
Hierarchical Bloom Filter Arrays (HBA): A Novel, Scalable Metadata
Management System for Large Cluster-based Storage

Yifeng Zhu, Hong Jiang and Jun Wang
Department of Computer Science and Engineering

University of Nebraska, Lincoln, NE, USA
Email: {yzhu, jiang, wang}@cse.unl.edu

Abstract

An efficient and distributed scheme for file mapping or
file lookup scheme is critical in decentralizing metadata
management within a group of metadata servers. This pa-
per presents a novel technique called HBA (Hierarchical
Bloom Filter Arrays) to map file names to the servers hold-
ing their metadata. Two levels of probabilistic arrays, i.e.,
Bloom Filter Arrays, with different accuracies are used on
each metadata server. One array, with lower accuracy and
representing the distribution of the entire metadata, trades
accuracy for significantly reduced memory overhead, while
the other array, with higher accuracy, caches partial distri-
bution information and exploits the temporal locality of file
access patterns. Extensive trace-driven simulations have
shown our HBA design to be highly effective and efficient
in improving performance and scalability of file systems in
clusters with 1,000 to 10,000 nodes (or super-clusters).

1 Introduction

Rapid advances in general-purpose communication net-
works have motivated the deployment of inexpensive com-
ponents to build competitive cluster-based storage solu-
tions to meet the increasing demand of scalable comput-
ing [4, 5, 7, 15, 27, 30]. In the recent years, the bandwidth of
these networks has been increased by two orders of magni-
tude [3, 8, 12], which greatly narrows the performance gap
between them and the dedicated networks used in commer-
cial storage systems, such as fiber channels. The significant
improvement in network bandwidth offers an appealing op-
portunity to provide cost-effective high-performance stor-
age services by aggregating the existing storage resources
on each commodity PC in a computing cluster with such
networks if a scalable scheme is in place to efficiently vir-
tualize these distributed resources into a single-disk image.
The key challenge in realizing this objective lies in the po-

tentially huge number of nodes (in thousands) in such a
cluster. Currently clusters with thousands of nodes are al-
ready in existence and clusters with even larger number of
nodes are expected in the near future.

Since all I/O requests can be classified into two cate-
gories, the user data requests and the metadata requests,
the scalability of accessing both data and metadata has to
be carefully maintained to avoid any potential performance
bottleneck along all data paths. To divert the high volume
of user data traffic to bypass any single centralized compo-
nent, the functions of data and metadata managements are
usually decomposed and the metadata is stored separately
on different nodes away from the user data. While previous
work on cluster-based storage mainly focuses on optimiz-
ing the scalability and efficiency of user data accesses by
using a RAID style striping [7, 31], caching [28], schedul-
ing [18, 32] and networking [29], very little attention has
been drawn to the scalability of the metadata management.

Yet, the efficiency of the metadata management is criti-
cal for the overall performance of cluster-based storage sys-
tems. It not only provides file attributes and data block ad-
dresses, but also synchronizes concurrent updates, enforces
access control, supports recovering and maintains consis-
tency between user data and file metadata. A study on the
file system traces collected in different environments over
a course of several months shows that requests targeting at
the metadata can account for up to 83% of the total number
of I/O requests [11]. Under such skewed load to metadata, a
centralized metadata management system certainly will not
scale well with the cluster size. As the number of files or
I/O requests increases, the throughput of metadata opera-
tions on a single metadata server can be severely limited.

This paper proposes a novel scheme, called Hierarchical
Bloom Filter Array (HBA), to evenly distribute the tasks
of metadata management onto a group of metadata servers.
A Bloom filter is a succinct data structure for probabilis-
tic membership query. We identify that a straightforward
adoption of Bloom filers is impractical due to the memory
space overhead when the number of files is very large. By

exploiting the temporal access locality of the file access pat-
tern, we use a small Bloom filter array with a high accuracy
at the first level of the hierarchy to capture the destination
metadata server information of some frequently accessed
files to keep high management efficiency while reducing the
memory overhead. At the second level of the hierarchy, a
pure Bloom array (PBA), with lower accuracy in favor of
memory efficiency, is used to maintain the destination meta-
data information of all files. Extensive trace-driven simula-
tions have shown HBA to be capable of offering significant
performance and cost advantages over PBA alone or pure
global LRU lists.

This paper has the following technical contributions:

• It analyzes the performance of the pure Bloom filter
approach by using both theoretical models and trace
simulations. The efficiency and scalability of this ap-
proach are examined under different workloads and
cluster configurations.

• It proposes and evaluates a hybrid approach that uses
hierarchical structures. It explores the impacts of dif-
ferent parameters to optimize the tradeoff between the
efficiency of metadata distribution and management,
and the memory and network overhead.

• It compares both HBA and PBA schemes using two ar-
tificially scaled-up large file system traces that emulate
file systems of up to 1300 nodes and 710 active users.

• HBA attempts to optimize the tradeoff between the ef-
ficiency and the network and memory overhead. To
achieve high metadata look-up efficiency, PBA with
high accuracy must be used and thus it suffers severely
from large memory overhead. On the other hand, to
maintain the same efficiency, a scheme using only pure
LRU lists has to be updated very frequently and thus
it suffers from enormously large network traffic over-
head. HBA employs a hierarchical structure integrat-
ing a PBA with a lower accuracy (to significantly re-
duce memory overhead) with a pure LRU scheme with
a lower update frequency to achieve a good tradeoff
between the efficiency and the memory and network
overhead. As a result, HBA achieves a high efficiency
without suffering either memory or network overhead.

The rest of the paper is organized as follows. Section 2
outlines the existing approaches to decentralizing the meta-
data management in large cluster-based file systems. Sec-
tion 3 describes the proposed architecture and the design
objectives. Section 4 presents in detail the design of the
HBA scheme. The simulation methodology is presented in
Section 5, while the performances of our design are evalu-
ated in Section 6. Section 8 concludes the paper.

2 Related Work and Comparisons of Decen-
tralization Schemes

Centralized metadata management is employed in
many cluster-based storage systems. Google file system
(GFS) [15] uses only one metadata server. Experiments for
GFS, conducted in a storage cluster with 100 nodes, indi-
cate that this single metadata server is not a performance
bottleneck under the specific workload in a data searching
environment, where the number of files stored in GFS is
modest and file access patterns are less complicated than
the workload in a general file system. In the GFS study,
only a few million files were expected and the accesses
to these files were almost read-only, once initially written.
PVFS [7], a RAID-0 style parallel file system, also employs
a single metadata server design to provide a cluster-wide
shared namespace. As the performance is the most impor-
tant objective of PVFS, some expensive but indispensable
functions, such as the concurrent control and consistency
maintenance between data and metadata, are not fully de-
signed and implemented. In CEFT-PVFS [30, 31, 32, 33]
an extension of PVFS to incorporate a RAID-10 style par-
allel I/O and dynamic load-balancing, the metadata server
synchronizes the concurrent updates and this synchroniza-
tion enforcement can limit the overall throughput under the
workload of intensive concurrent metadata updates. While
Lustre [4] also uses a centralized metadata management in
its current design, undergoing efforts are being made to fur-
ther improve its scalability by decentralizing the metadata
management.

Static namespace partition is a simple way of distribut-
ing metadata operations to a group of metadata servers. A
common partition technique has been to divide the direc-
tory tree during the process of installing or mounting and
store the information at some well-known locations. Some
distributed file systems, such as NFS [21], AFS [20], and
Coda [25], follow this approach. This scheme works well
only when file access patterns are uniform, resulting in a
balanced workload. Unfortunately, access patterns in gen-
eral file systems are highly skewed [9, 14, 23, 26] and thus
this partition scheme can lead to highly imbalanced work-
load if files in some particular subdirectories become more
popular.

Another decentralized scheme is to implement a glob-
ally replicated mapping table. There is a salient tradeoff
between the space requirement and the granularity and flex-
ibility of distribution. A fine-grained table allows more flex-
ibility metadata placement. In an extreme case, if the table
records the home server of the metadata for each file, then
the metadata of a file can be placed on any metadata server.
However, the memory space requirement for this approach
makes it unattractive for large scale storage systems. A
back-of-the-envelope calculation shows that it would take

as much as 1.8 GB memory to store such a table with one
hundred million entries if 16 bytes and 2 bytes are used to
represent the file name and metadata server ID respectively.
In addition, searching an entry in such a huge table con-
sumes a large number of precious CPU cycles. To reduce
the memory space overhead, xFS [1] proposes a coarse-
grained table that maps a group of files to a metadata server.
To keep a good tradeoff, it is suggested in XFS that the num-
ber of entries in a table should be an order of magnitude
larger than the total metadata server number.

Modulus-based hashing is also a widely used decentral-
ized scheme. This approach hashes a symbolic pathname
of a file to a digital value and assigns its metadata to a
server according to the modulus value with respect to the
total metadata server number. In practice, the likelihood of
serious skew of metadata workload is almost negligible in
this scheme since the number of frequently accessed files is
usually much larger than the number of metadata servers.
However, a serious problem with this scheme is that meta-
data needs to be migrated to new servers after renaming of
a file or directory and additions or deletions of metadata
servers. Although the size of the metadata of a file is small,
a large number of files may be involved during a directory
renaming. In particular, the metadata of all files has to be
relocated if a metadata server joins or leaves. This could
lead to both disk and network traffic surges and cause seri-
ous performance degradation. While LazyHybrid [5] is pro-
posed to reduce the influence of metadata migration by in-
corporating a small table that maps disjointed hash ranges to
server IDs and other techniques, such as lazy updating, the
migration overhead can still overweight the benefits from
load balancing in a busy distributed storage system.

3 Architectural Considerations and Design
Objectives

Client

Metadata
operations

User data transfer

High-speed network

Consistency maintance

Metadata
Server

Metadata
Server

Metadata
Server

Client

Client

Data
Server

Data
Server

Data
Server

Figure 1. Cluster-based storage architecture.

In this paper, we focus on a generic cluster where a num-
ber of commodity PCs are connected by a high-bandwidth

low-latency switched network. Each node has its own stor-
age devices. There are no functional differences between
all cluster nodes. The role of clients, metadata servers, and
data servers can be carried out by any node and a node may
not be dedicated to a specific role. It can act in multiple
roles simultaneously. Figure 1 shows the architecture of a
generic cluster targeted in this paper.

In this study, we concentrate on the scalability and flexi-
bility aspects of metadata management. Some other impor-
tant issues, such as consistency maintenance, synchroniza-
tion of concurrent accesses, file system security and protec-
tion enforcement, free space allocation (or garbage collec-
tion), balancing the space utilizations, management of the
striping of file contents, and incorporation of fault tolerance,
are beyond the scope of this study. Instead, the following
objectives are considered in our design:

• Single shared namespace. All storage devices are vir-
tualized into a single image and all clients share the
same view of this image. This requirement simplifies
the management of user data and allows a job to run
on any node in a cluster.

• Scalable service. The throughput of a metadata man-
agement system should scale with the computation
power of a cluster. It should not become a performance
bottleneck under high I/O access rate. This requires the
system to have a low management overhead.

• Zero metadata migration. Although the size of the
metadata is small, the number of files in a system can
be enormously large. In a metadata management sys-
tem that requires metadata to migrate to other servers
in responses to the file system’s evolution, such as re-
naming of files or directory, or the topology changes
involving server additions or departures, the compu-
tational overhead of checking whether a migration is
needed and the network traffic overhead due to meta-
data migration may be prohibitively large, hence lim-
iting the efficiency and scalability.

• Balancing the load of metadata accesses. The man-
agement is evenly shared among multiple metadata
servers to best leverage the available throughput of
these severs.

• Flexibility of storing the metadata of a file on any
metadata server. This flexibility provides the opportu-
nity for fine-grained load balance, simplifies the place-
ment of metadata replicas, and facilitates some per-
formance optimizations, such as metadata prefetch-
ing [19, 24]. In a distributed system, metadata
prefetching requires the flexibility of storing a group
of sequentially accessed files on the same physical lo-
cation to save the number of metadata retrievals.

4 Hierarchical Bloom Filter Arrays

4.1 Bloom Filters

A Bloom filter is a fast and space-efficient method to
support probabilistic membership queries. It was invented
by Burton Bloom in 1970 [2] and widely used for web
caching [13], network routing [6], and prefix matching [10].
A Bloom filter aims to reduce the memory requirement of
representing a set of elements at the nominal cost of a very
small probability of false hits. A false hit occurs when a
Bloom filter positively confirms the membership of an el-
ement while this element actually does not belong to this
set. The probability that a false hit occurs is called the false
positive rate or false hit rate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

50

60

70

80

90

100

H
it

ra
te

 fo
r

ol
d

fil
es

 (
P

er
ce

nt
ag

e)

Number of bits per file (m/n)

1 Bloom filter
10 Bloom filters
25 Bloom filters
50 Bloom filters
100 Bloom filters
200 Bloom filters
400 Bloom filters
800 Bloom filters

Figure 2. Theoreti-
cal hit rates for ex-
isting files.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

15

20

25

30

35

40

F
al

se
 r

at
e

fo
r

ne
w

 fi
le

w
 (

P
er

ce
nt

ag
e)

Number of bits per file (m/n)

 1 Bloom filter
 10 Bloom filters
 25 Bloom filters
 50 Bloom filters
100 Bloom filters
200 Bloom filters
400 Bloom filters
800 Bloom filters

Figure 3. Theoret-
ical false hit rates
for new files.

4.2 Hierarchical Bloom Array Design

4.2.1 Pure Bloom Filter Array (PBA) Approach

A straightforward extension of the Bloom filter approach to
decentralizing metadata management onto multiple meta-
data servers is to use an array of Bloom filters on each meta-
data server. The metadata of each file is stored on some
metadata server, called the home metadata server. In this
design, each metadata server builds a Bloom filter that rep-
resents all files whose metadata is stored locally and then
replicates this filter to all the other metadata servers. In-
cluding the replicas of the Bloom filters from all the other
servers, a metadata server stores all filters in a array. When
a client initiates a metadata request, the client randomly
chooses a metadata server and asks this server to perform
the membership query against this array. The Bloom filter
array is said to have a hit if exactly one filter gives a positive
response. A miss is said to have occurred whenever there is
no hit or more than one hit found in the array. The desired
metadata can be found on the hit Bloom Filter with a very
high probability.

When an existing file is searched, a false positive hit
from any Bloom filter can lead to multiple hits and thus
causes the search to fail. If all Bloom filters are perfectly
updated, the hit rate for an existing file is the probability
that all Bloom filters have no false positive hits, given as
follows

hitoldfiles = (1 − f)p = (1 − (0.6185)m/n)p (1)

where m is the length of a Bloom filter, n is the num-
ber of files that a single metadata contains and p is the to-
tal number of metadata servers and f is the optimal false
rate of a single Bloom filter. Figure 2 shows the relation-
ship between hitoldfile and m/n under different numbers
of metadata servers.

For new files, a false hit happens when exactly one
Bloom filter gives a false positive response. The false pos-
itiveness will be discovered eventually when the desired
metadata actually does not exist on the falsely identified
metadata server. The false hit rate can be expressed as

falsenewfile = pf(1 − f)p−1

= p(0.6185)m/n(1 − (0.6185)m/n)p−1

Given a constant p, falsenewfile reaches its maximum
value (1 − 1

p)p−1 when f = 1
p , i.e., m/n = 2.0792 ln p.

This maximum value approaches asymptotically to e−1 ≈
0.3679. This trend of falsenewfile with respect to m/n
under different numbers of metadata servers is given in Fig-
ure 3. This trend shows a special characteristic of a Bloom
filter array that is different from that of a Bloom filter. While
in a Bloom filter, increasing the filter length always reduces
its false hit rate, the false hit rate of a Bloom filter array
actually increases with the filter size until reaching its max-
imum false hit rate. This observation is important in opti-
mizing the bit/file ratio for Bloom filter arrays.

While optimizing the tradeoff between the space effi-
ciency and the response accuracy, more weights are put on
improving hitoldfile than decreasing falsenewfile since al-
most all I/O requests are targeted at existing files in a typical
file system,. This biased optimization might not work well
in any special environment where the operations of file cre-
ation account for a considerably high percentage of the total
file accesses.

This approach provides a flexible metadata placement,
has no migration overhead, and balances the metadata
workload. PBA does not rely on any property of a file to
place its metadata and thus allows the system to place any
metadata on any server. This makes it feasible to group
metadata with strong locality together for prefetching, a
technology that has been widely used in conventional file
systems [19, 24]. During evolvement of the file system and
the cluster topology, not all metadata needs to migrate to
new locations. When a file or directory is renamed, only

the Bloom filters associated with all the involved files or
subdirectories need to be updated. While a metadata server
leaves or joins the system, a single associated Bloom filter
is added or deleted from the Bloom arrays on all other meta-
data servers. Since each client randomly chooses a metadata
server to lookup for the home metadata server of a file, the
query workload is balanced on all metadata servers.

The major disadvantage of this approach is that stor-
ing the Bloom filter array requires a large memory space.
For example, if there are 200 metadata servers in a super-
cluster, 16 bits per file are required in each Bloom filter to
maintain a hit rate around 90% for old files and a false hit
rate 10% for new files. If there are 500 million files stored
in this cluster, the Bloom filter array would take around
16 × 500Mb = 1GB memory space on each metadata
server. This memory requirement is underestimated since,
in practice, the hit rates can be lower than the theoretical
results. This implies that an even higher bit/file needs to be
employed. In a web caching design system [13], a ratio of
32 is suggested.

4.2.2 Hierarchical Bloom Array (HBA) Design

To achieve a sufficiently high hit rate in the pure Bloom fil-
ter array approach described above, the high memory over-
head may make this approach impractical due to the fact
that a large bit/hit ratio needs to be employed to achieve a
high hit rate when the number of metadata server is large.
In this section, we present the design of the Hierarchical
Bloom Array (HBA) to reduce the memory overhead while
achieving a competitively high hit rate.

The novelty of the HBA design lies in its judicious ex-
ploitation of the fact that in a typical file system, a small
fraction of files absorb most of the I/O activities. Ref. [14]
discovered that 66% of all files had not been access in over
a month in a UNIX environment, indicating that the entire
I/O accesses were focused on at most 34% of the file sys-
tem. Ref. [26] found that 0.1% of the total space used by the
file system received 30 − 60% of the I/O activity. Ref. [9]
show that most files in UNIX file systems were inactive and
only 3.6%−13% of the file-system data was used in a given
day, and only 0.2−3.6% of the I/O activity went to the least
active 75% of the file system. A recent study [27] on a file
system trace collected in December 2000 from a mid-sized
file server found that only 2.8% and 24.2% percentages of
files that were accessed during a continuous course of 12
hours and 10 days, respectively.

Figure 4 shows the structure of the HBA design on each
metadata server, including two levels of Bloom filter arrays.
In the design, each metadata server maintains a LRU (Least-
Recently-Used) list that caches names of recently visited
files whose metadata is stored on that metadata server. Each
Bloom filter at the first level, called a LRU BF, represents all

the files cached in the LRU list of the corresponding meta-
data server. Each LRU BF is globally replicated among all
metadata servers. Whenever an overflow happens in the
LRU list, an eviction based on the LRU replacement pol-
icy triggers both an addition and deletion operations to its
corresponding LRU BF. Only when the portion of changes
made to a LRU BF has exceeded some threshold, will the
LRU BF be multicast to all the metadata servers to update
all its replicas. Since the number of entries in LRU is rel-
atively small, it is affordable to use a large bit/file ratio to
achieve a low false hit rate. In addition, the Bloom filters in
the second level represent the metadata distributions of all
metadata servers. Since the totally number of files is typi-
cally very large, a small bit/file ratio is used to reduce the
memory overhead. A miss in the first level array leads to a
query to the second level. An unsuccessful query in the sec-
ond level array will cause a broadcast to be issued to all the
other metadata severs. It must be noted that the penalty for
a miss or a false hit can be very expensive, relative to the hit
time, since it entails, among other things, a broadcast over
the interconnection network, a query on a second metadata
server and an acknowledgement across the network.

To perform a query into the Bloom filters, the file names
are transformed into digital indexes into of the Bloom array
by first calculating the MD5 signature of the full pathname
and then hashing the MD5 signature into indices by using
the universal hash functions [22]. Without calculating the
MD5 of the full pathname, files with the same name will
be hashed to the same location, even if they are in differ-
ent directories. The MD5 approach is chosen because its
available fast implementation. The universal hash functions
are employed to keep the independence of hash indices, a
requirement of Bloom filter to minimize the false hit rate.

Locating the metadata by hashing the full pathname will
complicate the access control since all parent directories are
bypassed. The same technique used in [5] can be employed
here to deal with the access control issue. Two UNIX style
access permission codes, including the permission code of
the file per se and the intersection of access permissions of
all parent directories, are maintained in the metadata of each
file and checked for each file access. A file is only accessi-
ble only when both codes permit. A downside of this solu-
tion is that populating the permission changes of a directory
to its children may potentially result in a large number of
network messages.

5 Trace Driven Simulation

5.1 File System Traces

To the best of our knowledge, there are no publicly avail-
able file system traces that have been collected from a large-
scale cluster with thousands of nodes. To emulate the I/O

Level 2 BF Array

LRU BF 1

LRU BF 2

LRU BF n

LRU BF i

Level 1 BF Array

file
queries

zero or
multiple hits

zero or
multiple hits

unique hit unique hit

multicast
the queries

forward the
queries to its

home MS

update

MD5

BF 1

BF 2

BF n

Hashing 1 Hashing 2

MD5visited
local files

miss

update

Hashing 1LRU List i

Figure 4. Scheme of hierarchical Bloom filter array on the metadata server node i.

Table 1. Comparisons of the original RES
trace fragment and two scaled-up ones.

Original TIF = 50 TIF =100

Hosts 13 650 1300
Active files 4212 0.24 million 0.42 million
New files 301 14192 30103
Requests 0.014 million 6.9 million 14 million
Total files 0.66 million 3.3 million 66 million

Table 2. Comparisons of the original HP
traces with a scaled-up one.

Original TIF = 40

Active users 18 710
Active files 0.057 million 2.26 million
New files 0.004 million 0.16 million
Requests 0.47 million 19 million
Total files 4.0 million 160.0 million

behaviors of such a large system and facilitate a meaningful
simulation, we artificially scale up the workload presented
in the RES trace collected at University of California Berke-
ley in 1997 and the HP file system trace collected at the HP
Lab in December 2001.

Throughout January 1997, the RES trace [11] was col-
lected on a cluster of 13 machines used by an academic re-
search group consisting of 50 users. The HP file system
trace [23] is a 10-day trace of all file system accesses to
several disk arrays with a total of 500 GB of storage. These
arrays were attached to a 4-way HP-UX time-sharing server
and were used by 236 users. Since both the RES and HP
traces collected all I/O requests at the file system level, any
requests not related to metadata operations, such as read,
write, and execution, are filtered out in our simulation.

To scale up the workload collected in these environments
to emulate the workload in a large cluster with thousands of

nodes, we divided each daily trace collected from 8:00am
to 16:00pm, which were usually the busiest period during
a day, into four fragments, with each fragment including
two hours of I/O accesses. The time stamps of all events in
each fragment are equally shifted so that this fragment starts
at time instant zero. Replaying multiple time-shifted frag-
ments simultaneously increases the I/O arrival rate while
keeping a similar histogram of file system calls. In addi-
tion, the number of files stored and the number of files ac-
tively visited were scaled up proportionally by adding the
date and fragment number as a prefix path to all filenames.
We believe that replaying a large number of processed frag-
ments together can emulate the workload of a large clus-
ter since I/O requests are self-similar in nature at both the
disk-level [16] and file level [17]. Note that the number
of fragments replayed concurrently is referred to as Trace
Intensifying Factor (TIF) throughout the rest of this paper.
The characteristics of the original traces and their scaled-up
ones are summarized in Table 1 and Table 2.

5.2 Trace Driven Simulation

We have developed a trace-driven simulator to emulate
the behaviors of the metadata management system on the
metadata servers. Some trace events that are not directly re-
lated to the metadata are filtered out in the simulation. For
example, since the metadata is usually accessed through the
system calls such as open, close, and stat, the data read and
write events do not retrieve or modify the relevant metadata
in a typical file system and thus they are skipped in the sim-
ulation.

6 Performance Evaluation

We simulate the metadata servers using the two traces in-
troduced previously and measure the performance in terms
of hit rates, as well as the memory and network over-
head. Since the decentralized schemes of table-based map-
ping and modulus-based hashing are simple and straightfor-
ward and their performances were already discussed quali-

Table 3. Impact of the propagation thresholds
on the hit rate in PBA.

Thresholds (%) 100 10 0.001 0.00001
Hit Rate(%) 81.110 81.112 81.17 82.417

tatively, the simulation study in this paper will be focused
on the schemes of PBA, HBA and pure LRU BF to obtain
quantitative comparisons and conclusions.

0 2 4 6 8 10 12
20

30

40

50

60

70

80

90

100

H
it

ra
te

 (
pe

rc
en

ta
ge

)

Number of hash functions

 8 bits/file (Theory)
12 bits/file (Theory)
16 bits/file (Theory)
 8 bits/file (Simulation)
12 bits/file (Simulation)
16 bits/file (Simulation)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

H
it

ra
te

 (
pe

rc
en

ta
ge

)

Number of hash functions

 8 bits/file (Theory)
12 bits/file (Theory)
16 bits/file (Theory)
 8 bits/file (Simulation)
12 bits/file (Simulation)
16 bits/file (Simulation)

Figure 5. Comparisons the theoretical and
simulation results of the hit rates of PBA in
a cluster with 10 (left figure) and 100 (right
figure) metadata servers (TIF = 100).

6.1 RES Traces

6.1.1 Pure Bloom Filter Array Approach

Figure 5 depicts the relationships, obtained by theoretical
analysis and simulation, between the hit rates and the com-
putation cost in terms of the number of hash functions used
in the pure Bloom filter array (PBA) approach. In these
simulations, 100 trace fragments were replayed simultane-
ously in a cluster with 10 and 100 metadata servers, respec-
tively, and the Bloom filters used different combinations of
the bit/file ratio and the number of hash functions. The PBA
approach achieves its best hit rate when the number of hash
functions optimizes a single Bloom filter. In the simulations
presented in the rest of this paper, the number of hash func-
tions is always kept at a value that optimizes the hit rate for
a given bit/file ratio. The close agreement between the the-
oretical and simulation results lends more confidence and
credence to our theoretical analysis and simulation results.
More importantly, these experiments show that to maintain
a high hit rate in a large cluster with 100 or more metadata
servers, a large bit/file ratio, such as 16 bits/file, becomes
necessary.

Table 3 shows the impact of the propagation threshold,
the percentage of bits in a Bloom filter that must be changed
before updating its copies in other metadata servers, on the
hit rates in the scenario of 10 metadata servers and a bit/file

ratio of 8. With the decrease of the threshold, the hit rate
increases slightly. This unexpected low sensitivity of hit
rate to threshold is due to the fact that the frequency of
file renaming, creation or deletion is very low in the RES
trace. We might underestimate the impact of the propaga-
tion threshold since the events of directory renaming cannot
be fully and truthfully simulated for the given trace. The
original file or directory names in the RES trace are hashed
to a single level of namespace to protect the privacy and thus
the hierarchical directory tree can not be reconstructed from
the trace. Hence it is infeasible to truly simulate a directory
renaming.

6.1.2 Hierarchical Bloom Filter Array Approach

50 100 200 300 400
0

50

66

89

100

LRU list size (files)

H
it

ra
te

 (
pe

rc
en

ta
ge

)

50 100 200 300 400
0

50

66

89

100

BF8 + LRU (TIF = 10)
BF8 + LRU (TIF = 20)
BF8 + LRU (TIF = 40)
BF8 + LRU (TIF = 60)
BF8 + LRU (TIF = 80)
BF8 + LRU (TIF = 100)

BF8
BF12
BF16

10 50 100 150
0

20

50

76

87

100

LRU list size (files)

H
it

ra
te

 (
pe

rc
en

ta
ge

)

10 50 100 150
0

20

50

76

87

100

BF8
BF12
BF16

BF8 + LRU (TIF = 10)
BF8 + LRU (TIF = 20)
BF8 + LRU (TIF = 40)
BF8 + LRU (TIF = 60)
BF8 + LRU (TIF = 80)
BF8 + LRU (TIF = 100)

Figure 6. Comparisons of hit rates of HBA un-
der various LRU size and TIFs in RES traces
in a cluster with 10 (left figure) and 100 (right
figure) metadata servers.

Figure 6 shows the hit rate of HBA with different sizes
of LRU lists in a cluster with 10 and 100 metadata servers,
respectively, when the TIF increases gradually from 10 to
100. In HBA, the two levels of Bloom filter arrays adopt
different bit/file ratios, giving rise to different accuracies.
While the second level Bloom filer array, which stores the
distribution information of all files, employs a bit/file ratio
of 8, the LRU BF in the first level adopts a bit/file ratio
of 20. The bars in these figures represent the average hit
rate of all metadata servers in the HBA approach. For the
convenience of comparisons, the optimal hit rates in PBA
with different bit/file ratios are also given in these figures
and are shown as horizontal lines. In HBA, a small LRU can
significantly improve the overall hit rates. The LRU lists
with sizes of 300, 100 and 50 file entries in the clusters with
10 and 100 metadata servers, respectively, can boost the hit
rates of HBA with 8 bits/file to, or higher than those of PBA
of the same configurations but with 16 bits/file. In the real
applications of HBA, the size of a LRU list can adaptively
increase from some small initial value until a satisfying hit
rate is achieved.

Table 4 gives the relative storage space overhead of var-
ious HBA and PBA configurations, normalized to that of
PBA with 8 bits/file. On each metadata server, the extra

Table 4. Relative space overhead normalized
to PBA with a ratio of 8.

Server # PBA12 PBA16 HBA (LRU size)

10 1.5 2.0 1.0001136 (300 entries)
50 1.5 2.0 1.0001894 (100 entries)

100 1.5 2.0 1.0001894 (50 entries)

overhead of HBA introduced by a LRU list and a LRU
Bloom filter is only a negligible portion of the space re-
quirement of the PBA 8. This is because that millions of
files are stored in the Bloom filter array in PBA, but only
hundreds or thousands of files are stored in the LRU list and
LRU Bloom filter. A HBA that achieves the same hit rate
as a PBA with 16 bits/file requires only 50% of the space
required by that PBA.

10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

Number of metadata servers

H
it

ra
te

 (
pe

rc
en

ta
ge

)

BF8 (8 b/f, 6 funs)
BF12 (12 b/f, 8 funs)
BF16 (16 b/f, 11 funs)
LRU (1600 files, 1.0%)
BF8 + LRU (1600 files, 1.0%)

Figure 7. Hit rate comparisons between LRU
BFs, HBA with a ratio of 8 and PBA with ra-
tios of 8, 12 and 16 under different number of
metadata servers (TIF = 40).

7 HP File System Traces

Figure 7 shows the hit rates of the PBA, a LRU list and
the HBA when the number of metadata servers changes
from 10 to 100 with a step of 10. The HBA combines the
LRU list with a size of 1600 entries and a Bloom filter ar-
ray with a bit/file ratio of 8. In these experiments, 40 trace
fragments are replayed simultaneously and there are a to-
tal of 710 active users in the traces. When the number of
metadata severs increases, the load on each metadata server
decreases accordingly, thus slightly increasing the hit rate
of LRU lists. In the experiments of less than 30 metadata
servers, the hit rate of HBA is slightly better that of PBA

10 20 30 40 50 60 70 80 90 100
70

75

80

85

90

95

Number of metadata servers

H
it

ra
te

BF8 + LRU (100 files, 1.0%)
BF8 + LRU (200 files, 1.0%)
BF8 + LRU (400 files, 1.0%)
BF8 + LRU (800 files, 1.0%)
BF8 + LRU (1600 files, 1.0%)
BF8 + LRU (3200 files, 1.0%)

Figure 8. Hit rate comparisons of HBA with
different LRU sizes under various number of
metadata servers (TIF = 40).

Table 5. Relative space overhead normalized
to PBA with a ratio of 8 in HP traces.

Server # PBA 8 PBA 12 PBA 16 HBA

20 1.0 1.5 2.0 1.0002
40 1.0 1.5 2.0 1.0004
60 1.0 1.5 2.0 1.0006
80 1.0 1.5 2.0 1.0008

100 1.0 1.5 2.0 1.0010

with a bit/file ratio of 16. Although HBA is around 1−5.7%
worse than PBA with a bit/file ratio of 16 when the number
of metadata servers increases from 30 to 100, the hit rate is
still 1.5 − 9.9% better than PBA with a bit/file ratio of 12
and 17.7 − 330% better than PBA with a bit/file ratio of 8.

The impact of the LRU size on the overall hit rate of
HBA is presented in Figure 8. It is shown that the benefit
of increasing the LRU size is significant initially but dimin-
ishes gradually. Doubling the LRU size from 1600 to 3200
only results in up to 2% improvement in the hit rate. As in-
dicated previously, in the real implementations of HBA, the
size of LRU can be dynamically determined by gradually
increasing from some initial value until a predefined hit rate
goal is satisfied.

Table 5 presents the relative memory requirement nor-
malized to the PBA with a bit/file ratio of 8 when the num-
ber of metadata servers changes from 10 to 100. The extra
memory overhead introduced in the HBA by the LRU and
LRU BF is up to 0.1% and only takes tens of KBs.

There is a clear tradeoff between the network traffic over-
head and the hit rate in HBF. With a smaller propagation
threshold, the LRU BFs are updated more frequently so that

0.001 0.01 0.1 1 10
82

84

86

88

90

H
it

ra
te

 (
%

)

Threshold of LRU BF (%)

0.001 0.01 0.1 1 10
0

50

100

150

200

250

300

M
ul

tic
as

ts
/s

ec
on

d

Threshold of LRU BF (%)

Figure 9. Tradeoff
between hit rate
and network over-
head (50 metadata
servers; 1600 en-
tries in a LRU; TIF
= 40;).

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Number of metadata servers

N
um

be
r

of
 m

ul
tic

as
ts

 p
er

 s
ec

on
d

BF8 + LRU (100 files, 1.0%)
BF8 + LRU (200 files, 1.0%)
BF8 + LRU (400 files, 1.0%)
BF8 + LRU (800 files, 1.0%)
BF8 + LRU (1600 files, 1.0%)
BF8 + LRU (3200 files, 1.0%)

Figure 10. Network
overhead of HBA
with different LRU
sizes (TIF = 40,
LRU BF Threshold
= 1%).

the likelihood of having a hit in a LRU BF is increased; but
the updating traffic takes away some network bandwidth.
Figure 9 shows the relationship between the hit rate and the
number of multicast messages per second in the entire clus-
ter when the propagating threshold increases from 0.001%
to 100%. A threshold of 1% is found to have a good balance
of this tradeoff. Figure 10 gives the network traffic under
this threshold when both the number of metadata servers
and the size of a LRU list changes. When the size of an
LRU is larger than 1600, the total network traffic overhead
introduced by HBA in most cases of metadata configura-
tions are less than 1 multicast per second. We believe that
this overhead is marginal in a modern network.

8 Conclusion

This paper first analyzed the efficiency of using a pure
Bloom filter array (PBA) scheme to represent the metadata
distribution of all files and accomplish the metadata distri-
bution and management in cluster-based storage systems
with thousands of nodes. Both theoretical analytical and
simulation results indicated that this approach did not scale
well with the increase of the number of metadata servers
and have very large memory overhead when the number of
files is large.

By exploiting temporal access locality of file access pat-
terns, this paper then proposed a hierarchical scheme, HBA,
that maintains two levels of Bloom filter arrays, with the
one at the first level succinctly representing the metadata
location of most recently visited files on each metadata
server while the one at the second level maintaining meta-
data distribution information of all files with lower accu-
racy in favor of memory efficiency. The level 1 array has
small size but a high accuracy and greatly compensates for
the low efficiency of metadata distribution and significantly

reduces the memory requirement of the level 2 array that
follows the pure Bloom filter array approach. Our exten-
sive trace-driven simulations showed that the HBA scheme
can achieve an efficacy comparable to that of PBA, but at
only 50% of memory cost and slightly higher network traf-
fic overhead (multicast). On the other hand, HBA incurred
much less network traffic overhead (multicast) than the pure
LRU BF approach. Moreover, simulation results show that
the network traffic overhead introduced by HBA is minute
in modern fast networks.

Compared with other existing solutions to decentraliz-
ing the metadata management, the hierarchical scheme re-
tains much of their advantages while avoiding their disad-
vantages. It not only reduces the memory overhead, but
also balances the metadata management workload, allows
a fully associative placement of metadata of files, requires
no metadata migration during file or directory naming and
node additions or deletions. Our immediate future work is
to implement this scheme in a real system and evaluate the
efficiency in a production environment.

9 Acknowledgement

This work is supported by an NSF Grant (EPS-0091900),
a Nebraska University Foundation Grant (26-0511-0019),
a 2003 Layman Fund and an Academic Priority Grant of
University of Nebraska - Lincoln (UNL). Work was com-
pleted using the Research Computing Facility at UNL. We
greatly appreciate Dong Li for developing preliminary trace
transformation codes and valuable comments and discus-
sions. We thank the HP labs and the University of Califor-
nia Berkeley for providing us the file system traces.

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Pat-terson, D. Roselli,
and R. Wang. Serverless network file systems. In In Pro-
ceedings of the 15th Symposium on Operating System Prin-
ciples. ACM, pages 109–126, Copper Mountain Resort, Col-
orado, December 1995.

[2] B. H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Communications of the ACM, 13(7):422–
426, 1970.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
15(1):29–36, 1995.

[4] P. Braam. Lustre white paper. available at
http://www.lustre.org/docs/whitepaper.pdf,
Dec. 2003.

[5] S. A. Brandt, L. Xue, E. L. Miller, and D. D. E. Long. Effi-
cient metadata management in large distributed file systems.
In 20th IEEE / 11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST 2003), pages 290–
298, San Diego, CA, Apr. 2003.

[6] A. Broder and M. Mitzenmacher. Network applications of
bloom filters: A survey. In Proceedings of 40th Annual
Allerton Conference on Communication, Control and Com-
puting, Monticello, Illinois, USA, Oct. 2002.

[7] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur.
PVFS: A parallel file system for Linux clusters. In Pro-
ceedings of the 4th Annual Linux Showcase and Conference,
pages 317–327, Atlanta, GA, 2000. USENIX Association.
Best Paper Award.

[8] D. H. Carrere. Linux local and wide area network adapter
support: (from 10 mbps to gigabit ethernet, token ring,
frame relay, and slow packet). Int. J. Netw. Manag.,
10(2):103–112, 2000.

[9] V. Cate and T. Gross. Combining the concepts of compres-
sion and caching for a two-level file system. In Proceed-
ings Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 200–211, Santa Clara,
CA, Apr. 1991.

[10] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor.
Longest prefix matching using bloom filters. In Proceedings
of ACM Special Interest Group on Data Communications
(SIGCOM’03), Aug. 2003.

[11] J. R. L. Drew Roselli and T. E. Anderson. A comparison
of file system workloads. In Proceedings of the Annual
USENIX Technical Conference, San Diego, California, June
2000.

[12] C. Eddington. Infinibridge: An infiniband channel adapter
with integrated switch. IEEE Micro, 22(2):48–56, 2002.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-
mary cache: A scalable wide-area web cache sharing proto-
col. IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[14] R. Floyd. Short-term file reference patterns in a UNIX en-
vironment. Technical Report TR-177, Computer Science
Department, University of Rochester, Rochester, NY, Mar.
1986.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In Proceedings of the nineteenth ACM Symposium
on Operating Systems Principles, pages 29–43, 2003.

[16] M. E. Gomez and V. Santonja. Analysis of self-similarity
in I/O workload using structural modeling. In Proceedings
of the 7th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Sys-
tems, page 234. IEEE Computer Society, 1999.

[17] S. D. Gribble, G. S. Manku, D. Roselli, E. A. Brewer, T. J.
Gibson, and E. L. Miller. Self-similarity in file systems.
In Proceedings of the 1998 ACM SIGMETRICS joint inter-
national conference on Measurement and modeling of com-
puter systems, pages 141–150, 1998.

[18] W. L. III and R. Ross. Server-side scheduling in cluster par-
allel I/O systems. Calculateurs Paralleles Journal, Special
Issue on Parallel I/O for Cluster Computing, Oct. 2001.

[19] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A fast file system for unix. ACM Trans. Comput. Syst.,
2(3):181–197, 1984.

[20] J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. Rosenthal, and F. D. Smith. Andrew: a dis-
tributed personal computing environment. Communications
of the ACM, 29(3):184–201, 1986.

[21] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,
and D. Hitz. NFS version 3: Design and implementation. In
Proceedings of the Summer 1994 USENIX Technical Con-
ference, pages 137–151, 1994.

[22] M. V. Ramakrishna. Practical performance of bloom fil-
ters and parallel free-text searching. Communications of the
ACM, 32(10):1237–1239, 1989.

[23] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework
for evaluating storage system security. In Proceedings of the
USENIX Conference on File and Storage Technology, pages
15–30, Mar. 2002.

[24] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. In Proceedings of
the thirteenth ACM symposium on Operating systems prin-
ciples, pages 1–15, 1991.

[25] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki,
E. Siegel, and D. Streere. Coda: A highly available file sys-
tem for distributed workstation environments. IEEE Trans-
actions on Computers, 39(4), April 1990.

[26] C. Staelin. High performance file system design. PhD the-
sis, Department of Computer Science, Princeton University,
Oct. 1991.

[27] H. Tang and T. Yang. An efficient data location proto-
col for self-organizing storage clusters. In Proceedings of
ACM/IEEE SuperComputing (SC 03), Phoenix, AZ, Nov.
2003.

[28] M. Vilayannur, A. Sivasubramaniam, M. Kandemir,
R. Thakur, and R. Ross. Discretionary caching for I/O
on clusters. In Proceedings of the Third IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid,
pages 96–103, Tokyo, Japan, May 2003.

[29] J. Wu, P. Wyckoff, and D. Pandac. PVFS over InfiniBand:
Design and performance evaluation. In Proceedings of Inter-
national Conference on Parallel Processing (ICPP), pages
125–132, Oct. 2003.

[30] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson. De-
sign, implementation, and performance evalaution of a cost-
effective fault-tolerant parallel virtual file system. In The In-
ternational Workshop on Storage Network Architecture and
Parallel I/Os, in conjunction with The IEEE Twelfth Inter-
national Conference on Parallel Architectures and Compi-
lation Techniques (PACT), New Orleans, LA, Sept. 2003.

[31] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson. Im-
proved read performance in a Cost-Effective, Fault-Tolerant
Parallel Virtual File System (CEFT-PVFS). In Proceeding
of IEEE/ACM Workshop on Parallel I/O in Cluster Comput-
ing and Computational Grids, in conjunction with IEEE In-
ternational Symposium on Cluster Computing and the Grid
(CCGRID), pages 730–735, Tokyo, Japan, May 2003.

[32] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson.
Scheduling for improved write performance in a cost-
effective, fault-tolerant parallel virtual file system (CEFT-
PVFS). In Proceedings of The 4th LCI International Con-
ference on Linux Clusters, San Jose, California, June 2003.

[33] Y. Zhu, H. Jiang, X. Qin, and D. Swanson. A case study of
parallel I/O for biological sequence search on linux clusters.
In Proceedings of IEEE International Cluster Computing,
pages 308–315, Hong Kong, China, Dec. 2003.

	Welcome Page
	List of Sessions
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author

	footerL1: 0-7803-8695-7/04/$20.00 © 2004 IEEE
	pagenumber1: 1
	footerR1: CLUSTER 2004
	pagenumber2: 2
	pagenumber3: 3
	pagenumber4: 4
	pagenumber5: 5
	pagenumber6: 6
	pagenumber7: 7
	pagenumber8: 8
	pagenumber9: 9
	pagenumber10: 10

