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Abstract 
A disruptive new storage technology based on 
Microelectromechanical Systems (MEMS) is emerging as 
an exciting complement to the memory hierarchy. This 
study reviews and summarizes the current research about 
integrating this new technology into computer systems 
from four levels: device, architecture, system and 
application. In addition, several potential research issues 
in MEMS storage are identified, including (1) exploiting 
idle read/write tips to perform prefetching, (2) reversal 
access to save seek time, (3) fault-tolerance design inside 
storage devices, (4) power consumption modeling, (5) 
reevaluation of existing disk-type I/O optimization 
algorithms. 
 
 
1. Introduction 
While magnetic disks have dominated on-line secondary 
storage for over 30 years, the performance of computer 
systems has suffered from the increasing gap between 
RAM and disks in latency, bandwidth and cost. The 
increase in this RAM-to-disk gap, estimated at a rate of 
50% per year [1], has been caused primarily by the 
physical characteristics of disk drives, such as the 
limitation of disk rotational speed, bit density (which is 
constrained by super-paramagnetic effect [2][3]) and 
read-write head technology. To overcome these 
limitations, researchers in academia and industry are 
developing disruptive new storage devices, among which, 
MEMS-based (micro-electromechanical systems) storage 
[4][5][6] is poised to be the most promising one. This new 
technology is expected to be commercially available in 
2004 [7] and will offer a new set of characteristics that 
bridge the increasing gap in the memory hierarchy. The 
duty of computer scientists and engineers is then to 
integrate these new devices into memory hierarchy and 
optimize their performances for most applications.  The 
challenge, however, lies in the significant difference 
between MEMS storage devices and disk devices. 

This study starts with a brief description of MEMS 
storages in Section 2. Then Section 3 investigates the 
current research work trends in four levels of abstractions: 
device, architecture, system and application. Potential 
research issues and open problems in MEMS storage are 
identified and summarized in Section 4. Finally Section 5 
concludes the study. 
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Figure 1: A high-level diagram of a MEMS-based 
storage chip [8]. Every side of the media sled has 
an actuator, and a read/write tip is placed at all 
crossing points in the 2-D tip array. This media 
sled is spring-mounted above the stationary tip 
array and can be moved a small distance (up to 
10% of actuator length) in X-axis and Y-axis by 
actuators. 
 
2. MEMS-based Storage Basics 
This section describes the basic operation mechanism in 
MEMS-based storage devices and compares their physical 
characteristics with those of conventional disk drives. 
 
2.1 Basic Read/Write Operations 
MEMS storage has a MEMS structure to mechanically 
move its storage media. Specifically, a MEMS structure 
includes multiple tiny mechanical structures ranging 10-
1000 µm in size. Fabricated on the surface of silicon 
wafer, these miniature structures can slide, bend, or 
deflect in response to electrostatic or electromagnetic 
forces from nearby actuators [9].   

A MEMS storage device consists of an array of 
stationary read/write probe tips and a movable rectangular 
storage media sled, as shown in Figure 1. Unlike disks, 
the media sled does not rotate but moves simultaneously 
in two independent directions, X and Y, to place the probe 
tips right above the first destination bit. Then, the sled 
continues to move in the Y-axis at a constant velocity to 



 

 

 

read or write consecutive bits.  
To cover a large media area, the MEMS devices 

usually need a large number of probe tips. Since the 
reciprocating X and Y motions of the media sled are 
typically bounded to 10% of the actuator length, one 
probe tip can only access around 1% of the media surface 
with a capacity of tens of megabytes [4].  To break the 
capacity limitation, an array of probe tips are used and 
distributed evenly above the media surface. In addition, 
the media sled is logically divided into small rectangular 
regions, each accessed by one probe tip exclusively. For 
power and heat considerations, a limited number of tips 
(200-2000) can be active simultaneously. Consequently 
the access area increases from 1% to 50%, a percentage 
comparable to that used by disks [1].  

 
2.2 Data Layout 
Integrating MEMS storage into a current computer system 
requires a disk-like interface on these devices.  
Accordingly, the address space of MEMS storage needs 
to be organized to facilitate the development of this 
interface. Figure 2 shows a typical address scheme that 
uses terminologies similar to disks. Like disks, data is not 
byte-addressable. The smallest unit of data in a MEMS-
based storage device is called a tip sector, consisting of its 
servo information for positioning, the actual data content 
and its own error correction information.  Each tip sector 
is identified by the triple <x, y, tip>,  

 
Figure 2: Cylinders, Tracks, and Sectors [10]. All the columns with the same X coordinate form a 
cylinder.  Track j consists of tip sectors within a cylinder that are accessible by the concurrently active 
tips. In this example, tip A1, A2, A3, A4 can be active simultaneously and activeTips = 4. The tips are 
linearly indexed (A1 = 0, B1=1, C1=2, etc.). Each logical sector, shown on the right side, is striped across 
two tip sectors. 
 
where <x, y> are coordinates within the rectangular 
region accessible by <tip>. Note that each rectangle has 
its own origin. A cylinder consists of all tip sectors that 
are accessible by any tip without moving the sled along 
the X-axis; all the tip sectors in a cylinder share the same 
value for <x>. A track is a subset of a cylinder consisting 
of all tip sectors that can be accessed by simultaneously 
active tips. A track is divided into multiple logical sectors. 
To improve the throughput and avoid hot spots, a logical 
sector is striped across multiple tip sectors. Ref. [11] 
designs a SCSI-type interface with a special Logical-
Block-Number-to-Physical-Block-Number (LBN-to-PBN) 
mapping that fully exploits the internal parallelism among 
read/write tips. A work-in-progress [12] shows that the 
disk-like layout may be detrimental to application 

performance and it suggests a cylinder to be rectangular 
lines instead of straight lines. To reduce service time, Ref. 
[13] proposes a serpentine layout where data is accessed 
from +Y to –Y and from –Y to +Y alternatively in 
neighboring tracks. 
 
2.3 Strengths and Weaknesses 

By using MEMS structures to move the media sled 
beneath a large array of stationary probe tips and 
employing a disk-like interface, MEMS storage is an 
exciting new technology with many advantages over 
conventional disks.  

 Small volume and low power dissipation: 
Fabricated on silicon chips using standard CMOS 
processes, MEMS storage takes limited space and 



 

 

 

little power. For example, IBM promises to release 
their MEMS storage with a size of a postage-stamp 
in 2005 [5]. 

 Ultra-low and stable latency: Due to the absence of 
spindle rotation time, short distance seeking (less 
than 3mm [14]) and lightweight media sled, the 
positioning delays in MEMS storage are much 
smaller than those in disks. Table 1 shows that such 
new devices will be faster than the future disk by 
one order of magnitude. Another benefit of MEMS 
storage is that the latency is more predictive than 

disks, even under random workload. Disks spend 
much larger amount of time to locate destination 
data by moving disk heads and rotating platters, thus 
making its response time unstable.  

 High throughput: While the transfer rate for 
individual probe tip is only 100kb/s – 1Mb/s [15], 
the aggregate data rate for a large number of 
simultaneously active probe tips can reach 1 GB/s, 
two orders of magnitude higher than the rate of 
current disks, as shown in Table 1.  

 Low cost:  MEMS storage with capacity of 1-10GB 
is expected to have the lowest price per byte, while 
the cheapest storage under 100MB and above 100 
GB is offered by nonvolatile RAM and disks, 
respectively [16].  

 
In spite of the above advantages, MEMS storage is not 

expected to completely replace the nonvolatile RAM and 
disks for at least two reasons. First its performance is 
worse than nonvolatile RAM and its price is higher than 
large capacity disks. Second, its reliability remains 
unpredictable.  

 
3. Current Research Directions 
During the past three years, a series of studies have been 
conducted to revisit many aspects of the computing 
systems to integrate the new and innovative MEMS 
storage technology. As shown in Figure 3, studies have 
been conducted on four levels of abstractions: device, 
architecture, system and application. The following is a 
summery of these studies. 
 

 
 RAM Atlas 10K Future Disk G1 Model G2 Model G3 Model 
RPM N/A 10,025 20, 000 N/A N/A N/A 
Bandwidth (GB/s) 3.2 − 6.4  0.025 0.10 − 0.15 0.23  0.8  1.14 
Avg. access time (ms) (2.5 − 5)×10−6 10.83 3 − 4  1 − 2 0.8 − 1.0  0.4 − 0.7 
Density (GB/cm2) N/A 0.14 0.36 4  6.25  11.1 

Table 1: Comparisons between RAM, a state-of-art disk, a future disk in 2005, and three generations of 
CMU MEMS storage [13]. G1 is a conservative estimation of what is fabricated within next year. G2 is 
an enhanced one over G1 with bidirectional access, higher tip transfer rate, better servo system and 
higher density. G3 is targeted as high-end storage. 
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Figure 3: An overview of the research directions 

 
 
3. 1. Device Level  



 

 

 

While material scientists and mechanical engineers are 
concerned with the physical design and the 
implementation of MEMS storage devices, computer 
scientists and engineers focus on the performance 
optimization, performance modeling and power 
conservation.  
 
3.1.1 Dynamic Data Placement 
Dynamic data placement is a conventional load balance 
technique that is gradually offloaded from the applications 
to on-board processors in disks. With accurate knowledge 
of disk layout and geometrical distribution of user data, 
the offloading can achieve a higher efficiency.  For disks, 
there are three well-known placement policies:  (1) 
Organ-pipe placement [17][18], (2) Camel placement [19], 
and (3) Simulation Annealing [20]. Organ pipe placement 
dynamically rearranges the disk cylinders such that the 
most frequently accessed files are placed in the middle 
tracks to reduce mean seek time optimally. Camel 
placement positions the most frequently accessed data 
around the middle of two intervals divided by the middle 
disk cylinder.  Simulation Annealing is an iteratively 
swapping technique that clusters highly correlated data 
and stores them contiguously on disk platters. 

In MEMS storage, data placement is also important to 
minimize the number of data accesses. MEMS storage has 
a higher acceleration near the centermost point where the 
resistant force from the suspension springs is relatively 
smaller. As a result, it tends to have quicker seek 
operations in the center subregion than in the outer 
subregion within each tip region. Based on this 
characteristic, Ref. [21] proposes a bipartite data 
placement scheme: small data is placed in the centermost 
subregions and long sequential data is placed in outer 
subregions. This optimization technique is based on the 
fact that the service time is dominated by the seek time for 
small random requests and by the transfer time for large 
sequential request.  Ref. [21] also shows that Organ-pipe 
placement is not optimal in MEMS storage. The 
efficiency of Camel placement and simulation annealing 
in MEMS storage remains unevaluated and can be 
potential research issues. 
 
3.1.2 Device Modeling 
Since MEMS storage devices do not exist yet, it is critical 
to build accurate models to gain insights into their 
performance. While some references [22] model such 
devices at the electrical gate level to analyze the data 
transfer rate, our survey concentrates on the mechanical 
level because mechanical motions determine the latency 
and the system-end throughput. 

Similar to disks, MEMS storage needs to put the 
media right beneath the read/write tips. However, it 
differs from disks by abandoning the rotation mechanism 
and moving the media rectilinearly.  Thus the service time 

in MEMS storage includes only two elements, the seek 
time and the transfer time, as shown in Equation 1, while 
the disk models have an extra element, i.e., the rational 
latency.  

transferseekservice ttt +=  (1) 

The media motions in X and Y are independent and thus a 
seek time is the greater one between X and Y. Thus 

),max( __ yseekxseekseek ttt =  (2) 

A seek operation along X involves three phases: 
acceleration, deceleration, and oscillation damping while 
a seek in Y only consists of acceleration and deceleration. 
Oscillation damping exists only in the seeks along X 
because the probe tips have to reduce their velocity to 
zero and keep their X coordinate on a specific value.  The 
acceleration and deceleration force comes from the 
actuators and the suspension springs that always move the 
media sled towards the centermost position.  The transfer 
time is related to the number of active tips, the request 
sizes, data layout schemes and the actual data distribution 
[23][24].  

Currently there are two major approaches to compute 

seekt  and transfert : detailed simulation and analytical 

modeling. In the former approach, the simulator emulates 
the physical behaviors of such devices, performs I/O 
events in an order specified in traces and calculates the 
time for every operation. In the latter approach, the 
analytical models extract the statistical characteristics 
from traces to estimate the average response time without 
simulating trace events.  Ref. [25], [26] and [27] follow 
the first approach by building the interaction of the spring 
force and actuator force into physical equations according 
to Newton’s three laws of motions. As the spring force is 
proportional to its displacement, Ref. [25] simplifies the 
equations by using piecewise-constants to approximate 
the spring force. We call this model Piecewise Model, 
which has been recently implemented in a storage 
simulator named Memulator [28]. Ref. [26] proposes a 
String Model that removes the approximation and 
precisely models the continuously changing force from 
the strings.  Ref. [27] further improves the string model 
by incorporating an optimal control policy on the actuator 
system as Equation 3.  

)()()()(
2

2

tFtkx
dt

tdx
dt

txdm =++λ           (3) 

where )(tx  is the position of the sled at time t , m  is the 
mass of the sled, λ  is the damping coefficient and k  is 
the coefficient of the elasticity of the restoring force from 
springs, and )(tF  is the external force created by the 
MEMS structures with their controllers. Ref. [24] follows 
the second approach and we call it Statistical Model. In 



 

 

 

this model, seekt  is computed as the weighted average of 
the mean seek time in X and Y, shown in Equation 4:  

yseekxseekseek tbtat __ ×+×=   (4) 

where  a(b) is the probability that a seek time in X(Y) is 
greater than the one in Y(X). The values of a and b can be 
estimated from traces.  
 
3.1.3 Power Conservation  
Minimizing power dissipation in storage systems is an 
important issue, especially for mobile computing. It is 
expected that MEMS storage will consume much less 
power than disks, which consume 20–54% of the total 
energy [29][30]. Efforts to reduce energy in the MEMS 
devices can be made at both the device level and the 
system level. We focus on the device level here and 
Section 3.3.2 will investigate relevant research at the 
system level.  

At the device level, the basic design is to provide 
different power modes. IBM microdrives have five 
operational modes that turn off various amount of 
hardware resource to achieve different tradeoffs between 
performance and power dissipation [31]. These disk 
drives judiciously make transitions between the various 
modes based on the history of the command burst, the 
command history, the desired performance level, and the 
energy costs in each mode. Similarly, MEMS storage 
devices can be designed with multiple power modes.  Ref. 
[21] and [32] take a simple approach and assume that 
MEMS storage devices have two modes: an active mode 
and an idle mode. Their devices aggressively reduce 
power consumption by switching into the idle mode 
whenever the I/O queue is empty. This greedy scheme is 
justified by the fact that small latency and energy penalty 
of a mis-switch is paid on future requests in MEMS 
storage. 
 
3.2. Architecture Level 
From the architecture point of view, the current research 
on MEMS storage focuses on how to use it in a cost-
effective way. There are huge gaps in performance, price 
and reliability between NVRAM and disks. The 
NVRAM-to-disk latency gap has already reached 6 orders 
of magnitude (10 ms vs 50 ns) and continues to expand by 
around 50% per year [1]. In terms of price per byte, 
NVRAM costs nearly 1000 times more than disks [7]. In 
addition, the mean-time-to-failure of NVRAM is only 
about 15K hours while disks have already achieved a 
million hours.  

MEMS storage will offer a set of characteristics to 
narrow the above gaps. The possible placements of 
MEMS storage in the memory hierarchy are (1) working 
beneath RAM and replacing disks, (2) working as buffer 
and cache between RAM and disks; (3) replacing all disks 
in RAIDs; (4) working in parallel with a disk drive; (5) 
replacing partial disks in a conventional disk array. Table 
2 presents the performance and cost comparisons among 
these placements, measured by running actual file system 
traces over simulators. Although MEMS storage is not 
likely to replace disks completely due to the capacity and 
price constraints, the research of the first placement, 
replacing disks, is still very important for certain volume 
or power sensitive applications, such as embedded 
systems. In the other placements, MEMS storage can 
potentially improve the I/O performance significantly, 
even under the iso-price constraint. 

 
3.3 System Level 
During the past 30 years, the designs of operating systems 
have continuously been tuned to alleviate the I/O 
bottleneck according to the disk physical characteristics. 
The advent of MEMS storage makes it a necessity to 
revisit the I/O management functions in current operating 
systems, such as I/O scheduling, power management, data 
management, performance optimization and fault 
tolerance design. 
 
3.3.1 I/O scheduling 
Disk I/O scheduling is a mature research field where 
many disk scheduling algorithms, such as First-Come-
First-Served (FCFS), Circular Look (C-LOOK), Shortest 
Seek Time First (SSTF), and Shortest Positioning Time 
First (SPTF), have been extensively studied. Since the 
physical characteristics of MEMS storage are very 
different from those of disks, the conventional disk-type 
algorithms are reevaluated [21] and many new scheduling 
algorithms are proposed [36] [37] [38].  

MEMS storage has two data allocation strategies: one-
dimensional allocation and two-dimensional allocation. 
With the first strategy, data is placed contiguously along 
the cylinders and in an I/O access the read/write head 
moves along a cylinder until the cylinder ends, similar to 
the disk allocation. With the second strategy, data is 
placed in equal-distance regions that may cross over to 
other cylinders; the read/write head stays in one region in 
a single I/O operation but may visit different cylinders.  
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Working as disk write 
buffer [15] 

Runs Piecewise 
Model 
on DiskSim 
[33] 

MEMS and disk are 
placed behind RAM; 
MEMS handles hit-reads 
and all writes from RAM 
while disk handles 
missed-reads and writes 
from MEMS.  

Achieve hundreds MB/s 
throughput and eliminate 96% 
raw write traffic to disks. 

Replacing a disk 
drive with a MEMS 
device [24] 

Runs String 
Model on 
DiskSim 

MEMS has 320 active 
tips and bit-wise striping 
is used. 

Average service time ranges 
0.5–1 ms, 10 times better than 
disks. 

Replacing a disk 
drive with a MEMS 
device [10] 

Incorporate 
DiskSim-based 
MEMS into 
SimOS 
machine 
simulator [34] 

Real application 
benchmarks are replayed 
at virtual Alpha 21164 
system equipped on 
SimOS with simulated 
MEMS device. 

Benchmarks complete 3 times 
faster than state-of-art disk and 
2 times faster than future disks 
in 2005. 

Replacing a small 
NVRAM with a 
larger MEMS device 
in disk array [7]  

Runs Piecewise 
Model on 
Pantheon [35] 

MEMS devices are 
organized as RAID 5 and 
are used to replace the 
small-capacity NVRAM. 

Reduce response time up to 
82% but do not improve 
throughput.  The performance 
ratio improves 2.1-4.2. 

Replacing disk arrays 
with a bank of 
MEMS storage 
devices [7] 

Runs Piecewise 
Model on 
Pantheon 

Under various MEMS-
disk price ratios, both iso-
capacity and iso-price 
scenarios are compared. 

Improve latency by a factor of 
4 -6.5 and throughput by a 
factor of 4-28. 
Performance/cost ratio is 2-7 
times of disks. 

Putting both a bank 
of MEMS devices in 
parallel with a log 
disk [7] 

Runs Piecewise 
Model on 
Pantheon 

MEMS devices are 
organized as RAID 0. 
Updates to MEMS array 
are mirrored in disks as in 
a log structure fashion. 

Offers most consistent 
performance improvement and 
best performance/cost ratio. 
Reduce the latency of disk 
arrays to 4-16.  

Putting a bank of 
MEMS devices in 
parallel with disk 
arrays [7] 

Runs Piecewise 
Model on 
Pantheon 

Use RAID-10 layout. 
MEMS and disk arrays 
are both organized as 
RAID 0 but disk array 
has larger stripe sizes. 
Both arrays are mirrored. 

No significant improvement in 
throughput and latency. 
Performance/cost ratio to 
conventional arrays is 1.5-0.8 

 
Table 2: Comparisons of different usages of MEMS storage devices in computer systems. 

 
The existing disk-type scheduling algorithms in 

MEMS storage with the one-dimensional allocation 
strategy are evaluated in Ref. [21].  It is found that the 
straightforward adaptations of disk scheduling algorithm 
into MEMS storage are appropriate, and that SPTF has 
the lowest average but high variation in response time. In 
contrast, FCFS has the least variation in response times 
while exhibiting the highest mean. 

For MEMS storage devices with the two-dimensional 
allocation strategy, some new scheduling algorithms are 
proposed. While the optimal scheduling in the 2-D space 
is a NP-complete problem, Ref. [36] and [37] propose an 

approximation algorithm by constructing the request 
destinations into a dynamic minimum spanning tree and 
then serving the requests in the preorder traversal of the 
tree. They show that this algorithm has a smaller response 
time than all conventional algorithms under the workload 
with uniform distribution. Ref. [38] divides the MEMS 
storage media into a set of zones based on seek time 
equivalence regions and serves these zones in the C-
SCAN order. Within each zone, requests are served in the 
SPTF order. Their simulation results indicate that this 
algorithm reduce the variation of response times close to 



 

 

 

C-SCAN but has an average response time comparable to 
SPFT.  
 
3.3.2 Power Conservation 
Power conservation can be performed both at the device 
level and the system level. We have discussed the design 
of power conservation at the device level in the previous 
section. At the system level, many useful power 
conservation strategies for disk drives, such as caching 
[29], and combination with NVRAM [39], are applicable 
to MEMS storage to save some seek operations by 
absorbing a certain amount of write and read requests. 
According to the physical characteristics of MEMS 
storage, Ref. [32] proposed two system-level strategies: 
request merging and subsector access. The first strategy is 
to merge multiple adjacent requests into a large one and 
exploit the parallelism to serve this large request in one 
seek process. The second strategy allows access to partial 
instead of whole tip sector. However, partial access will 
lead to the difficulty of cache alignment, a problem not 
addressed by the authors. 
 
3.3.3 Fault Tolerance 
Hardware failure: The MEMS storage devices have 
thousands of tips and thus there is a high probability of 
hardware failure. The fault tolerance can be designed at 
two levels: the intra-device level and the inter-device 
level. Inside a MEMS storage device, data is striped 
across multiple read/write tips to achieve high aggregate 
performance. If the error correction code is computed 
both horizontally and vertically, the missing data due to 
the media defection or tip failure can be possibly 
reconstructed. At the inter-device level, MEMS storage 
devices can be organized as an array and provide RAID 
style redundancy to tolerate device failure.  

MEMS arrays have a faster read-modify-write 
operation than disk arrays [21]. Read-modify-write is a 
common operation in RAID structures. For example, a 
small write in RAID 5 needs two read-modify-write 
operations: reading the old data and old disparity, then 
calculating the new disparity and finally writing the new 
data and new disparity. Read-modify-write in disks 
suffers one full resolution delay waiting for disk spindles 
to spin back to the same position while MEMS devices 
can immediately reverse the direction and significantly 
reduces the latency. 
Software failure: System crashes can generate data 
inconsistency in file or database systems. To minimize 
such software state failure, synchronous write is usually 
used.  Due to large latency of synchronous operations on 
hard drives, systems seldom have enough time to dump all 
the data in RAM into disks. The low service time in 
MEMS storage certainly helps reduce software failures 
during crash. To our best knowledge, no literatures have 
studied this advantage in details. 

 
3.4. Application Level 
The utilizations of MEMS storage in real applications 
have not been extensively investigated. With the 
commercial release of these devices in 2004, we expect 
that more research in the area will show up soon. The 
following lists three projects that use MEMS storage 
devices for their specific purposes.  
Secure Storage: University of Twente designs MEMS-
based storage as “write once disks” for secure storage by 
exploiting some irreversible process of MEMS storage on 
patterned magnetic media [40].  
Database on MEMS storage: Relational databases 
usually serialize tabular data onto disks in either the row-
major order or the column-major order. However, data is 
often accessed with an order different from the order in 
which data is stored. As a result, database applications 
frequently experience very inefficient I/O service 
provided by disks. Ref. [41] designs a special layout in 
MEMS storage for relational databases to allow both 
efficient row-major and column-major access. 
Metadata storage: Ref. [42] examines the efficiency of a 
scheme where a MEMS storage device is used to store the 
file system metadata while actual file content resides in 
disks. They show that this scheme improves the system 
performance by 28-46%. 
 
4. Discussion of Open Issues 
MEMS-based storage is a young technology and there are 
many research issues that need to be addressed. While the 
research work presented above is incomplete and 
immature, we notice that little have been addressed 
regarding the following five issues. 
 
4.1 Prefetching 
Although MEMS storage responds 10 times faster than 
disk drives, it is still much slower than RAM and 
processors. Prefetching is an important technique to 
further alleviate the I/O bottleneck. Unfortunately little 
attention has been paid to the prefetching issue in MEMS 
storage. In current disk technology, prefetching is 
performed at two levels. (1) At the device level, if the 
firmware detects a read request to be part of some large 
sequential request, disk drives will continue to fetch a few 
contiguous blocks in hope to saving future disk accesses. 
(2) Simultaneously, at the system level, the OS can 
actively issue prefetching requests by observing the I/O 
history or by speculatively continuing to execute the code. 
While both approaches can be applied to the MEMS 
storage, prefetching in MEMS storage can also be 
designed in a different way. Recall that MEMS storage 
has many read/write tips that can be simultaneously active 
and not all tips are busy in every I/O access. Thus it 
provides an opportunity for idle tips to prefetch some data 
while the media moves beneath them. This prefetching is 



 

 

 

totally free since all tips can work in parallel while 
penalty is paid in disk drives because prefetching delays 
the response to other outstanding requests. When the I/O 
queue is empty, MEMS storage can also prefetch some 
data at the same media sled position, but from a different 
tip set than the current active tips, by simply switching to 
the corresponding tip set without moving the media sled. 
No seeks are involved in this form of prefetching. The 
challenge in the new prefetching design is to design a 
good data clustering strategy to achieve a high prefetch 
hit ratio.. A possible clustering solution is to examine the 
I/O history and place data with the highest probabilities of 
sequential access or with the highest access frequencies 
under the same set of active tips. 
 
4.2 Reversal Access 
We can further modify the design of current MEMS 
storage to reduce the latency. In disks, data is always read 
by following the spinning direction. If the destination 
block passes the disk head, disk has to wait one full 
resolution to read it since the overhead of reversing the 
spinning direction is very large. In the current MEMS 
design, the media can quickly reverse its moving direction 
and thus the response time is much smaller than that of 
disks. However, data is read in the direction from its start 
bit to its end bit in most designs. When data is 
immediately reassessed, the read/write heads need to 
traverse the data region to the start bit and then access the 
data. If MEMS storage allows accessing data in both 
directions, i.e., data can also be visited in the direction 
from its end bit to its start bit and the bits are reversed 
electronically in the firmware cache, then the traversal 
with a physical length of the re-accessed data on the 
media can be saved. Since immediate re-access is a 
frequent pattern, especially in RAID workload [7], the 
reversal access may have significant improvement on the 
average latency. The main disadvantage of reversal access 
is that it complicates the performance modeling and 
request scheduling as well as hardware design. 
 
4.3 Fault Tolerance 
With thousands of read/write tips in one MEMS storage 
device, fault tolerance is a critical issue for its ultimate 
market acceptance. To our best knowledge, only CMU 
has addressed this issue and they used two-dimensional 
ECC and spare tips to tolerate permanent tip or media 
failures. However, their devices cannot tolerate two 
failures in the same row or column.  We may pursue a 
more aggressive fault tolerance scheme, such as mirroring, 
Information Dispersal Algorithm [44], and RAID 10, to 
improve the reliability. Then come the questions that 
computer scientists and engineers need to tackle. What is 
the mean-time-to-failure of a MEMS storage device in a 
real environment where all failures are NOT independent 
but highly correlated?  What is the impact of different 

redundancy schemes on the throughput and latency? How 
to maintain the consistency and coherence between 
redundant data as well as between metadata and data? 
How to device data allocation to reduce the performance 
degradation caused by failure components? Additionally, 
unlike disk arrays where failed disks can be repaired or 
replaced, the failed tips and media regions cannot be 
restored in MEMS storage devices. Then how to design a 
more resilient storage system on these devices that 
maintains a reasonably “healthy level”?  

Another important issue related to fault tolerance is 
how to efficiently utilize the redundant data to improve 
the I/O performance. One may approach this problem 
from two perspectives: avoiding hot spots by sharing 
loads among tips above redundant data or using a special 
data placement to reduce the average seek distance. 
 
4.4 Power Consumption Modeling 
To study and reduce power dissipation, an efficient and 
accurate power consumption model is desperately needed 
since the physical experiments involve a frustrating 
process, running long traces on real devices with power 
measurement equipments. After MEMS storage devices 
are commercially available in 2004 [7], a detailed energy 
simulator for these devices can be built by measuring the 
average amount of energy spent in each operation stage. 
This modeling is not trivial since the mechanical motions 
in MEMS storage are very complicated. 

A power consumption model certainly facilitates the 
energy aware design. For example, although a MEMS 
storage device has thousands of read/write tips, only 
hundreds of them can be active simultaneously due to the 
power consumption and cooling issues. Additionally, Ref. 
[23] shows that the performance is proportional to the 
number of active tips within a certain range. With a power 
model available, one can design a scheme to dynamically 
change the number of active tips to optimize the tradeoff 
between performance and energy saving. 
 
4.5 Reevaluation of Some Disk Optimization 
Techniques 
The I/O management system is continually optimized to 
reduce the performance gap between disk and processors. 
While the physical distance between destinations and the 
current read/write head position determines the access 
time in both MEMS storage and disks, their access 
processes and physical characteristics are very different. 
Accordingly, the efficiency of disk-type optimization 
algorithms needs to be reexamined. For example, recently 
Wang et al proposes eager writing [45] that writes new 
data to free sectors near the disk head’s current location 
and reorganizes them later. While eager writing reduces 
the latency of small synchronous writes to disks, it also 
introduces the overhead of fragmentation management 
and reorganization. In MEMS storage, the overhead may 



 

 

 

not justify the adoption of this scheme since MEMS 
storage has a much smaller seek time. 
 
5. Conclusions 
In this study, we discussed MEMS-based storage, a new 
storage technology with a set of exciting characteristics 
that bridge the performance and cost gaps between RAM 
and disks and summarized the current research in this 
promising technology from four levels: (1) the device 
level that focuses on the understanding of physical 
characteristics and designing of interfaces; (2) the 
architecture level that endeavors to integrate the new 
devices into the current memory hierarchy in the most 
cost-effective way; (3) the system level that tries to tune 
the I/O management subsystem of operating systems to 
integrate the new devices; and (4) the application level 
that focuses on how to use MEMS storage efficiently for 
specific applications.  

This paper identified five potential research issues 
regarding this young storage technology, namely, (1) 
prefetching, (2) reversal access, (3) fault tolerance, (4) 
power consumption modeling, and (5) reevaluation of 
some existing I/O optimization algorithms.  We proposed 
to exploit the parallelism of read/write tips to prefetch 
data in MEMS storage and design a reversal access 
strategy to shorten seek distance along data tracks. We 
suggested using high-degree of fault tolerance design to 
build an autonomic, resilient storage and provided a 
possible approach to model power consumption. In the 
end, we pointed out the necessity of reevaluating some 
existing I/O optimization algorithms since they were 
designed for disks and could be detrimental to the 
performance of MEMS storage.  
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