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Abstract— One of the challenging issues in performance eval-
uation of parallel storage systems through synthetic-trace-driven
simulation is to accurately characterize the I/O demands of
data-intensive scientific applications. This paper analyzes several
I/O traces collected from different distributed systems and
concludes that correlations in parallel I/O inter-arrival times are
inconsistent, either with little correlation or with evident and
abundant correlations. Thus conventional Poisson or Markov
arrival processes are inappropriate to model I/O arrivals in
some applications. Instead, a new and generic model based on
the α-stable process is proposed and validated in this paper
to accurately model parallel I/O burstiness in both workloads
with little and strong correlations. This model can be used to
generate reliable synthetic I/O sequences in simulation studies.
Experimental results presented in this paper show that this
model can capture the complex I/O behaviors of real storage
systems more accurately and faithfully than conventional models,
particularly for the burstiness characteristics in the parallel I/O
workloads.

I. INTRODUCTION

Understanding I/O workload characteristic is critical in sys-
tem modeling and simulation-based performance evaluation.
Identifying representative I/O workloads allows researchers to
fairly compare existing designs and faithfully evaluate new
alternative ones. Two basic approaches are widely taken to
obtain representative workloads. One is to collect I/O traces in
a production environment that are then carefully reconstructed
during simulation [1]. The other is to use synthetic I/O requests
that emulate the behaviors of actual workloads [2]. The second
approach allows researchers to flexibly and efficiently study
the effects of some workload parameters [3]. This paper aims
to understand the parallel I/O arrival characteristics in data-
intensive scientific applications and develop a generic model
to accurately synthesize various parallel I/O workloads.

Cluster-based parallel I/O storage systems provide a promis-
ing approach to alleviate I/O bottleneck for scientific appli-
cations [4]. Hence, data can flow in parallel between client
hosts and storage nodes without passing any centralized server.
Currently, large-scale storage systems, such as Lustre [5],
have been widely deployed in computing clusters for scientific
applications. The ability to simultaneously execute such appli-

cations on a large number of nodes and allow a large amount
of data to flow independently without passing through any
centralized server results in a higher degree of data parallelism
and burstiness in nodes of a large computing cluster, which
motivates us to analyze and model parallel I/O workloads
widely existing in scientific applications.

In this paper, we propose and evaluate a novel and generic
mathematical model, the α-stable parallel I/O workload model,
to accurately synthesize I/O workloads. To validate and evalu-
ate this model, we analyze the correlations of I/O inter-arrival
times, and models the parallel I/O workloads collected at the
Lawrence Livermore National Laboratory (LLNL) in 2003 [6]
and Los Alamos National Lab (LANL) in 2008 [7]. To the best
of our knowledge, little research work conducted on this topic
has been reported in the literature. We compare our model
against conventional models, including the Normal, Markov,
Fractional Brownian Motion (FBM) [8], and FARIMA [9]
models for the parallel I/O workloads. Experimental results
show that the synthetic traces generated by our model can
more faithfully emulate the I/O arrival behaviors than the
conventional models compared.

The rest of this paper is organized as follows. Section II
gives an overview of the parallel I/O traces studied in this
paper and describes the related works. Section III studies
the correlations of I/O inter-arrival times and discusses the
necessity of proposing a new model to accurately synthesize
parallel I/O workloads with intensive burstiness. Section IV
presents the α-stable I/O workload model. Section V describes
the rationality of using the α-stable distribution with real
traces. Section VI compares the workloads synthesized by
the proposed model with real traces and others synthetic
workloads. Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Parallel I/O Storages

A large-scale distributed parallel storage system architecture
typically consists of three components: the Metadata Server
(MDS), the I/O nodes and clients, as shown in Figure 1.
This storage architecture is widely adopted in large scale



TABLE I
SUMMARY OF ior2, f1 AND m1 APPLICATION TRACES.

Application ior2 f1 m1
Traces ior2-fileproc ior2-shared ior2-stride f1-restart f1-write m1-restart m1-write

Category Benchmark Benchmark Benchmark Physics Physics Physics Physics
No. of Nodes 512 512 512 343 343 1620 1620

Trace Duration 18 sec 45 sec 202 sec 1440 sec 280 sec 249 sec 240 sec
Avg. IOs per Open 512.0 512.0 512.0 142161 1 15.3 17

Avg. IO Sizes per Open 32.8 MB 32.8 MB 32.8 MB 3993.5 MB ¿ 1 MB 8.5 MB 6.5 MB

scientific applications in many institutions, such as LLNL
and LANL, where some I/O traces have been collected. For
LLNL’s scientific applications that simultaneously run on a
large number of nodes in the Lustre [5] with more than 800
dual-processor nodes, the traces collected in a Lustre cluster
mainly include three parallel scientific applications: ior2, f1
and m1, as summarized in Table I. Application ior2 consists of
three parallel I/O benchmarks, i.e., ior2-fileproc, ior2-shared
and ior2-stride. Applications f1 and m1 are representative
physics simulations. Both applications include two phases.
While f1 has f1-restart and f1-write, m1 involves m1-restart
and m1-write. These traces were collected in September 2003
and detailed description of these applications can be found in
Ref. [10].

MDS

I/O Nodes

Clients

High-speed

Network

Fig. 1. Large-scale Distributed Storage System.

To test the I/O scalability for scientific applications, a
benchmark called MPI-IO Test [7], is developed by using
parallel I/O libraries at LANL. It gathers timing information
for reading from and writing to file(s) using a variety of I/O
profiles: (1) N processes writes to N files, i.e., N-N; (2) N
processes writes to a shared file, i.e., N-1-nonstrided; (3) N
processes send data to M processes that then writes to M
different files or a shared file, i.e., N-1-strided. The traces were
collected in January 2008 and the number of process used in
the traces was mostly 32 or 96. Detailed description MPI-IO
traces is given in Ref. [11].

In order to provide insights for high-performance parallel
system designs, many prior research efforts have been focused
on characterizing parallel I/O workload patterns [10], [12],
[13]. In order to model parallel I/O workloads, prior studies
usually assumed that I/O arrival process follows a Poisson
distribution, and I/Os can be generated by using the Markov
model [14]. However, the Markov model does not specialize in

lend itself to accurately characterize the burstiness in parallel
I/O workloads with very bursty I/O activities as evidenced
in the LLNL and LANL application workloads, such as the
ior2 benchmark and the f1 application described in Ref. [10].
This observation motivates us to examine the feasibility and
effectiveness of using Markov model to synthesize and predict
I/O requests for these scientific applications. In other words,
let’s consider the following key question: is it still appropriate
to use a Poisson or Markov model to characterize or predict
parallel I/O arrivals with the presence of intensive burstiness
in scientific applications?

B. Related Work
Prior research works have focused on the studies of syn-

thesizing I/O workload both at the disk level [3], [15], [16]
and at the file system level [17]. At the disk level, the
focus has been on trace synthesis [3], [15], [16] and disk
access pattern identification [15], [16], [18], [19]. At the file
system level, many studies provide useful insight into the
design and analysis of various file systems for performance
gains [10], [17]. In particular, Ref. [17] analyzes two sets of
detailed, short-term application traces collected from general-
purpose file systems, and finds that both exhibit self-similar
like behaviors, with consistent Hurst parameters.

However, scientific applications tend to deviate significantly
from commercial or generic applications in their I/O be-
haviors [20]. So far, several prior studies [10], [14], [21],
[22] have analyzed the I/O behavior of parallel scientific
applications, for tuning, managing, or optimizing parallel file
systems. Ref. [14] has proposed a Markov model to synthesize
and predict I/O requests for scientific applications. Ref. [10]
examines the I/O burstiness of parallel I/O workloads using a
simple methodology. They measure the cumulative distribution
functions (CDF) of I/O inter-arrival times and conclude that
I/O activities in the LLNL traces are very bursty in the ior2
benchmark and the f1 application.

While J. Oly and D. Reed have used a Markov model
to predict parallel I/O requests in Ref. [14], this paper will
examine the appropriateness of using the Markov model for
parallel I/O in scientific applications in the following section,
in light of the intensive burstiness in the four large-scale
scientific application workloads collected at the LLNL and
LANL.

III. CORRELATION STUDY

This section focuses on studying the correlations of I/O
inter-arrival times and characterizing the I/O arrival patterns.
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(c) MPI−IO
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(b) f1 and m1
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(a) ior2

N−N
N−1−nonstrided
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f1−write
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m1−write
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ior2−fileproc
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ior2−shared

Fig. 2. From (a) to (c): auto-correlation functions (ACFs) of I/O inter-arrival times for ior2, f1, m1 and MPI-IO, respectively.

This study aims to gain a deep understanding of workload
behaviors, as discussed below.

In order to synthesize parallel I/O workloads and predict I/O
arrivals, it is typically required to understand the workloads,
particularly correlations of I/O inter-arrival times first. Auto-
correlation functions (ACF) are a widely used mathematical
tool to study the correlations [23], [24], i.e., by measuring if
earlier values in a time sequence X = {xi|i = 1, · · · , N} have
some correlation to later values. The correlation coefficient at
lag k is defined as

ck =
1

N − k

N−k∑

i=1

(xi − x̄)(xi+k − x̄) (1)

where x̄ is the expectation of the time series X . Then the
ACF (k), with a lag of k is

ACF (k) =
ck

c0
(2)

The change trends of auto-correlation coefficient can char-
acterize the burstiness of I/O arrivals. If the correlation co-
efficient decreases sharply and approaches to zero quickly,
then I/O requests arrive in a smooth instead of bursty fash-
ion. In this case, there is very little or no correlation and,
accordingly, independent identically distributed (IID) methods
can be used to model real I/O workloads. On the other hand,
if the correlation coefficient decreases very slowly, the I/O
process is then very bursty and there exists a certain degree
of correlations. As a result, time-series or self-similar models
need to be considered to model I/O arrivals [23].

In the following, we use auto-correlation functions (ACF)
to study the patterns and characteristics in I/O inter-arrival
times from a time dependence perspective. The LLNL and
LANL I/O traces studied in this paper are collected in many
nodes. We find that the analytical results based on the traces
collected on different nodes are very similar to one another in
each scientific application. Therefore, this paper only presents
the results of the traces collected at a randomly chosen node.
The ACFs of these randomly selected traces are plotted in
Fig. 2.

In Fig. 2(a), we plot the auto-correlation coefficient of
I/O inter-arrival times for ior2 as a function of lag, from
lag = 0 to lag = 100. As shown in Fig. 2(a), there are
strong correlations for both the auto-correlation functions of

the I/O inter-arrival times in ior2-fileproc and ior2-shared.
However, there is a weak correlation for I/O inter-arrival times
in the ior2-stride workloads, but only for lag < 40. These
observations suggest that it might be appropriate to use an
independently and identically distributed (IID) method such
as Markov model to synthesize the ior2-stride workloads, but
not for the ior2-fileproc and ior2-shared workloads.

In Fig. 2(b), we plot the auto-correlation coefficients of
I/O inter-arrival times as a function of lag for f1 and m1,
respectively. As shown in Fig. 2(b), there are evident cor-
relations for both the auto-correlation functions of the I/O
inter-arrival times in f1-restart and m1-restart. However, there
is a slight correlation for I/O inter-arrival times in f1-write
and m1-write, especially for f1-write, but only for lag < 4.
It is reasonable to assume that the I/O arrivals in f1-write
follow an IID process. However, the Markov model, which
is independently and identically distributed, will not likely
be useful in modeling the I/O requests in other workloads
represented in Fig. 2(b).

In Fig. 2(c), we plot the auto-correlation coefficients of I/O
inter-arrival times for MPI-IO as a function of lag. As shown
in Fig. 2(c), there are strong correlations for the I/O inter-
arrival times in the N-N workload. In addition, there are also
evident correlations for the I/O inter-arrival times in both N-
1-nonstrided and N-1-strided. Different from N-N, the corre-
lations between inter-arrival times in N-1-nonstrided and N-1-
strided include not only the positive correlation coefficients,
but also the negative correlation coefficients. Therefore, the
above observations suggest that the Markov model is not a
plausible option to model I/O arrivals in MPI-IO.

We conclude that, in all application traces studied, there are
evident correlations between inter-arrival times in subtraces
collected on most computing nodes, and weak or no correla-
tions in a small number of remaining subtraces. Examination
results above show that the Markov model is inappropriate
to synthesize parallel I/O workloads with intensive burstiness
in scientific applications. Further, the parallel I/O workloads
traced in LLNL and LANL need to be explored to provide
useful insight into the synthesis of parallel I/O workloads. This
motivates us to propose a more effective model to accurately
synthesize the parallel I/O workloads with intensive burstiness
in the next section.



IV. THE α-STABLE DISK I/O WORKLOAD MODEL

I/O burstiness is very intensive in many scientific applica-
tions, such as the ior2 benchmark and the f1 application [10].
The salient feature of the α-stable process is its ability to
represent precisely the burstiness in stochastic phenomenon,
and flexibility to represent both long-range dependence and
short-range dependence. This leads us to develop a new
model based on the α-stable process to generate synthetic I/O
requests, with a focus on faithfully emulating the burstiness
that is often observed in real systems.

In most stable distributions, densities and distribution func-
tions are not known in closed forms. Thus, α-stable distribu-
tions are generally specified by their characteristic functions.

Definition 4.1: A random variable X is said to have a
stable distribution if there exist parameters 0 < α ≤ 2, σ > 0,
−1 ≤ β ≤ 1, and µ ∈ R such that its characteristic function
has the following form [25]:

EeiθX =
{

e−σα|θ|α(1−iβsignθ tan πα
2 )+iµθ, α 6= 1

e−σ|θ|(1+iβsignθ ln |θ|)+iµθ, α = 1
(3)

where signθ =





1, θ > 0
0, θ = 0
−1, θ < 0

, α, β, σ and µ are char-

acteristic exponent, skewness parameter, scale and location
parameters, respectively.

The characteristic exponent α represents the level of bursti-
ness in the distribution. The distribution can be skewed if the
skewness parameter β is different from zero. Variables σ and
µ are called the scale and location parameters and represent
the deviation and the mean of the distribution, respectively. A
random variable X that follows an α-stable distribution with
the above parameters is denoted by X ∼ Sα

σ,β,µ [25].
If 0 < α < 2, the characteristic function of the α-stable

distribution belongs to a class of non-Gaussian functions.
If α = 2, the characteristic function will degenerate to a
Gaussian function, denoted as EexpiθX = exp{−σ2θ2 +
iµθ}. In fact, this is the characteristic function of a Gaussian
stochastic process, with a constant mean µ, variance 2σ2, and
β becoming of no meaning due to β tanπ = 0, according to
the characteristic function of the α-stable process. Therefore,
by changing α, the α-stable process is able to represent the
stochastic process under the Gaussian condition as well as
non-Gaussian condition.

The stochastic process studied in this paper belongs to a
class of the α-stable process that has both the self-similarity
and the stable increments. Extending FBM under the α-stable
condition, we can obtain various forms of the process, of
which one is the Linear Fractional Stable Motion (LFSM) pro-
cess [26]. LFSM shares all properties of the α-stable process,
and its increment process is called the Linear Fractional Stable
Noise (LFSN) process. The LFSN process can be expressed
in a discrete domain, which makes it one of the most common
mathematical modeling tools [27].

Due to the fact that realistic modeling usually exists in
discrete states, the LFSN process expression in continuous

states above needs to be transformed to a discrete expres-
sion, replacing the integral with a sum function. Through
the discrete transformation of the properties of the α-stable
process [25], we can express a LFSN process as a linear
convolution as follows:

Nα,β,H(i) = (hd ∗ Sα
1,β,0)(i)

=
Km∑

k=1

hd(
k

m
) · Sα

( 1+β
2 )

1
α ,1,0

(i− k

m
)

−
Km∑

k=1

hd(
k

m
) · S̃α

( 1−β
2 )

1
α ,1,0

(i− k

m
) (4)

where hd(x) =
{

xd − (x− 1)d, x ≥ 1
xd, 0 < x ≤ 1 , d = H − 1

α ,

S(i) is an α-stable stochastic variable that is independently
and identically distributed, hd is the discrete inner-kernel
function, m is the grid parameter in the integral-discreting
scheme, and K is the integral stop point. Nα,β,H(i) represents
the discrete form of the stable LFSN process (i.e., a class of the
α-stable process satisfying σ = 1, µ = 0), Sα

1,1,0 and S̃α
1,1,0

represent two independently and identically distributed dis-
crete stochastic variables. The common distribution is Sα

1,1,0.
H is the Hurst parameter that gives a measure of the degree
of self-similarity of a given time-series, 0 < H < 1. The
Hurst parameter to a set of observations can be estimated by
the R/S analysis (i.e., Pox plot), and a detailed description of
this method can be found in [28], [29].

Since the marginal distribution of a LFSN process is an
α-stable process, the LFSN process has the basic properties
of the α-stable process. This paper provides a novel model
directly based on the LFSN process theory. According to the
properties of the α-stable process, we construct an α-stable I/O
workload model, and its formalization is expressed as follows:

IOs(i) = v ·Nα,β,H(i) + δ (5)

where IOs(i) represents the number of I/O requests in the ith

unit time, v and δ are real numbers greater than zero.
This model includes five parameters, and the physical mean-

ing of each parameter is given as follows. α measures the
degree of I/O burstiness, β represents the degree of heavy tail
in the I/O traffic, H measures the degree of self-similarity,
v represents the I/O mean velocity of the disk traffic, and
δ represents the deviation degree relative to the I/O mean
velocity of the disk traffic.

In summary, the α-stable process has a solid theoretical
basis for synthesizing parallel I/O workloads. In the following
section we will analyze realistic I/O traces, and then carefully
scrutinize the rationality for adopting the α-stable process with
credible experimental data. After that we will use real I/O
traces to examine whether real trace data follow the α-stable
distribution.

V. EXAMINATION OF THE α-STABLE DISTRIBUTION

To examine whether I/O arrivals specified in an I/O trace
follow the α-stable distribution, we first estimate the pa-
rameters of a given α-stable distribution by measuring the



TABLE II
ESTIMATES THE PARAMETER OF α-STABLE DISTRIBUTION BASED ON

MAXIMUM-LIKELIHOOD ESTIMATE.

Data Set ior2-fileproc α β σ µ
1 p16t 0.79 1.00 0.22 1.34
2 p234t 0.88 1.00 0.29 1.31
3 p301t 0.99 1.00 0.38 1.29
4 p333t 0.85 1.00 0.26 1.33
5 p416t 0.87 1.00 0.27 1.32

Data Set ior2-shared α β σ µ
6 p16t 0.98 0.42 1.33 6.76
7 p129t 0.92 0.49 1.24 6.22
8 p276t 0.96 0.52 1.25 5.69
9 p301t 0.96 0.52 1.25 5.69

10 p416t 0.97 0.38 1.24 6.79
Data Set ior2-stride α β σ µ

11 p87t 0.68 0.65 0.27 2.88
12 p129t 2.00 \ 0.52 3.00
13 p238t 2.00 \ 0.52 3.00
14 p276t 1.55 0.94 0.48 2.88
15 p511t 0.94 0.64 0.38 2.87

Data Set f1-restart α β σ µ
16 p87t 0.71 1.00 0.27 -1.16
17 p178t 2.00 \ 8.78 5.00
18 p238t 0.58 1.00 0.07 -0.82
19 p278t 1.29 1.00 4.29 0.62
20 p318t 2.00 \ 8.91 4.00

Data Set f1-write α β σ µ
21 p3t 2.00 \ 1.05 3.00
22 p15t 2.00 \ 1.05 3.00
23 p33t 2.00 \ 1.05 3.00
24 p36t 2.00 \ 1.05 3.00
25 p46t 2.00 \ 1.05 3.00

Data Set m1-restart α β σ µ
26 p666t 0.66 0.65 0.53 3.78
27 p678t 1.02 1.00 1.36 2.64
28 p973t 0.81 1.00 0.83 2.76
29 p985t 1.06 1.00 1.51 2.43
30 p1028t 0.56 0.54 0.24 3.92

Data Set m1-write α β σ µ
31 p345t 0.67 0.62 0.49 3.81
32 p456t 0.67 0.81 0.46 2.72
33 p567t 0.95 0.35 0.45 3.93
34 p678t 0.59 0.56 0.33 3.89
35 p789t 1.06 0.65 0.83 3.75

dataset, then compare the estimated distribution against the
real distribution of the I/O traces. There are various math-
ematical methods to estimate the parameters of an α-stable
distribution. In this paper, we choose the maximum-likelihood
estimation because it is a typical method to estimate the
parameters of an α-stable distribution. In addition, Quantile-
Quantile (QQ) plot [30] is used to compare the estimated and
real distributions.

For LLNL’s scientific applications, as shown in Table I, the
traces of the ior2 benchmarks are collected on a 512-node
cluster, f1 is a large-scale physics simulation running on 343
nodes, and m1 is an even larger physics simulation that runs
on 1620 nodes. We compute the number of I/O arrivals per
second. In this paper, for each of the seven workloads listed
in Table I, we randomly select five data sets, for a total of 35
data sets.

First, the maximum-likelihood estimation method is used
to estimate the parameter values of the α-stable distribution
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Fig. 3. From (a) to (g): QQ plots of ior2, f1 and m1 sample data versus
α-stable distribution, respectively.

provided for these 35 data sets. In Table II, each row includes
the sequence number of the data set, the sample data set and
the estimates of four parameters. Due to the fact that the α-
stable distribution will degenerate to a Gaussian stochastic
process if α = 2, with mean value µ and variance 2σ2, and β
will be meaningless (see section IV). Accordingly in Table II,
a slash will fill in the place of β if α = 2. This slash symbol
indicates that the relevant workload is Gaussian. According
to the parameter estimates, we can obtain the relevant α-
stable distribution and further check whether the given α-
stable distribution is consistent with the I/O arrival process
in real workloads. Due to the space constraint, this paper only
discusses the results of the 3rd, 9th, 11th, 18th, 23rd, 26th,
and 32nd data set in Table II.

Based on a given α-stable distribution, through the QQ plots
we can judge whether the given α-stable distribution matches
the probability distribution of the given data set.

In order to examine the matching degree between the α-
stable distribution and the real data, the QQ plots of the given
data set and the α-stable distribution are illustrated in Fig. 3.
As shown in Fig. 3, the X-axis shows the quantile value of the
hypothetical α-stable distribution, and the Y-axis denotes the



quantile value of the given data set. Fig. 3(a)-(g) illustrate the
matching results corresponding to the seven selected data sets.
Through analyzing the QQ plots, we find that a majority of
data points lie along an approximate straight line. Therefore,
it is reasonable to conclude that the hypothetical α-stable
distribution is consistent with the real data distribution.

However, as an effective tool, the QQ plot still has some
limitations in that as shown in Fig. 3(e), most of the points
are compressed in a very narrow range in both dimensions,
which limits our visual observation. As well, the tail of data
points often fluctuate around and even beyond the theoretical
straight line area, as shown in Fig. 3(b), which is induced by
the accumulative effect brought by the heavy-tail distribution.
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Fig. 4. From (a) to (f): QQ plots of N-N, N-1-nonstrided and N-1-strided
sample data versus α-stable distribution, respectively.

The above methods are also used to estimate the parameter
values of the α-stable distribution provided for LANL’s MPI-
IO traces and judge whether the given α-stable distribution
matches the probability distribution of the given data set, re-
spectively. Due to the space constraint, we will not summarize
these parameter estimates in a table and only illustrate their
QQ plots in Fig. 4, which indicates that the hypothetical α-
stable distribution is consistent with the real data distribution
for each sample subtrace belonging to N-N, N-1-nonstrided
and N-1-strided, respectively.

In summary, the above analyses and comparisons clearly
indicate that the hypothetical α-stable distribution is consistent
with the real data distribution. Thus, we conclude that I/O
arrivals in parallel I/O workloads in both LLNL’s and LANL’s
scientific applications can be reasonably assumed to follow the
α-stable distribution.

VI. SYNTHESIZING PARALLEL I/O WORKLOADS

For ior2, f1, m1 and MPI-IO, we take a subset of subtraces
in a random node as a testing unit. For each testing unit, we
compute the I/O arrival rate, i.e., the number of I/O arrivals
per second. We put all arrival rates into a group of stochastic
numbers. The maximum-likelihood method is used to estimate
the parameters of the α-stable process corresponding to the
data sets needed to be measured. And the relevant I/O work-
load can be synthesized to emulate the data sets based on the
constructed α-stable workload model.

The algorithm for synthesizing workload by the α-stable
parallel I/O workload model is given below.

————————————————————————–
ALPHA-STABLE-SYNTHETIC-TRACE-GENERATION
————————————————————————–
INPUT: I/O mean velocity v, the deviation degree of I/O

mean velocity δ, grid parameter m, integral
stop point K, original trace data file f.

OUTPUT: an access series (IOs(1), IOs(2), · · · , IOs(n)).
ALGORITHM:
for each f

//ALPHA-STABLE-PARAMETER-ESTIMATE
Use maximum-likelihood estimate to estimate the
parameter value α, β, σ and µ of the given α-stable
distribution for data sets in f ;
if α /∈ (0, 2] or β /∈ [−1, 1] or σ ≤ 0

then break;
else

use Pox plot to estimate the Hurst value H
if H /∈ (0, 1) or H = 1/α

then break;
else calculate d = H − 1/α, and then hd(x)

Set the initial values of m and K, and obtain
{Nα,β,H(i) : i = 1, 2, · · · , n} using Equation (4)
Set the initial value of v and δ, and obtain
{IOs(i) : i = 1, 2, · · · , n} using Equation (5)

end for
————————————————————————–

In order to evaluate the effectiveness of the parallel I/O
workload model based on the α-stable process, this section
first takes ior2, f1, and m1 as targets to synthesize I/O
workload, respectively. The synthetic workload will then be
compared with real parallel I/O workloads and the workload
synthesized by the conventional traffic models.

A. Analysis of Errors

According to the 35 data sets listed in Table II, we use
the proposed model and conventional models to synthesize
the various workloads one by one. Because a badly skewed
datum in a data set can potentially render the mean of the set
arbitrarily skewed from the center of the remaining data in the
set, the trimmed mean [30] is used to evaluate the matching
degrees between each real workload and the corresponding
synthetic workloads. The trimmed mean of a data set is the



TABLE III
THE TRIMMED MEAN OF ERRORS FOR ior2.

Data Set α-stable Markov Normal FARIMA FBM
ior2-fileproc

1 0.56 0.88 0.98 3.41 21.09
2 0.19 0.82 0.86 2.02 13.38
3 0.72 0.62 0.91 3.12 1.01
4 0.23 0.77 0.92 3.29 9.53
5 0.53 0.91 0.67 3.10 11.75

ior2-shared
6 0.38 0.91 0.12 6.19 0.77
7 0.05 0.88 0.09 6.89 1.03
8 0.02 0.82 0.04 6.97 18.88
9 0.15 0.02 1.18 5.49 8.87
10 0.36 0.11 0.17 6.74 7.39

ior2-stride
11 0.16 1.11 0.25 4.89 9.21
12 0.35 0.42 0.69 3.43 0.94
13 0.19 0.59 0.58 3.91 0.70
14 0.07 0.85 0.56 3.61 1.05
15 0.04 1.25 1.35 3.80 1.50

TABLE IV
THE TRIMMED MEAN OF ERRORS FOR f1.

Data Set α-stable Markov Normal FARIMA FBM
f1-restart

16 2.02 8.15 0.85 10.63 36.63
17 1.47 6.72 0.55 11.63 18.37
18 3.05 6.31 1.67 11.25 47.23
19 4.03 2.08 0.84 10.12 5.11
20 2.13 11.01 1.94 11.45 17.7

f1-write
21 0.01 0.13 0.03 3.65 1.88
22 0.20 0.24 0.08 3.06 2.51
23 0.02 0.13 0.05 2.65 15.94
24 0.13 0.14 0.22 2.68 5.46
25 0.02 0.07 0.03 2.63 2.37

arithmetic mean after trimming a small portion off each of
the two ends of the sample data, making it more stable and
resilient to abnormal data than the conventional average of
samples expectation such as the arithmetic mean.

The trimmed mean of errors are illustrated in Table III,
Table IV and Table V. First, we use the α-stable, Markov, Nor-
mal, FARIMA, and FBM methods to synthesize the workloads
corresponding to the ior2-fileproc traces. As shown in Table
III, in general the trimmed mean of error between the real
workload and the α-stable synthetic workload is minimum,
with the exception of the 3rd data set in which the trimmed
mean of error for α-stable synthetic workload is slight greater
than that for the Markov model. This is understandable since
the α-stable model is developed to capture the essence of
all workloads synthetically, not any one specific workload.
Nevertheless, the matching degree of the α-stable synthetic
workload for the 3rd data set is still reasonably good. In
addition, for each data set, the trimmed mean of error for
the FARIMA and FBM synthetic workloads are generally
significantly larger than the others. This is likely due to the fact
that the ior2-fileproc traces span only short-term time scales,
while both FARIMA and FBM are self-similar models that
synthesize traffics with long-range dependence. Similarly, the

TABLE V
THE TRIMMED MEAN OF ERRORS FOR m1.

Data Set α-stable Markov Normal FARIMA FBM
m1-restart

26 1.48 2.15 2.12 6.44 7.48
27 0.60 2.42 1.93 5.51 13.89
28 0.53 0.69 1.06 7.45 2.45
29 0.16 2.23 2.10 7.87 2.87
30 0.29 0.80 1.72 4.49 3.52

m1-write
31 0.15 0.92 0.26 4.20 3.39
32 1.38 4.70 0.17 6.14 8.74
33 0.54 0.58 0.78 3.31 6.82
34 0.04 1.13 0.83 6.24 8.28
35 0.67 0.81 0.38 5.03 0.97

trimmed mean of error for ior2-shared, ior2-stride traces is
also summarized in Table III.

Next, we use the α-stable, Markov, Normal, FARIMA, and
FBM methods to synthesize the workloads corresponding to
the f1 and m1 traces, respectively. As can be seen from Table
IV and Table V, in general the trimmed mean of error between
the real workload and the α-stable synthetic workload is the
minimum. And for some of the data sets in f1 and m1, the
trimmed mean of error between the real workload and the
α-stable synthetic workload is the minimum or close to the
minimum, e.g., the 16th, 17th, 18th and 20th data sets. In
addition, the trimmed mean of error for the α-stable synthetic
workload corresponding to the 22nd and 35th data set is close
to the minimum, especially for the 22nd data set. For the
19th data set, the trimmed mean of error for the α-stable
synthetic workload is larger than the workloads synthesized
by the Markov and Normal methods, but only by a margin
of 3.19 over the minimum error, indicating that the matching
degree between the real workload and the α-stable synthetic
workload is still reasonably good.

B. Empirical Study

In order to intuitively present the synthetic workloads and
comparative results, without the loss of generality, we select
one group of the synthetic workloads from the ior2, f1, and m1,
respectively. The cumulative distribution functions (CDFs) of
the selected workloads, namely, the 4th, 6th, 15th, 16th, 24th,
30th and 35th data sets, are illustrated in Fig. 5, where the X-
axis shows the I/O arrival numbers per second, and the Y-axis
denotes the percentage of the number of I/O arrivals. A point
(x; y) in the cumulative distribution curve indicates that y%
of arrival rates are less than or equal to an arrival rate of x.

As can be seen from Fig. 5, the I/O workload synthesized
by the α-stable model very closely matches the real trace
data, especially for ior2 and m1. A quantitative approach
to evaluate the improvement is to analyze the error. Taking
the I/O workload synthesized by the Markov model for an
example, for ior2, f1 and m1, the trimmed means of errors
between the real data set and the synthesized workload through
the Markov model are 0.77, 0.91, 1.25, 8.12, 0.14, 0.80 and
0.81, respectively, and the trimmed means of errors between
the real data set and the synthesized workload through our
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Fig. 5. From (a) to (g): CDFs of synthetic I/O traces and real traces for ior2, f1 and m1, respectively.

proposed model are 0.23, 0.38, 0.04, 2.02, 0.13, 0.29 and 0.67,
respectively. Accordingly, our proposed model can reduce the
trimmed mean of error of the Markov models by 70%, 58%,
96%, 75%, 7%, 63% and 17%, respectively.

As shown in Fig. 5, the α-stable I/O workload model is
by and large the best model to accurately synthesize the
parallel I/O workloads in ior2, f1, and m1. More specifically,
Table VI summarizes the relative accuracy of each synthetic
model by assigning an integer value between 0 and 3 to it,
where a ‘3’ means the best matching-degree among all the
synthetic workloads, a ‘2’ means better than the average, a
‘1’ means average, and a ‘0’ means below the average. As
can be seen from Table VI, in all cases the synthetic I/O
workloads generated by the α-stable I/O workload model are

more accurate than the parallel I/O workloads synthesized by
the Markov model proposed in Ref. [14]. For the workloads
synthesized by the Markov model, an evident deficiency is that
it is difficult for the Markov model to capture the burstiness
in parallel I/O workloads.

C. Synthetic Workloads for MPI-IO Benchmark

The α-stable model can also effectively synthesize I/O
workload in the MPI-IO benchmark. We will compare all syn-
thetic workloads generated by different models. The analysis
method described previously is used here again to compare
the trimmed mean of error between these synthetic workloads.
Due to the space constraint, we only show the results of six
subtraces, selected randomly from N-N, N-1-nonstrided and
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Fig. 6. From (a) to (f): CDFs of synthetic I/O traces and real traces for N-N , N-1-nonstrided and N-1-strided, respectively.

TABLE VI
THE MATCHING DEGREE FOR ior2, f1, m1.

Parallel I/O α-stable Markov Normal FARIMA FBM
ior2-fileproc 3 2 1 0 0
ior2-shared 2 2 3 0 0
ior2-stride 3 2 2 1 1
f1-restart 2 1 3 1 0
f1-write 3 2 3 0 0

m1-restart 3 2 1 0 0
m1-write 3 2 1 0 1

N-1-strided parallel I/O traces, respectively. Fig. 6 shows the
results of our α-stable mode and other conventional models
including Markov, Normal, FARIMA and FBM. The trimmed
mean of errors are summarized in Table VII.

In Fig. 6, the parallel I/O workload synthesized by the
α-stable model matches the real trace data very closely,
especially for N-N (32 Procs) and N-1-nonstrided (96 Procs).
Taking the I/O workload synthesized by the Markov model
for an example, for N-N, N-1-nonstrided and N-1-strided, the
trimmed means of errors between the real data set and the
synthesized workload through the Markov model are 37.36,
8.05, 27.22, 14.47, 0.87 and 0.99, respectively. However,
the trimmed means of errors between the real data set and

TABLE VII
THE TRIMMED MEAN OF ERRORS FOR MPI-IO.

Data Set α-stable Markov Normal FARIMA FBM
N-N-32 3.73 37.36 4.45 432.7 431.2
N-N-96 1.14 8.05 7.11 31.63 18.37

N-1-nonstrided-32 6.04 27.22 18.89 70.99 63.16
N-1-nonstrided-96 6.45 14.47 7.83 22.82 25.11

N-1-strided-32 0.39 0.87 0.44 31.49 25.71
N-1-strided-96 0.11 0.99 2.18 26.3 23.7

the synthesized workload through our proposed model are
only 3.73, 1.14, 6.04, 6.45, 0.39 and 0.11, respectively. Our
proposed model can reduce the trimmed mean of error of the
Markov models by 90%, 85%, 77%, 56%, 55% and 89%,
respectively.

The proposed model can also accurately synthesize all
of the parallel I/O workloads in the LANL’s MPI-IO Test
benchmark. And the matching degree of our proposed model
is comparable to Normal model, especially in Fig. 6(a) and
Fig. 6(d). However, the self-similar models such as FARIMA
and FBM models can not accurately synthesize most of the
real parallel I/O workloads. The Markov model proposed in
Ref. [14] has an evident and critical limitation: it is difficult for
the Markov model to capture the burstiness in I/O workloads.



In sum, for MPI-IO workloads, the α-stable model is more
faithful to real-world I/O behaviors than other conventional
model studied in this paper.

VII. CONCLUSIONS

The first fundamental step in finding solutions to alleviate
I/O performance bottleneck in high performance computing
systems is to accurately characterize the I/O demands of scien-
tific application workload. Unfortunately, accurately modeling
parallel I/O workloads remains a challenging issue due to the
burstiness in the arrival process. This paper analyzes a set of
real I/O traces of scientific applications running in different
distributed systems. Through studying the correlations of I/O
inter-arrival times in some representative parallel I/O work-
loads, we find that it is necessary to propose a more effective
model to accurately synthesize the parallel I/O workloads with
the intensive burstiness.

In this paper, we proposed and evaluated a novel and generic
mathematical model, the α-stable parallel I/O workload model,
to accurately synthesize I/O arrivals. We compare our model
against conventional models, including the Markov, Normal,
FARIMA and FBM methods. Experiment results show that
the synthetic traces generated by our model can more faith-
fully emulate the I/O bursty arrival behaviors than the other
methods. In addition, our model has five input parameters and
each one has its physical meaning, allowing us to conveniently
turn the I/O workload model for different environments. For
example, we can change the values of parameter α so that
our model can flexibly characterize burstiness under both
the Gaussian and non-Gaussian conditions for parallel I/O
workloads.
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