
An Overview on MEMS-based Storage, Its Research Issues and Open Problems

Yifeng Zhu
Department of Computer Science and Engineering

University of Nebraska – Lincoln

Abstract
A disruptive new storage technology based on
Microelectromechanical Systems (MEMS) is emerging as
an exciting complement to the memory hierarchy. This
study reviews and summarizes the current research about
integrating this new technology into computer systems
from four levels: device, architecture, system and
application. In addition, several potential research issues
in MEMS storage are identified, including (1) exploiting
idle read/write tips to perform prefetching, (2) reversal
access to save seek time, (3) fault-tolerance design inside
storage devices, (4) power consumption modeling, (5)
reevaluation of existing disk-type I/O optimization
algorithms.

1. Introduction
While magnetic disks have dominated on-line secondary
storage for over 30 years, the performance of computer
systems has suffered from the increasing gap between
RAM and disks in latency, bandwidth and cost. The
increase in this RAM-to-disk gap, estimated at a rate of
50% per year [1], has been caused primarily by the
physical characteristics of disk drives, such as the
limitation of disk rotational speed, bit density (which is
constrained by super-paramagnetic effect [2][3]) and
read-write head technology. To overcome these
limitations, researchers in academia and industry are
developing disruptive new storage devices, among which,
MEMS-based (micro-electromechanical systems) storage
[4][5][6] is poised to be the most promising one. This new
technology is expected to be commercially available in
2004 [7] and will offer a new set of characteristics that
bridge the increasing gap in the memory hierarchy. The
duty of computer scientists and engineers is then to
integrate these new devices into memory hierarchy and
optimize their performances for most applications. The
challenge, however, lies in the significant difference
between MEMS storage devices and disk devices.

This study starts with a brief description of MEMS
storages in Section 2. Then Section 3 investigates the
current research work trends in four levels of abstractions:
device, architecture, system and application. Potential
research issues and open problems in MEMS storage are
identified and summarized in Section 4. Finally Section 5
concludes the study.

X

YZ

Figure 1: A high-level diagram of a MEMS-based
storage chip [8]. Every side of the media sled has
an actuator, and a read/write tip is placed at all
crossing points in the 2-D tip array. This media
sled is spring-mounted above the stationary tip
array and can be moved a small distance (up to
10% of actuator length) in X-axis and Y-axis by
actuators.

2. MEMS-based Storage Basics
This section describes the basic operation mechanism in
MEMS-based storage devices and compares their physical
characteristics with those of conventional disk drives.

2.1 Basic Read/Write Operations
MEMS storage has a MEMS structure to mechanically
move its storage media. Specifically, a MEMS structure
includes multiple tiny mechanical structures ranging 10-
1000 µm in size. Fabricated on the surface of silicon
wafer, these miniature structures can slide, bend, or
deflect in response to electrostatic or electromagnetic
forces from nearby actuators [9].

A MEMS storage device consists of an array of
stationary read/write probe tips and a movable rectangular
storage media sled, as shown in Figure 1. Unlike disks,
the media sled does not rotate but moves simultaneously
in two independent directions, X and Y, to place the probe
tips right above the first destination bit. Then, the sled
continues to move in the Y-axis at a constant velocity to

read or write consecutive bits.
To cover a large media area, the MEMS devices

usually need a large number of probe tips. Since the
reciprocating X and Y motions of the media sled are
typically bounded to 10% of the actuator length, one
probe tip can only access around 1% of the media surface
with a capacity of tens of megabytes [4]. To break the
capacity limitation, an array of probe tips are used and
distributed evenly above the media surface. In addition,
the media sled is logically divided into small rectangular
regions, each accessed by one probe tip exclusively. For
power and heat considerations, a limited number of tips
(200-2000) can be active simultaneously. Consequently
the access area increases from 1% to 50%, a percentage
comparable to that used by disks [1].

2.2 Data Layout
Integrating MEMS storage into a current computer system
requires a disk-like interface on these devices.
Accordingly, the address space of MEMS storage needs
to be organized to facilitate the development of this
interface. Figure 2 shows a typical address scheme that
uses terminologies similar to disks. Like disks, data is not
byte-addressable. The smallest unit of data in a MEMS-
based storage device is called a tip sector, consisting of its
servo information for positioning, the actual data content
and its own error correction information. Each tip sector
is identified by the triple <x, y, tip>,

Figure 2: Cylinders, Tracks, and Sectors [10]. All the columns with the same X coordinate form a
cylinder. Track j consists of tip sectors within a cylinder that are accessible by the concurrently active
tips. In this example, tip A1, A2, A3, A4 can be active simultaneously and activeTips = 4. The tips are
linearly indexed (A1 = 0, B1=1, C1=2, etc.). Each logical sector, shown on the right side, is striped across
two tip sectors.

where <x, y> are coordinates within the rectangular
region accessible by <tip>. Note that each rectangle has
its own origin. A cylinder consists of all tip sectors that
are accessible by any tip without moving the sled along
the X-axis; all the tip sectors in a cylinder share the same
value for <x>. A track is a subset of a cylinder consisting
of all tip sectors that can be accessed by simultaneously
active tips. A track is divided into multiple logical sectors.
To improve the throughput and avoid hot spots, a logical
sector is striped across multiple tip sectors. Ref. [11]
designs a SCSI-type interface with a special Logical-
Block-Number-to-Physical-Block-Number (LBN-to-PBN)
mapping that fully exploits the internal parallelism among
read/write tips. A work-in-progress [12] shows that the
disk-like layout may be detrimental to application

performance and it suggests a cylinder to be rectangular
lines instead of straight lines. To reduce service time, Ref.
[13] proposes a serpentine layout where data is accessed
from +Y to –Y and from –Y to +Y alternatively in
neighboring tracks.

2.3 Strengths and Weaknesses

By using MEMS structures to move the media sled
beneath a large array of stationary probe tips and
employing a disk-like interface, MEMS storage is an
exciting new technology with many advantages over
conventional disks.

 Small volume and low power dissipation:
Fabricated on silicon chips using standard CMOS
processes, MEMS storage takes limited space and

little power. For example, IBM promises to release
their MEMS storage with a size of a postage-stamp
in 2005 [5].

 Ultra-low and stable latency: Due to the absence of
spindle rotation time, short distance seeking (less
than 3mm [14]) and lightweight media sled, the
positioning delays in MEMS storage are much
smaller than those in disks. Table 1 shows that such
new devices will be faster than the future disk by
one order of magnitude. Another benefit of MEMS
storage is that the latency is more predictive than

disks, even under random workload. Disks spend
much larger amount of time to locate destination
data by moving disk heads and rotating platters, thus
making its response time unstable.

 High throughput: While the transfer rate for
individual probe tip is only 100kb/s – 1Mb/s [15],
the aggregate data rate for a large number of
simultaneously active probe tips can reach 1 GB/s,
two orders of magnitude higher than the rate of
current disks, as shown in Table 1.

 Low cost: MEMS storage with capacity of 1-10GB
is expected to have the lowest price per byte, while
the cheapest storage under 100MB and above 100
GB is offered by nonvolatile RAM and disks,
respectively [16].

In spite of the above advantages, MEMS storage is not

expected to completely replace the nonvolatile RAM and
disks for at least two reasons. First its performance is
worse than nonvolatile RAM and its price is higher than
large capacity disks. Second, its reliability remains
unpredictable.

3. Current Research Directions
During the past three years, a series of studies have been
conducted to revisit many aspects of the computing
systems to integrate the new and innovative MEMS
storage technology. As shown in Figure 3, studies have
been conducted on four levels of abstractions: device,
architecture, system and application. The following is a
summery of these studies.

 RAM Atlas 10K Future Disk G1 Model G2 Model G3 Model
RPM N/A 10,025 20, 000 N/A N/A N/A
Bandwidth (GB/s) 3.2 − 6.4 0.025 0.10 − 0.15 0.23 0.8 1.14
Avg. access time (ms) (2.5 − 5)×10−6 10.83 3 − 4 1 − 2 0.8 − 1.0 0.4 − 0.7
Density (GB/cm2) N/A 0.14 0.36 4 6.25 11.1

Table 1: Comparisons between RAM, a state-of-art disk, a future disk in 2005, and three generations of
CMU MEMS storage [13]. G1 is a conservative estimation of what is fabricated within next year. G2 is
an enhanced one over G1 with bidirectional access, higher tip transfer rate, better servo system and
higher density. G3 is targeted as high-end storage.

I/O Scheduling,
Power Conservation,
Fault Tolerance.

Application LevelSystem
Level

Architecture
Level

Device
Level

Secure Storage,
Relational Database,
Metadata Storage.

Data Placement,
Device Modeling,
Energy Conservation.

On-board Cache & Buffer,
Replacement of Disk,
Replacement of NVRAM,
Integration into RAID.

Current
Research

Figure 3: An overview of the research directions

3. 1. Device Level

While material scientists and mechanical engineers are
concerned with the physical design and the
implementation of MEMS storage devices, computer
scientists and engineers focus on the performance
optimization, performance modeling and power
conservation.

3.1.1 Dynamic Data Placement
Dynamic data placement is a conventional load balance
technique that is gradually offloaded from the applications
to on-board processors in disks. With accurate knowledge
of disk layout and geometrical distribution of user data,
the offloading can achieve a higher efficiency. For disks,
there are three well-known placement policies: (1)
Organ-pipe placement [17][18], (2) Camel placement [19],
and (3) Simulation Annealing [20]. Organ pipe placement
dynamically rearranges the disk cylinders such that the
most frequently accessed files are placed in the middle
tracks to reduce mean seek time optimally. Camel
placement positions the most frequently accessed data
around the middle of two intervals divided by the middle
disk cylinder. Simulation Annealing is an iteratively
swapping technique that clusters highly correlated data
and stores them contiguously on disk platters.

In MEMS storage, data placement is also important to
minimize the number of data accesses. MEMS storage has
a higher acceleration near the centermost point where the
resistant force from the suspension springs is relatively
smaller. As a result, it tends to have quicker seek
operations in the center subregion than in the outer
subregion within each tip region. Based on this
characteristic, Ref. [21] proposes a bipartite data
placement scheme: small data is placed in the centermost
subregions and long sequential data is placed in outer
subregions. This optimization technique is based on the
fact that the service time is dominated by the seek time for
small random requests and by the transfer time for large
sequential request. Ref. [21] also shows that Organ-pipe
placement is not optimal in MEMS storage. The
efficiency of Camel placement and simulation annealing
in MEMS storage remains unevaluated and can be
potential research issues.

3.1.2 Device Modeling
Since MEMS storage devices do not exist yet, it is critical
to build accurate models to gain insights into their
performance. While some references [22] model such
devices at the electrical gate level to analyze the data
transfer rate, our survey concentrates on the mechanical
level because mechanical motions determine the latency
and the system-end throughput.

Similar to disks, MEMS storage needs to put the
media right beneath the read/write tips. However, it
differs from disks by abandoning the rotation mechanism
and moving the media rectilinearly. Thus the service time

in MEMS storage includes only two elements, the seek
time and the transfer time, as shown in Equation 1, while
the disk models have an extra element, i.e., the rational
latency.

transferseekservice ttt += (1)

The media motions in X and Y are independent and thus a
seek time is the greater one between X and Y. Thus

),max(__ yseekxseekseek ttt = (2)

A seek operation along X involves three phases:
acceleration, deceleration, and oscillation damping while
a seek in Y only consists of acceleration and deceleration.
Oscillation damping exists only in the seeks along X
because the probe tips have to reduce their velocity to
zero and keep their X coordinate on a specific value. The
acceleration and deceleration force comes from the
actuators and the suspension springs that always move the
media sled towards the centermost position. The transfer
time is related to the number of active tips, the request
sizes, data layout schemes and the actual data distribution
[23][24].

Currently there are two major approaches to compute

seekt and transfert : detailed simulation and analytical

modeling. In the former approach, the simulator emulates
the physical behaviors of such devices, performs I/O
events in an order specified in traces and calculates the
time for every operation. In the latter approach, the
analytical models extract the statistical characteristics
from traces to estimate the average response time without
simulating trace events. Ref. [25], [26] and [27] follow
the first approach by building the interaction of the spring
force and actuator force into physical equations according
to Newton’s three laws of motions. As the spring force is
proportional to its displacement, Ref. [25] simplifies the
equations by using piecewise-constants to approximate
the spring force. We call this model Piecewise Model,
which has been recently implemented in a storage
simulator named Memulator [28]. Ref. [26] proposes a
String Model that removes the approximation and
precisely models the continuously changing force from
the strings. Ref. [27] further improves the string model
by incorporating an optimal control policy on the actuator
system as Equation 3.

)()()()(
2

2

tFtkx
dt

tdx
dt

txdm =++λ (3)

where)(tx is the position of the sled at time t , m is the
mass of the sled, λ is the damping coefficient and k is
the coefficient of the elasticity of the restoring force from
springs, and)(tF is the external force created by the
MEMS structures with their controllers. Ref. [24] follows
the second approach and we call it Statistical Model. In

this model, seekt is computed as the weighted average of
the mean seek time in X and Y, shown in Equation 4:

yseekxseekseek tbtat __ ×+×= (4)

where a(b) is the probability that a seek time in X(Y) is
greater than the one in Y(X). The values of a and b can be
estimated from traces.

3.1.3 Power Conservation
Minimizing power dissipation in storage systems is an
important issue, especially for mobile computing. It is
expected that MEMS storage will consume much less
power than disks, which consume 20–54% of the total
energy [29][30]. Efforts to reduce energy in the MEMS
devices can be made at both the device level and the
system level. We focus on the device level here and
Section 3.3.2 will investigate relevant research at the
system level.

At the device level, the basic design is to provide
different power modes. IBM microdrives have five
operational modes that turn off various amount of
hardware resource to achieve different tradeoffs between
performance and power dissipation [31]. These disk
drives judiciously make transitions between the various
modes based on the history of the command burst, the
command history, the desired performance level, and the
energy costs in each mode. Similarly, MEMS storage
devices can be designed with multiple power modes. Ref.
[21] and [32] take a simple approach and assume that
MEMS storage devices have two modes: an active mode
and an idle mode. Their devices aggressively reduce
power consumption by switching into the idle mode
whenever the I/O queue is empty. This greedy scheme is
justified by the fact that small latency and energy penalty
of a mis-switch is paid on future requests in MEMS
storage.

3.2. Architecture Level
From the architecture point of view, the current research
on MEMS storage focuses on how to use it in a cost-
effective way. There are huge gaps in performance, price
and reliability between NVRAM and disks. The
NVRAM-to-disk latency gap has already reached 6 orders
of magnitude (10 ms vs 50 ns) and continues to expand by
around 50% per year [1]. In terms of price per byte,
NVRAM costs nearly 1000 times more than disks [7]. In
addition, the mean-time-to-failure of NVRAM is only
about 15K hours while disks have already achieved a
million hours.

MEMS storage will offer a set of characteristics to
narrow the above gaps. The possible placements of
MEMS storage in the memory hierarchy are (1) working
beneath RAM and replacing disks, (2) working as buffer
and cache between RAM and disks; (3) replacing all disks
in RAIDs; (4) working in parallel with a disk drive; (5)
replacing partial disks in a conventional disk array. Table
2 presents the performance and cost comparisons among
these placements, measured by running actual file system
traces over simulators. Although MEMS storage is not
likely to replace disks completely due to the capacity and
price constraints, the research of the first placement,
replacing disks, is still very important for certain volume
or power sensitive applications, such as embedded
systems. In the other placements, MEMS storage can
potentially improve the I/O performance significantly,
even under the iso-price constraint.

3.3 System Level
During the past 30 years, the designs of operating systems
have continuously been tuned to alleviate the I/O
bottleneck according to the disk physical characteristics.
The advent of MEMS storage makes it a necessity to
revisit the I/O management functions in current operating
systems, such as I/O scheduling, power management, data
management, performance optimization and fault
tolerance design.

3.3.1 I/O scheduling
Disk I/O scheduling is a mature research field where
many disk scheduling algorithms, such as First-Come-
First-Served (FCFS), Circular Look (C-LOOK), Shortest
Seek Time First (SSTF), and Shortest Positioning Time
First (SPTF), have been extensively studied. Since the
physical characteristics of MEMS storage are very
different from those of disks, the conventional disk-type
algorithms are reevaluated [21] and many new scheduling
algorithms are proposed [36] [37] [38].

MEMS storage has two data allocation strategies: one-
dimensional allocation and two-dimensional allocation.
With the first strategy, data is placed contiguously along
the cylinders and in an I/O access the read/write head
moves along a cylinder until the cylinder ends, similar to
the disk allocation. With the second strategy, data is
placed in equal-distance regions that may cross over to
other cylinders; the read/write head stays in one region in
a single I/O operation but may visit different cylinders.

Architecture Approach Salient Features Performance

Working as disk write
buffer [15]

Runs Piecewise
Model
on DiskSim
[33]

MEMS and disk are
placed behind RAM;
MEMS handles hit-reads
and all writes from RAM
while disk handles
missed-reads and writes
from MEMS.

Achieve hundreds MB/s
throughput and eliminate 96%
raw write traffic to disks.

Replacing a disk
drive with a MEMS
device [24]

Runs String
Model on
DiskSim

MEMS has 320 active
tips and bit-wise striping
is used.

Average service time ranges
0.5–1 ms, 10 times better than
disks.

Replacing a disk
drive with a MEMS
device [10]

Incorporate
DiskSim-based
MEMS into
SimOS
machine
simulator [34]

Real application
benchmarks are replayed
at virtual Alpha 21164
system equipped on
SimOS with simulated
MEMS device.

Benchmarks complete 3 times
faster than state-of-art disk and
2 times faster than future disks
in 2005.

Replacing a small
NVRAM with a
larger MEMS device
in disk array [7]

Runs Piecewise
Model on
Pantheon [35]

MEMS devices are
organized as RAID 5 and
are used to replace the
small-capacity NVRAM.

Reduce response time up to
82% but do not improve
throughput. The performance
ratio improves 2.1-4.2.

Replacing disk arrays
with a bank of
MEMS storage
devices [7]

Runs Piecewise
Model on
Pantheon

Under various MEMS-
disk price ratios, both iso-
capacity and iso-price
scenarios are compared.

Improve latency by a factor of
4 -6.5 and throughput by a
factor of 4-28.
Performance/cost ratio is 2-7
times of disks.

Putting both a bank
of MEMS devices in
parallel with a log
disk [7]

Runs Piecewise
Model on
Pantheon

MEMS devices are
organized as RAID 0.
Updates to MEMS array
are mirrored in disks as in
a log structure fashion.

Offers most consistent
performance improvement and
best performance/cost ratio.
Reduce the latency of disk
arrays to 4-16.

Putting a bank of
MEMS devices in
parallel with disk
arrays [7]

Runs Piecewise
Model on
Pantheon

Use RAID-10 layout.
MEMS and disk arrays
are both organized as
RAID 0 but disk array
has larger stripe sizes.
Both arrays are mirrored.

No significant improvement in
throughput and latency.
Performance/cost ratio to
conventional arrays is 1.5-0.8

Table 2: Comparisons of different usages of MEMS storage devices in computer systems.

The existing disk-type scheduling algorithms in

MEMS storage with the one-dimensional allocation
strategy are evaluated in Ref. [21]. It is found that the
straightforward adaptations of disk scheduling algorithm
into MEMS storage are appropriate, and that SPTF has
the lowest average but high variation in response time. In
contrast, FCFS has the least variation in response times
while exhibiting the highest mean.

For MEMS storage devices with the two-dimensional
allocation strategy, some new scheduling algorithms are
proposed. While the optimal scheduling in the 2-D space
is a NP-complete problem, Ref. [36] and [37] propose an

approximation algorithm by constructing the request
destinations into a dynamic minimum spanning tree and
then serving the requests in the preorder traversal of the
tree. They show that this algorithm has a smaller response
time than all conventional algorithms under the workload
with uniform distribution. Ref. [38] divides the MEMS
storage media into a set of zones based on seek time
equivalence regions and serves these zones in the C-
SCAN order. Within each zone, requests are served in the
SPTF order. Their simulation results indicate that this
algorithm reduce the variation of response times close to

C-SCAN but has an average response time comparable to
SPFT.

3.3.2 Power Conservation
Power conservation can be performed both at the device
level and the system level. We have discussed the design
of power conservation at the device level in the previous
section. At the system level, many useful power
conservation strategies for disk drives, such as caching
[29], and combination with NVRAM [39], are applicable
to MEMS storage to save some seek operations by
absorbing a certain amount of write and read requests.
According to the physical characteristics of MEMS
storage, Ref. [32] proposed two system-level strategies:
request merging and subsector access. The first strategy is
to merge multiple adjacent requests into a large one and
exploit the parallelism to serve this large request in one
seek process. The second strategy allows access to partial
instead of whole tip sector. However, partial access will
lead to the difficulty of cache alignment, a problem not
addressed by the authors.

3.3.3 Fault Tolerance
Hardware failure: The MEMS storage devices have
thousands of tips and thus there is a high probability of
hardware failure. The fault tolerance can be designed at
two levels: the intra-device level and the inter-device
level. Inside a MEMS storage device, data is striped
across multiple read/write tips to achieve high aggregate
performance. If the error correction code is computed
both horizontally and vertically, the missing data due to
the media defection or tip failure can be possibly
reconstructed. At the inter-device level, MEMS storage
devices can be organized as an array and provide RAID
style redundancy to tolerate device failure.

MEMS arrays have a faster read-modify-write
operation than disk arrays [21]. Read-modify-write is a
common operation in RAID structures. For example, a
small write in RAID 5 needs two read-modify-write
operations: reading the old data and old disparity, then
calculating the new disparity and finally writing the new
data and new disparity. Read-modify-write in disks
suffers one full resolution delay waiting for disk spindles
to spin back to the same position while MEMS devices
can immediately reverse the direction and significantly
reduces the latency.
Software failure: System crashes can generate data
inconsistency in file or database systems. To minimize
such software state failure, synchronous write is usually
used. Due to large latency of synchronous operations on
hard drives, systems seldom have enough time to dump all
the data in RAM into disks. The low service time in
MEMS storage certainly helps reduce software failures
during crash. To our best knowledge, no literatures have
studied this advantage in details.

3.4. Application Level
The utilizations of MEMS storage in real applications
have not been extensively investigated. With the
commercial release of these devices in 2004, we expect
that more research in the area will show up soon. The
following lists three projects that use MEMS storage
devices for their specific purposes.
Secure Storage: University of Twente designs MEMS-
based storage as “write once disks” for secure storage by
exploiting some irreversible process of MEMS storage on
patterned magnetic media [40].
Database on MEMS storage: Relational databases
usually serialize tabular data onto disks in either the row-
major order or the column-major order. However, data is
often accessed with an order different from the order in
which data is stored. As a result, database applications
frequently experience very inefficient I/O service
provided by disks. Ref. [41] designs a special layout in
MEMS storage for relational databases to allow both
efficient row-major and column-major access.
Metadata storage: Ref. [42] examines the efficiency of a
scheme where a MEMS storage device is used to store the
file system metadata while actual file content resides in
disks. They show that this scheme improves the system
performance by 28-46%.

4. Discussion of Open Issues
MEMS-based storage is a young technology and there are
many research issues that need to be addressed. While the
research work presented above is incomplete and
immature, we notice that little have been addressed
regarding the following five issues.

4.1 Prefetching
Although MEMS storage responds 10 times faster than
disk drives, it is still much slower than RAM and
processors. Prefetching is an important technique to
further alleviate the I/O bottleneck. Unfortunately little
attention has been paid to the prefetching issue in MEMS
storage. In current disk technology, prefetching is
performed at two levels. (1) At the device level, if the
firmware detects a read request to be part of some large
sequential request, disk drives will continue to fetch a few
contiguous blocks in hope to saving future disk accesses.
(2) Simultaneously, at the system level, the OS can
actively issue prefetching requests by observing the I/O
history or by speculatively continuing to execute the code.
While both approaches can be applied to the MEMS
storage, prefetching in MEMS storage can also be
designed in a different way. Recall that MEMS storage
has many read/write tips that can be simultaneously active
and not all tips are busy in every I/O access. Thus it
provides an opportunity for idle tips to prefetch some data
while the media moves beneath them. This prefetching is

totally free since all tips can work in parallel while
penalty is paid in disk drives because prefetching delays
the response to other outstanding requests. When the I/O
queue is empty, MEMS storage can also prefetch some
data at the same media sled position, but from a different
tip set than the current active tips, by simply switching to
the corresponding tip set without moving the media sled.
No seeks are involved in this form of prefetching. The
challenge in the new prefetching design is to design a
good data clustering strategy to achieve a high prefetch
hit ratio.. A possible clustering solution is to examine the
I/O history and place data with the highest probabilities of
sequential access or with the highest access frequencies
under the same set of active tips.

4.2 Reversal Access
We can further modify the design of current MEMS
storage to reduce the latency. In disks, data is always read
by following the spinning direction. If the destination
block passes the disk head, disk has to wait one full
resolution to read it since the overhead of reversing the
spinning direction is very large. In the current MEMS
design, the media can quickly reverse its moving direction
and thus the response time is much smaller than that of
disks. However, data is read in the direction from its start
bit to its end bit in most designs. When data is
immediately reassessed, the read/write heads need to
traverse the data region to the start bit and then access the
data. If MEMS storage allows accessing data in both
directions, i.e., data can also be visited in the direction
from its end bit to its start bit and the bits are reversed
electronically in the firmware cache, then the traversal
with a physical length of the re-accessed data on the
media can be saved. Since immediate re-access is a
frequent pattern, especially in RAID workload [7], the
reversal access may have significant improvement on the
average latency. The main disadvantage of reversal access
is that it complicates the performance modeling and
request scheduling as well as hardware design.

4.3 Fault Tolerance
With thousands of read/write tips in one MEMS storage
device, fault tolerance is a critical issue for its ultimate
market acceptance. To our best knowledge, only CMU
has addressed this issue and they used two-dimensional
ECC and spare tips to tolerate permanent tip or media
failures. However, their devices cannot tolerate two
failures in the same row or column. We may pursue a
more aggressive fault tolerance scheme, such as mirroring,
Information Dispersal Algorithm [44], and RAID 10, to
improve the reliability. Then come the questions that
computer scientists and engineers need to tackle. What is
the mean-time-to-failure of a MEMS storage device in a
real environment where all failures are NOT independent
but highly correlated? What is the impact of different

redundancy schemes on the throughput and latency? How
to maintain the consistency and coherence between
redundant data as well as between metadata and data?
How to device data allocation to reduce the performance
degradation caused by failure components? Additionally,
unlike disk arrays where failed disks can be repaired or
replaced, the failed tips and media regions cannot be
restored in MEMS storage devices. Then how to design a
more resilient storage system on these devices that
maintains a reasonably “healthy level”?

Another important issue related to fault tolerance is
how to efficiently utilize the redundant data to improve
the I/O performance. One may approach this problem
from two perspectives: avoiding hot spots by sharing
loads among tips above redundant data or using a special
data placement to reduce the average seek distance.

4.4 Power Consumption Modeling
To study and reduce power dissipation, an efficient and
accurate power consumption model is desperately needed
since the physical experiments involve a frustrating
process, running long traces on real devices with power
measurement equipments. After MEMS storage devices
are commercially available in 2004 [7], a detailed energy
simulator for these devices can be built by measuring the
average amount of energy spent in each operation stage.
This modeling is not trivial since the mechanical motions
in MEMS storage are very complicated.

A power consumption model certainly facilitates the
energy aware design. For example, although a MEMS
storage device has thousands of read/write tips, only
hundreds of them can be active simultaneously due to the
power consumption and cooling issues. Additionally, Ref.
[23] shows that the performance is proportional to the
number of active tips within a certain range. With a power
model available, one can design a scheme to dynamically
change the number of active tips to optimize the tradeoff
between performance and energy saving.

4.5 Reevaluation of Some Disk Optimization
Techniques
The I/O management system is continually optimized to
reduce the performance gap between disk and processors.
While the physical distance between destinations and the
current read/write head position determines the access
time in both MEMS storage and disks, their access
processes and physical characteristics are very different.
Accordingly, the efficiency of disk-type optimization
algorithms needs to be reexamined. For example, recently
Wang et al proposes eager writing [45] that writes new
data to free sectors near the disk head’s current location
and reorganizes them later. While eager writing reduces
the latency of small synchronous writes to disks, it also
introduces the overhead of fragmentation management
and reorganization. In MEMS storage, the overhead may

not justify the adoption of this scheme since MEMS
storage has a much smaller seek time.

5. Conclusions
In this study, we discussed MEMS-based storage, a new
storage technology with a set of exciting characteristics
that bridge the performance and cost gaps between RAM
and disks and summarized the current research in this
promising technology from four levels: (1) the device
level that focuses on the understanding of physical
characteristics and designing of interfaces; (2) the
architecture level that endeavors to integrate the new
devices into the current memory hierarchy in the most
cost-effective way; (3) the system level that tries to tune
the I/O management subsystem of operating systems to
integrate the new devices; and (4) the application level
that focuses on how to use MEMS storage efficiently for
specific applications.

This paper identified five potential research issues
regarding this young storage technology, namely, (1)
prefetching, (2) reversal access, (3) fault tolerance, (4)
power consumption modeling, and (5) reevaluation of
some existing I/O optimization algorithms. We proposed
to exploit the parallelism of read/write tips to prefetch
data in MEMS storage and design a reversal access
strategy to shorten seek distance along data tracks. We
suggested using high-degree of fault tolerance design to
build an autonomic, resilient storage and provided a
possible approach to model power consumption. In the
end, we pointed out the necessity of reevaluating some
existing I/O optimization algorithms since they were
designed for disks and could be detrimental to the
performance of MEMS storage.

Acknowledgement
This project was partially supported by a National Science
Foundation grant (EPS-0091900), a Nebraska University
Foundation grant, and a UNL Academic Priority Grant,
for which we are grateful. We would also like to thank
other members of the secure distributed information (SDI)
group [46] and the research computing facility [47] at the
University of Nebraska-Lincoln for their continuous
assistance and support.

References
[1] E. Grochowski, IBM leadership in disk storage technology, IBM

Corporation, 2000.
[2] E. Grochowski, "Future trends in hard disk drives," IEEE Trans. on

Magnetics, vol. 32, no. 3, pp. 1850-1854, May 1996.
[3] D. A. Thompson and J. S. Best, "The future of magnetic data

storage technology," IBM Journal of Research and Development,
44(3), May 2000.

[4] L. R. Carley, G. R. Ganger, D. F. Guillou, and D. Nagle, "System
design considerations for MEMS-actuated magnetic-probe-based

mass storage," IEEE Trans. on Magnetics, 37(2 Part 1):657-662,
Mar 2001.

[5] P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. I.
Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. K. Binnig,
"The 'millipede' - more than one thousand tips for future AFM data
storage," IBM Journal of Research and Development, 44(3):323-
340, 2000.

[6] G. Marsh, "Data storage gets to the point," Materials Today, Feb
2003.

[7] R. Rangaswami, Z. Dimitrijevic, E. Chang, and K. E. Schauser,
"MEMS-based disk buffer for streaming media servers," IEEE
International Conference on Data Engineering, Bangalore, March
2003.

[8] M. Uysal, A. Merchant, and G. Alvarez, “Using MEMS-based
storage in disk arrays,” in Proc. of 2nd USENIX Conference on File
and Storage Technologies (FAST), April 2003 (Best Award Paper).

[9] K. D. Wise, “Special issue on integrated sensors, microactuators,
and microsystems (MEMS),” Proceedings of the IEEE, 86(8):1531-
1787, August 1998.

[10] J. L. Griffin, S.W. Schlosser, G. R. Ganger, and D. F. Nagle,
"Modeling and performance of MEMS-based storage devices," in
International Conference on Measurements and Modeling of
Computer Systems (SIGMETRICS), pp. 56-65, Santa Clara,
California, June 2000.

[11] S. W. Schlosser, J. Schindler, A. Ailamaki, and G. R. Ganger,
"Exposing and Exploiting Internal Parallelism in MEMS-based
Storage," Carnegie Mellon University Technical Report CMU-CS-
03-125, March 2003.

[12] Z.N.J. Peterson, S.A. Brandt and D.D.E. Long, "Data placement
based on the seek time analysis of a MEMS-based storage device,"
A Work in Progress (WIP) at: the Conference on File and Storage
Technologies (FAST), USENIX, 2002.

[13] S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger,
"Designing computer systems with MEMS-based storage," in 9th
Int. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX), pp. 12-15, Cambridge,
Massachusetts, Nov 2000. Published as Operating Systems Review,
34(5):1–12, 2000.

[14] J. F. Alfaro and G. K. Fedder, “Actuation for probe-based mass
data storage,” in Proceedings of the 2002 International Conference
on Modeling and Simulation of Microsystems, 2002, Vol. 1, pp.
202-205.

[15] F. Wang and S. Brandt, “Using MEMS device as disk write
buffer,” Technical Report, Department of Computer Science,
University of California Santa Cruz, 2001.

[16] Sunny Bains, "An Interview with Rick Carley," EE Times.
[17] C. Ruemmler and J. Wilkes, “Disk shuffling,” Technical Report

HPL-91-156. Hewlett-Packard Company, Palo Alto, CA, October
1991.

[18] P. Vongsathorn and S. D. Carson, “A system for adaptive disk
rearrangement,” Software Practice and Experience, 20(3):225-242,
March 1990.

[19] A. Vakali and Y. Manolopoulos, "Replication in mirrored disks
systems," in Proceedings of the 2nd East-European Conference on
Advanced Databases and Information Systems (ADBIS 98), Spring-
Verlag, Lecture Notes in Computer Science, #1475, pp. 224-235,
1998.

[20] K. A. Hua, S. D. Lang, and W. K. Lee, "A decomposition-based
simulated annealing technique for data clustering," in Proceedings
of the thirteenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pp. 117-128, 1994.

[21] J. L. Griffin, S. W. Schlosser, G. R. Ganger, and D. F. Nagle,
"Operating system management of MEMS-based storage devices,"
in 4th Symp. on Operating Systems Design & Implementation
(OSDI), pp. 227-242, San Diego, California, Oct 2000.

[22] E. Eleftheriou, T. Antonakopoulos, G. K. Binnig, G. Cherubini, M.
Despont, A. Dholakia, U. Dürig, M. A. Lantz, H. Pozidis, H. E.
Rothuizen, and P. Vettiger, "Millipede - A MEMS-based scanning-

probe data-storage system," IEEE Transactions on Magnetics, Vol.
39, No. 2, March 2003, pp. 938-945.

[23] M. Sivan-Zimet and T. M. Madhyastha, “Workload based
optimization of probe-based storage,” ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems
(Marina Del Rey, CA, 2002). Published as ACM SIGMETRICS
Performance Evaluation Review, 30(1):256–257. ACM Press, 2002.

[24] I. Dramaliev and T.M. Madhyastha, "Optimizing probe-based
storage," in 2nd USENIX Conference on File and Storage
Technologies (FAST), San Francisco, CA, Mar-Apr 2003.

[25] S. Schlosser, J. Griffin, D. Nagle, and G. Ganger, “Filling the
memory access gap: A case for on-chip magnetic storage,”
Technical Report CMU-CS-99-174, Carnegie Mellon University
School of Computer Science, November 1999.

[26] T. M. Madhyastha and K. P. Yang, "Physical modeling of probe-
based storage," in 18th IEEE Symp. on Mass Storage Systems, pp.
207-224, San Diego, California, Apr 2001.

[27] Pu Yang, “Modeling probe-based data storage devices,” Technical
report. Department of Computer Science, University of California
Santa Cruz, June 2000. Master's thesis.

[28] J. L. Griffin, J. Schindler, and S. W. Schlosser, "Timing-accurate
storage emulation," in Proceedings of the Conference on File and
Storage Technologies (FAST), January 28-30, 2002. Monterey, CA.

[29] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J. A.
Tauber, "Storage alternatives for mobile computers," in
Proceedings of the 1st Symposium on Operating Systems Design
and Implementation (OSDI), pp. 25–37, Monterey, CA, Nov. 1994.

[30] K. Li, R. Kumpf, P. Horton, and T. Anderson, "A quantitative
analysis of disk drive power management in portable computers,"
in Proceedings of the USENIX Technical Conference, pp 279–291,
San Francisco, CA, Jan. 1994.

[31] IBM, Adaptive Power Management for Mobile Hard Drives, IBM
Technical Report, 1999.

[32] Y. Lin, S. Brandt, D. Long, and E. Miller, "Power conservation
strategies for MEMS-based storage devices," International
Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, FortWorth, TX, October 2002.

[33] G. Ganger, B. Worthington, and Y. Patt, "The DiskSim Simulation
Environment Version 1.0 Reference Manual," Technical Report
CSE-TR-358-98, The University of Michigan, Ann Arbor, Feb.
1998.

[34] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, "Complete
Computer System Simulation: The SimOS Approach," IEEE
Parallel & Distributed Technology, 3(4), Winter 1995.

[35] J. Wilkes, "The Pantheon storage-system simulator," Tech. Rep.
HPL-SSP-95-14, Storage Systems Program, Computer Systems
Laboratory, Hewlett-Packard Laboratories, Palo Alto, CA, May
1996.

[36] H. Yu, D. Agrawal, and A. E. Abbadi, "Towards the integration of
MEMS-based storage in computing systems," Business Briefing:
Data Management and Storage Technology, 2003.

[37] H. Yu, D. Agrawal, and A. E. Abbadi, "Towards optimal I/O
scheduling for MEMS-based storage," in Twentieth IEEE/Eleventh
NASA Goddard Conference on Mass Storage Systems &
Technologies (MSST 03), April 2003, San Diego.

[38] B. Hong, S. A. Brandt, D. D. E. Long, E. L. Miller, K. A. Glocer,
and Z. N. J. Peterson, “Zone-based shortest positioning time first
scheduling for MEMS-based storage devices,” in Proceedings of
the 11th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS '03), Orlando, FL, 2003.

[39] M. Wu and W. Zwaenepoel, "eNVy: a non-volatile, main memory
storage system," in Proceedings of the 6th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 86–97. ACM, Oct. 1994.

[40] L. Abelmann, C. N. Chong, P. H. Hartel, and C. Lodder, "Design
rationale for secure probe storage based on patterned magnetic
media," Technical report TRCTIT-02-42, Centre for Telematics and

Information Technology, Univ. of Twente, The Netherlands, Oct
2002.

[41] H. Yu, D. Agrawal, and A. E. Abbadi, "Tabular placement of
relational data on MEMS-based storage devices," VLDB, Sept 2003,
Berlin Germany.

[42] B. Hong, “Exploring the Usage of MEMS-based Storage as
Metadata Storage and Disk Cache in Storage Hierarchy,” Technical
Report, Department of Computer Science, University of California
Santa Cruz. 2003.

[43] L. R. Carley, G. R. Ganger, and D. F. Nagle, "MEMS-based
integrated-circuit mass-storage systems," Communications of the
ACM, November 2000, Vol. 43, No. 11.

[44] M. O. Rabin, "Efficient dispersal of information for security, load
balancing, and fault tolerance," Journal of the ACM, vol. 36, no. 2,
pp. 335-348, Apr. 1989.

[45] R. Y. Wang, D. A. Patterson, and T. E. Anderson, "Virtual log
based file systems for a programmable disk," Symposium on
Operating Systems Design and Implementation, pp. 29–43. ACM,
1999.

[46] Secure Distributed Information (SDI),
http://rcf.unl.edu/~sdi/index.php,

[47] Research Computing Facility (RCF), http://rcf.unl.edu/

