disk I/O on overall 
system performance is becoming increasingly significant 
due to the rapidly growing I/O demands of data-intensive 
and/or I/O-intensive applications [24] and the widening 
gap between CPU and disk I/O speeds. This makes 
storage devices a likely performance bottleneck. 

Therefore, we believe that for any dynamic load 
balancing scheme to be effective in this new application 
environment, it must be made “ I/O-aware”  [18].  

In the first part of this study, we propose a simple yet 
effective I/O-aware load-balancing scheme for both 
sequential and parallel jobs, IOCM-RE, which is able to 
balance the load of a cluster in such a way that CPU, 
memory, and I/O resources at each node can be 
simultaneously well utilized under a wide spectrum of 
workload. For the second part of the study, we apply a 
preemptive migration technique into IOCM-RE, and 
develop a scheme that is referred to as IOCM-PM. The 
experimental results, generated from extensive 
simulations driven by both synthetic and real-application 
traces, indicate that, IOCM-RE and IOCM-PM 
significantly improve the performance of the existing load 
balancing schemes that only consider CPU and memory. 

The rest of the paper is organized as follows. In the 
section that follows, related work in the literature is 
briefly reviewed. Section 3 and Section 4 propose two 
I/O-aware load-balancing policies for parallel jobs, and 
evaluate the performance of the proposed schemes. 
Finally, Section 5 summarizes the main contributions of 
this paper and comments on future directions for this 
work. 

  
2. Related work 

 
The issue of distributed load balancing for CPU and 

memory resources has been extensively studied and 
reported in the literature in recent years. Harchol-Balter et 
al. [9] proposed a CPU-based preemptive migration 
policy that was more effective than non-preemptive 
migration policies. Zhang et al. [22] focused on load 
sharing policies that consider both CPU and memory 
services among the nodes. The experimental results show 
that their policies not only improve performance of 
memory-intensive jobs, but also maintain the same load 
sharing quality of the CPU-based policies for CPU-
intensive jobs [22]. 

A large body of work can be found in the literature that 
addresses the issue of balancing the load of disk I/O 



 
 
 
 

[12][23]. Lee et al. [12] proposed two file assignment 
algorithms that balance the load across all disks. The I/O 
load balancing policies in these studies have been shown 
to be effective in improving overall system performance 
by fully utilizing the available hard drives. Zhang et al. 
proposed three I/O-aware scheduling schemes that are 
aware of the job’s spatial preferences [23]. While the 
above approaches address the issue of load balancing for 
explicit I/O load, our technique tackles the problem by 
considering both explicit I/O invoked by application 
programs and implicit I/O induced by page faults. 

Many researchers have shown that I/O cache and buffer 
are useful mechanisms to optimize storage systems. Ma et 
al. have implemented active buffering to alleviate the I/O 
burden by using local idle memory and overlapping I/O 
with computation [13]. We have developed a feedback 
control mechanism to improve the performance of a 
cluster by adaptively manipulating the I/O buffer size 
[17]. Forney et al. have investigated storage-aware 
caching algorithms for heterogeneous clusters [8]. 
Although we focus solely on balancing disk I/O load in 
this paper, the approach proposed here is also capable of 
improving the buffer utilization of each node. The 
schemes presented in this paper is complementary to the 
existing caching/buffering techniques in the sense that our 
approaches are able to offer additional performance 
improvement when combined with active buffering, 
storage-aware caching, and a feedback control 
mechanism. 

 
3. I/O-aware Load-Balancing Scheme with 
Remote Execution  (IOCM-RE) 
 
3.1 Infrastructure for Load Balancing 

 
We consider the problem of distributed dynamic load 

balancing among a cluster of nodes (the terms node and 
workstation are used interchangeably) connected by a 
high-speed network, where a centralized node (or “head 
node”) could apply a broadcast mechanism (e.g., gather 
and scatter like operations) to handle load distribution in 
a dedicated computing cluster. As the head node becomes 
increasingly overloaded with the growth of cluster size, 
the system will inevitably suffer a significant performance 
drop when the head node becomes a severe bottleneck. To 
effectively alleviate the potential burden of the head node, 
load-balancing schemes can be individually applied to 
each node, thereby distributing some of the head node’s 
workload among other nodes.  

For simplicity, we assume that all nodes are 
homogeneous. This simplifying assumption should not 
restrict the generality of the proposed model. This is 
because the proposed scheme can be extended to handle 
heterogeneous system by considering variations in the 

performance characteristics of computing power, memory 
capacity, and disk speed [16]. 

We assume that, in a realistic cluster structure, every job 
has a “home”  workstation that it prefers for execution 
[11]. The rationale behind this home model is two-fold: 
(1) the input data of a job has been stored in the home 
node and, (2) the job was created on its home node. When 
a sequential or parallel job is submitted through the client 
service (which may be managed and housed by the head 
node) to its home node, the load manager assigns the job 
to a workstation (for the sequential job) or a group of 
workstations (for the parallel job) with the least load. The 
load manager continues to receive reasonably up-to-date 
global load information from the head node, which 
monitors resource utilizations of the cluster and 
periodically broadcasts global load information to other 
nodes of the cluster. If the load manager detects that the 
local node is heavily loaded, a migration will be carried 
out to transfer an eligible process to a node with the 
lightest load.  
 
3.2 Design of the IOCM-RE Scheme 

 
In this section, we present IOCM-RE, an effective 

dynamic I/O-aware load-balancing scheme. Each parallel 
job consists of a number of tasks, and the terms process 
and task are used interchangeably throughout this paper. 
The tasks of a parallel job are assumed to synchronize 
with one another [7]. Specifically, each task of a parallel 
job serially computes for some period of time, then a 
barrier is performed so that each task starts exchanging 
messages with other processes of the parallel job. Each 
task is described by its requirements for CPU, memory, 
and I/O, measured, respectively, by the total time spent on 
CPU, Mbytes, and number of disk accesses per ms. Each 
workstation serves several tasks in a time-sharing fashion 
so that the tasks can dynamically share the cluster 
resources. 

For a parallel job, arriving in its home workstation via 
the client services, the IOCM-RE scheme attempts to 
balance three different resources simultaneously in the 
following manner.   

(1) When the I/O load of a node is greater than zero, 
tasks running on the node are likely to experience waiting 
time on I/O processing. To alleviate the problem of 
unevenly distributed I/O load, IOCM-RE selects a group 
of nodes with lighter I/O load. If there are a number of 
choices, the one with the smallest value of memory load 
will be chosen to break the tie. The tasks of the parallel 
job are assigned to the selected remote nodes satisfying a 
criterion based on remote execution cost, in addition to 
load distribution. The criterion guarantees that the 
response time of the expected execution on the selected 
remote node is less than the local execution. Formally, the 
criterion is described as: r(i, j) > r(k, j) + cj(i, k), where 



 
 
 
 

r(i, j) and r(k, j) are the expected response times of task j 
on the local node i and on the remote node k, respectively. 
cj(i, k) is the remote execution cost. More precisely, given 
a task j arrived in node i and a candidate remote node k, 
the expected remote execution cost, cj(i, k), can be 
estimated as follows, 
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where e is the fixed cost of migrating the job and 

executing it on another node, ik
netb denotes the available 

bandwidth of the network link between node k and l, 
i
diskb  is the available disk bandwidth in node i. In 

practice, kl
netb  and k

diskb  can be measured by a 

performance monitor [3]. Accordingly, the simulator 

discussed in Section 3.3 estimates kl
netb  and k

diskb  by 

storing the most recent values of the disk and network 
bandwidth. dj

INIT represents the amount of data initially 
stored on disk to be processed by job j, and this amount of 
data is referred to as initial data. Thus, the second term on 
the right hand side of the above equation represents the 
time spent in transmitting data over the network and on 
accessing source and destination disks. In our system 
model, we assume that all the initial data of a job is 
transmitted if the job encounters a migration. This 
assumption is conservative, since the performance of the 
proposed approach can be further improved if the amount 
of initial data that must be migrated can be accurately 
predicted by a monitor at run time. 

(2) If no I/O load is imposed on the node, the IOCM-RE 
scheme considers the node’s memory load, defined as the 
sum of the memory space allocated to the tasks running 
on the node. When the memory load exceeds the amount 
of available memory space, the IOCM-RE policy 
transfers the tasks of the newly arrived parallel job from 
the overloaded node to the remote nodes that are lightly 
loaded with respect to memory.  

(3) If both the disk I/O and memory resources of the 
node are well balanced, IOCM-RE attempts to evenly 
distribute the CPU load. Specifically, if the node is 
overloaded in terms of CPU resource, the IOCM-RE 
policy transfers the tasks of the newly arrived job to the 
remote node with the lightest CPU load. Therefore, 
IOCM-RE is capable of resulting in a balanced CPU load 
distribution for systems under a CPU-intensive workload. 
 
3.3 Simulations 

 
To evaluate the performance of the I/O-aware load-

balancing scheme presented above, we have performed a 
large number of trace-driven simulations. We simulate a 

time-sharing environment, where a cluster comprises 32 
workstations. The workload we used is represented by 
trace files extrapolated from those reported in [9][22]. 
Specifically, the traces used in our experiments consist of 
the arrival time, arrival node, request memory size, the 
actual running time, and I/O access rate. To simulate a 
multi-user time-sharing environment where a mixture of 
sequential and parallel jobs are running, the number of 
parallel jobs in each trace are chosen, respectively, to be 
30% and 60% of the total number of jobs in the trace. The 
number of tasks in each parallel job is randomly 
generated according to a uniform distribution between 2 
and 32. We simulate a bulk-synchronous style of 
communication, where processes concurrently compute 
during a computation phase, and then processes will be 
synchronized at a barrier so that messages can be 
exchanged among these processes during the 
communication phase [7]. In our simulation, the time 
interval between two consecutive synchronization phases 
is 100 ms. 

Although the durations and memory requirements of the 
jobs are specified in trace data, the I/O access rate of each 
job is randomly generated according to a uniform 
distribution. This simplification deflates any correlations 
between I/O requirement and other job characteristics, but 
we are able to control the mean I/O access rate as a 
parameter and examine its impact on system performance. 
Data sizes of the I/O requests are randomly generated 
based on a Gamma distribution with the mean size of 
256Kbyte, which reflects typical data characteristics for 
many data-intensive applications [15][19].  

The performance metric used in our experiments is the 
mean slowdown [9][22] of all the jobs in a trace. The 
slowdown of a job is defined as the ratio between the 
job’s execution time in a resource-shared setting and its 
execution time running in the same system but without 
any resource sharing. 

 
3.4 Evaluation of the IOCM-RE Scheme  

 
In this section, we compare IOCM-RE against a simple 

centralized load balancing approach used in a space-
sharing cluster, where the nodes of the cluster are 
partitioned into disjoint sets and each set can only run one 
parallel job at a time. Since this approach is commonly 
used for batch systems, we term this load-balancing 
scheme as BS (Batch System), or PBS-like [4].  

To stress the I/O-intensive workload in this experiment, 
the page fault rate is fixed at a low value of 0.5 No./ms. 
This workload reflects a scenario where memory-
intensive jobs exhibit high temporal and spatial locality of 
access. A realistic system is likely to have a mixed 
workload, where some jobs are I/O-intensive and other 
jobs are either CPU- or memory-intensive. Therefore, we 



 
 
 
 

randomly choose 10% of jobs from the trace to be non-
I/O-intensive by setting their I/O access rate to 0. 

 

  
Figure 1 and 2 plot slowdown as a function of the mean 

I/O access rate. While Fig. 1 reports the results for seven 
traces that only contain sequential jobs, Fig. 2 illustrates 
the mean slowdown of another seven traces where 30% of 
the jobs in each trace are parallel. Fig. 1 and 2 indicate 
that both IOCM-RE and BS experience an increase in the 
mean slowdown when the mean I/O access rate increases.  
This is because, as CPU load and memory demands are 
fixed, high I/O load leads to a high utilization of disks, 
causing longer waiting time on I/O processing.  

We observe from Fig. 1 and 2 that, under the I/O-
intensive workload, IOCM-RE is significantly better than 
BS. The main reason is that it is more difficult to utilize 
dedicated clusters as efficient, multiuser time-sharing 
platforms to execute I/O-intensive jobs. Fig. 2 shows that 
the performance of I/O-intensive jobs drops considerably 
when a number of parallel jobs are waiting in the queue of 
the centralized node to be executed. This is because the 
synchronizations among processes of parallel jobs further 
decrease the utilization of resources in the system. 

In what follows, we compare the performance of 
IOCM-RE with two existing schemes, namely, CPU-
based and memory-based policies. For the purpose of 
comparison, we have also simulated a so-called NLB 
(Non-Load Balancing) policy that makes no effort to 
alleviate the problem of imbalanced load in any resource. 

 

 
Figure 3 and 4 plot slowdown as a function of the mean 

I/O access rate in the range between 0.8 and 1.25 No./ms 
with increments of 0.05 No./ms. First, Figure 3 and 4 
reveal that the mean slowdowns of the four policies all 
increase with the I/O load. Second, the results show that 
the IOCM_RE scheme significantly outperforms the 
CPU-based and memory-based policies, suggesting that 
these two policies are not suitable for I/O-intensive 
workloads. This is because CPU-based and Memory-
based policies only balance CPU and memory load, 
ignoring the imbalanced I/O load under the I/O intensive 
workload conditions. 

After comparing Figure 3 with Figure 4, we realize that, 
if the mean I/O access rate is fixed, the mean slowdowns 
of the four policies all increase with the percentage of 
parallel jobs. This is because a higher percentage of 
parallel jobs leads to more concurrently running tasks, 

Figure 1. Mean slowdown as a function of the I/O 
access. Page fault rate is 0.5 No./ms. The traces 
only contain sequential jobs. 
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Figure 2.Mean slowdown as a function of the 
I/O access rate on the traces with 30% parallel 
jobs. Page fault rate of 0.5No./ms.  

Figure 3. Mean slowdown as a function of the I/O 
access rate on the traces with 30% parallel jobs. Page 
fault rate is 0.5 No./ms.  
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Page fault rate is 0.5 No./ms 



 
 
 
 

which in turn increase the overhead in both 
synchronization and competing with the resources of the 
cluster. Consequently, waiting time in both CPU and I/O 
processing becomes longer.  

 

 
We now turn our attention to memory-intensive 

workloads. To simulate a memory intensive workload, the 
mean I/O access rate is fixed at a low value of 0.01 
No./ms, keeping the I/O demands of all jobs at a very low 
level. In practice, the page fault rates of applications 
range from 1 to 10 [22]. The results of the mean 
slowdown as a function of the page fault rate are 
summarized in Fig. 5 and 6.  

As can be seen in Figure 5 and 6, when page fault rate is 
high and I/O rate is very low, the IOCM-RE and memory-
based policies outperform the CPU-based and NLB 
schemes considerably. These results can be explained by 
the following reasons. First, the IOCM-RE and memory-
based schemes consider the effective usage of global 

memory, attempting to balance the implicit I/O load, 
which makes the most significant contribution to the 
overall system load when page fault rate is high and the 
explicit I/O load is low. Second, the CPU-based scheme 
improves the utilization of CPU, ignoring the implicit I/O 
load resulting from page faults. 
 
4. IO-aware Load Balancing with Preemptive 
Migration  (IOCM-PM)  
 
4.1 Design of the IOCM-PM Scheme 
 

We are now in a position to study IOCM-PM, another 
I/O-aware load-balancing scheme that improves the 
performance by considering not only incoming jobs but 
also currently running jobs.  

For a newly arrived job at its home node, the IOCM-PM 
scheme balances the system load in the following manner. 
First, IOCM-RE will be invoked to assign the tasks of the 
newly arrived parallel job to a group of suitable nodes. 
Second, if the home node is still overloaded, IOCM-PM 
determines a set of currently running processes that are 
eligible for migration. The migration of an eligible task is 
able to potentially reduce the slowdown of the task, and 
this step substantially improves the performance over the 
IOCM-RE scheme with non-preemptive migration. The 
set of eligible migrant tasks is:   

 
    { }),(),(),(),( kicjkrjirMjkiEM ji +>∈= ,      (2)  

 
where r(i, j) and r(k, j) are the expected response time of 
task j on the local node i and on the remote node k, 
respectively, and cj(i, k) is the migration cost of task j. In 
other words, each eligible migrant’s expected response 
time on the source node is greater than the sum of its 
expected response time on the destination node and the 
expected migration cost. Finally, the eligible processes are 
preempted and migrated to a remote node with lighter 
load, and the load of the home node and remote nodes is 
updated accordingly. 

Recall that cj(i, k) is the cost of task j migrated from 
node i to node k, and cj(i, k) is modeled as follows, 
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Figure 5. Mean slowdown as a function of the 
page fault rate on the traces with 30% parallel 
jobs. Mean I/O access rate is 0.01No./ms.  
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where f is the fixed cost for preemptive migration. Like 
equation (1), the last three terms of both the upper and the 
bottom line of Equation (3) represent the migration time 
spent on transmitting data over the network and on 
accessing source and destination disks, respectively. The 
second term of the bottom line of Equation (3) is the 
memory transfer cost. dj

W and mj in Equation (3) denote 
the amount of disk (I/O) data and of main memory data 
generated at the runtime by the job, respectively. Disk 
data dj

W is proportional to the number of write operations 
that has been issued by the job at the runtime and the 
average amount of data dj

RW stored by the write 
operations. dj

W is inversely proportional to the data re-
access rate rj. Thus, dj

W is defined by the following 
equation,  
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where wj is the percentage of I/O operations that store 
data to the local disk, and the number of write operations 
is a product of aj, λj, and wj in the numerator. In some 
I/O-intensive applications, numerous snapshots are 
spawned by write-only operations. Since the permanent 
data of snapshots will not be read again by the same job, 
there is no need to move such write-only data when the 
job is migrated.   
 
4.2 Evaluation of the IOCM-PM Scheme  

 
To evaluate the IOCM-PM performance, we compare it 

against the CPU-based, memory-based, and IOCM-RE 
schemes under 20 I/O-intensive traces, which use the 
same configurations given in Section 3.3. The results of 
10 traces, in which 30 percent of the jobs in each trace are 
parallel, are plotted in Fig. 7. Similarly, Fig. 8 illustrates 
the mean slowdowns of other 10 traces where 60 percent 
of the jobs in each trace are parallel.  

It is observed from Fig. 7 and 8 that IOCM-PM 
consistently performs the best among all the schemes. For 
example, IOCM-PM improves the performance over 
IOCM-RE, memory-based and CPU-based schemes by up 
to 112.8%, 142.6%, and 146.1%, respectively. These 
results indicate that load-balancing schemes with 
preemptive migration outperform those schemes with 
non-preemptive migration under I/O-intensive workload 
conditions. Consequently, the slowdowns of the CPU-
based, memory-based, and IOCM-RE are more sensitive 
to I/O access rate than IOCM-PM. This performance 
improvement of IOCM-PM over the IOCM-RE schemes 
can be explained by the following reasons. First, one 
problem encountered in the IOCM-RE policy is that 
IOCM-RE only considers newly arrived jobs for 
migration, completely ignoring the running tasks that 

might take advantages of migration from their overloaded 
node to a remote node with lighter load. In other words, in 
the non-preemptive schemes, once a task with high I/O 
demand misses the opportunity to migrate it will never 
have a second chance. Second, I/O demand of the tasks in 
a newly arriving job may not be high enough to offset the 
migration overhead. Third, IOCM-PM provides better 
migratory opportunities by considering all the running 
tasks on a node, in addition to the tasks of a newly arrived 
job.  

 

 
4.3 Real I/O-intensive Parallel Applications 

 
The experimental results reported in the previous 

sections are obtained from parallel jobs with synthetic I/O 
requests. To validate the results based on the synthetic I/O 
workload, we simulate a number of real I/O-intensive 
parallel applications using five sets of I/O traces collected 
from the University of Maryland [20]. In particular, we 
evaluate the mean slowdowns of the following five 
applications, including both scientific and non-scientific 
applications with diverse disk I/O demands.  

(1) Data mining (Dmine): This application extracts 
association rules from retail data [14].   

Figure 7. Mean slowdown as a function of the I/O 
access rate on the traces with 30% parallel jobs. 
Page fault rate is 0.5 No./ms.  
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Figure 8. Mean slowdown as a function of the I/O 
access rate on the traces with 60% parallel jobs. 
Page fault rate is 0.5 No./ms. 



 
 
 
 

(2) Parallel text search (Pgrep): This application is used 
for partial match and approximate searches, and it is a 
modified parallel version of the agrep program from the 
University of Arizona [21]. 

(3) LU decomposition (LU): This application tries to 
compute the dense LU decomposition of an out-of-core 
matrix [10]. 

(4) Titan: This is a parallel scientific database for 
remote-sensing data [5]. 

(5) Sparse Cholesky (Cholesky): This application is 
capable of computing Cholesky decomposition for sparse, 
symmetric positive-definite matrices [2]. 

To simulate these I/O-intensive parallel applications, we 
generate five job traces where the arrival patterns of jobs 
are extrapolated based on the job traces collected from the 
University of California at Berkeley [9]. The main 
purpose of conducting this experiment is to measure the 
impact of the I/O-aware load balancing schemes on a 
variety of real applications and, therefore, each job trace 
consists of one type of I/O-intensive parallel application 
described above. A 32-node cluster is simulated to run the 
applications with different I/O demands in each trace. 

 

 
Figure 9 shows the mean slowdowns of the five job 

traces scheduled by four load-sharing policies. We make 
three observations. First, the I/O-aware load balancing 
schemes benefit all I/O intensive applications, and offer a 
23.6-88.0% performance improvement in mean slowdown 
over the non-I/O-aware policies. The performance gain is 
partially attributed to the low migration cost by virtue of 
duplicating read-only data. Note that these applications 
present a very small I/O demand for writes, and the I/O 
request rates for writes are uniformly low.  

 Second, IOCM-RE and IOCM-PM yield approximately 
identical performances. We attribute this result to the fact 
that, since all jobs running on the cluster in this 
experiment belong to the same application and have 
nearly identical CPU and I/O demands, the tasks of a 
newly arrived parallel job are most likely to become the 
suitable task for migration due to their low migration cost. 

In other words, both IOCM-RE and IOCM-PM attempt to 
migrate the tasks of newly arrived jobs when the local 
node in the cluster is overloaded and, as a result, IOCM-
PM reduces to IOCM-RE when the variance in CPU and 
I/O demand is minimum. 

Third, the trace with LU applications exhibits a larger 
mean slowdown than the other four traces. Given a fixed 
job arrival pattern, the mean slowdowns of jobs in a trace 
depends partially on jobs’  total execution time, which in 
turn is affected by the CPU and I/O execution times of 
jobs running on a dedicated cluster. Since the total 
execution time of LU is considerably longer than the 
other applications, an LU application is expected to spend 
more time than other applications sharing resources with 
other jobs running on the cluster. Consequently, there is a 
strong likelihood that each LU job in the trace will 
experience a higher slowdown.  

Importantly, it is observed from Fig. 9 that the benefits 
gained from the I/O-aware load balancing schemes are 
pronounced for Cholesky, Titan, Pgrep, and Dmine, and 
the performance improvements for these applications are 
more than 53%. In contrast, the proposed approaches only 
improve performance in slowdown by 24% for the 
workload with the LU applications. The reason behind 
this observation is that LU exhibits a low CPU utilization, 
thus making most of the running LU jobs in the cluster 
compete for disk I/O resources. 
 
5. Conclusions 

 
 In this paper, we have proposed two IO-CPU-Memory 

Based load-balancing policies, referred to as IOCM-RE 
(without preemptive migration) and IOCM-PM (with 
preemptive migration), for a cluster of workstations. 
IOCM-RE employs remote execution facilities to improve 
system performance, whereas IOCM-PM utilizes a 
preemptive migration strategy to boost the performance. 
In addition to CPU and memory utilization, both IOCM-
RE and IOCM-PM consider I/O load, leading to a 
performance improvement over the existing CPU- and 
Memory-based policies under I/O-intensive workload 
conditions. Using five real I/O-intensive parallel 
applications in addition to a set of synthetic parallel jobs 
with a wide variety of I/O demands, we have 
demonstrated that applying IOCM-RE and IOCM-PM to 
clusters of workstations for I/O-intensive workload is not 
only necessary but also highly effective. Specifically, the 
proposed schemes offer 24-88% performance 
improvements in mean slowdown for I/O-intensive 
applications including LU decomposition, Sparse 
Cholesky, Titan, Parallel text searching, and Data Mining. 
When I/O load is low or well balanced, the proposed 
schemes are able to maintain the same level of 
performance as the existing non-I/O-aware schemes. 

Figure 9. Mean slowdowns of four policies on 
five applications.  
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Due to long run times, we have studied the performance 
of a cluster with 32 workstations. Therefore, future 
research will deal with a rigorous testing experiment 
where the performance of a cluster with more than 1000 
workstations will be evaluated. 
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