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Abstract—Areal density scaling in magnetic hard drives is
in jeopardy as magnetic particles become unstable when they
are sufficiently small. Shingled recording holds great promise
to mitigate the problem of density scaling cost-effectively by
overlapping data tracks. However, this innovative technology
suffers severely from slow small writes. This prevents shingle
recording from being widely adapted in practice. This paper
presents a new hybrid storage architecture that combines a
shingled-recording magnetic disk and a fast SSD cache to
achieve a high-capacity storage system without any compro-
mise to performance. We propose a new wave-like shingled
recording that overlaps adjacent tracks from two opposite
radial directions. This new schemes doubles the areal density
of conventional circular log-based shingled recording. We also
design a new replacement strategy to manage the hybrid
system to effectively eliminate the performance degradation.
We evaluate our design based on a prototype implementation.
Experimental results under 12 I/O workloads show that our
hybrid system exhibits a sustained performance comparable to
a disk with no shingled-recording.

Keywords-Shingled recording; SSD; Hybrid system; Replace-
ment policy; Data layout

I. INTRODUCTION

The areal density of magnetic disks is reaching its length-
scale limitation. The capacity of a magnetic disk has in-
creased 30%-50% per year for almost 50 years and currently
disks can store up to 400Gbits/in2 [12]. Disk areal density
is quickly approaching to 1Tbit/in2, a limit caused by
superparamagnetic effect [5]. The magnetic direction of a
sufficiently small particle can be randomly flipped under
the influence of ambient thermal energy. New recording
technologies have been proposed to scale up the areal
densities, such as bit-patterned media [13] and heat-assisted
magnetic recording [4]. Compared with them, shingled
recording technology is the most promising one since it
can notably increase the grain density without changing
underline storage media. By partially overlapping tracks to
reduce track width, the areal density can be improved to 2-
3Tb/inch2 [3]. Combined with 2-D readback and new signal
processing techniques [10] [6], the areal density can be
further enhanced. The inherent weakness defect of shingled
recording is slow small writes, also called random writes,
because writing to a given data track requires rewriting to
its neighbor tracks. The amount of data actually written is

larger than the write request size. The inferior performance
for small writes, also called write amplification, is one of
major factors restricting its widespread deployment in real
systems.

The key challenge of extending the application of shingled
writing and integrating it into magnetic disk system is
to lower the write amplification of shingled writing disk.
Cassuto et al. [11] constructed an indirection system for
shingled recording disk and introduced a data layout that
organize data into circular log named S-block architecture.
However, the circular log-based data layout has a large data
immigration overhead during garbage collection. Moreover,
it has to maintain a large amount of metadata for tracking the
dynamic mapping between a logical address and its physical
location. Park et al. [16] proposed a H-WSD architecture by
adopting a hot data identification mechanism to reduce the
garbage collection overhead. But this unbalanced garbage
collection still relies on data immigration, because hot data
that are frequently updated are mostly located in the head
of circular log and many valid tail data need to be moved
to head to collect the invalid head data during garbage
collection.

A different approch to alleviate the random write issue is
hybrid systems that leverage a small non-volatile RAM or
SSD for effectively caching hot data and reducing data im-
migration and improve performance. Currently SSD outper-
form disks significantly in both read and write, particularly
in random read [17]. Using SSD for caching random reads
is very helpful to improve the performance of shingled disk
system.

This paper proposes a hybrid wave-like shingled recording
disk system (HWSR) to improve both the performance and
the capacity of a shingled recording disk. HWSR contains
three different storage media: memory, SSD, and hard disk.
The memory has a very small capacity, such as 100MB, in
our design to reduce the overall cost. It is used to buffer hot
writes. The SSD is used as a disk cache to improve random
read performance.

HWSR consists of three key components: (1) a new data
layout based on segmentation for shingled recording disk
to reduce random write amplification; (2) a new shingled
track layout named wave-like shingled recording (WSR) to
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further improve its capacity; (3) a new replacement policy
based on least write amplification that effectively reduces
the miss rate and data rewritten amount.

The key contributions of this paper are as follows.

∙ Limited random write amplification to a single segment
by using a new data layout based on segmentation,
which is much smaller than a region.

∙ A wave-like shingled recording that reduce half of
wasted space and improve disk utilization rate.

∙ Design and implementation of a new replacement
policy based on least write amplification that greatly
reduces the miss rate and data immigration.

∙ A hybrid storage system that integrates these compo-
nents to improve both the capacity and the performance.

The rest of this paper is organized as follows. Section II
gives an overview of HWSR system and presents our data
layout, address mapping structure and replacement policy.
Section III discusses three key issues: write amplification,
disk utilization, metadata amount. The experiment and eval-
uation are presented in Section IV followed by related work
in Section V. Section VI concludes this paper.

II. HYBRID WAVE-LIKE SHINGLED-RECORDING DISK

In this section, we describe our system model and give
an overview of HWSR.

A. Design Overview

Figure 1 shows the HWSR system architecture consisting
of a SSD cache, a MEM buffer and a shingled-recording
disk. While the MEM buffer mainly stores write requests,
the SSD cache mainly stores read requests. When a write
request arrives, MEM buffer stores the incoming data and
update the address mapping table. When MEM buffer is full,
MEM buffer evicts out some cold data to make space for
new data. All evicted data is written to the disk. When a read
request arrives, MEM buffer looks up the address mapping
table. The read request accesses SSD if MEM buffer does
not hold the target data. The shingled disk serves all misses
of the SSD cache.

B. Data layout

1) Wave-like shingled recording disk: In a traditional
shingled disk, the tracks are laid out with partial overlap in
the radial direction as shown in Figure 2(b). We assume that
the number of tracks that are overwritten by a shingled write
is 𝜅, where 𝜅 is typically 4-8 [12]. Theoretically, if there
are no wasted space (guard band), the maximum capacity
of a shingled disk is 𝜅 times traditional disk as shown in
Figure 2(a). Via overlapping tracks, the average track width
is significantly reduced.

Data tracks are organized into bands called regions, which
are separated by a collection of p following tracks called
guard band, where p is at least 𝜅. Guard bands are to prevent
the interference between regions and do not store any valid
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data. Thus guard bands creates significant spatial overhead.
The tracks in wave-like shingled recording, as shown in
Figure 2(c), are laid out with partial overlap in two opposite
radial directions like waves. There is only one guard band
shared by every two regions, which means that on average
only half guard band is wasted for each region. Compared
with traditional shingled recording, our Wave-like approach
reduces the spacial overhead of traditional shingled disk by
half, resulting in significantly improve the utilization rate.
We will discuss in detail the disk utilization ratio of wave-
like shingled recording to traditional shingled recording in
Section III.

2) Segment-based data layout: The number of tracks in
each region influences significantly the disk performance,
since a random write to a given track may require rewriting

174



R0

R2

R1 S 0

S
1

S
2

S 3S 4

S
5

S
6

S 7

B0
B1
B2

Sector

S1

(a) Segmentation: Region2 is divided into
8 segments in radial dirction.

(b) Blocks: In each segment, the sectors in the same track
constitute one block. There are four blocks in
Segment1and each block contains 8 sectors.

B3

0 1 3 42 5 6 7

Figure 3. Data layout based on segmentation

Write direction

Overlapped data
block

Write data
block Data block Free block

Traditional shingled
recording data layout

Segment-based shingled
recording data layout

Copy to spare space

Figure 4. Comparison of write amplification in tradition layout and our
proposed segment-based layout

the whole region. We divide a region into segments in the
radial direction to reduce write amplification. The size of
data rewritten is then limited to a segment, which is much
smaller than a region. We assume four contiguous tracks
on the same surface constitute a region. Figure 3 shows an
example of three regions, with eight segments in each region.
With in a segment, all sectors in the same track constitute a
data block. In this example, a segment has four data blocks
and each block has eight sectors. If data in segment S1 is
updated, its neighbor segments S2 and S0 are not affected.

An example of write amplification is provided in Figure 4,
in which 𝜅 is set as two. when four sequential data blocks
marked in red are written to a traditional shingled disk, eight
data blocks in the adjacent tracks have to be rewritten, i.e.,
we need to copy the eight data blocks to some spare space
and then rewrite them back. If we divide each region into
multiple segments in the radical direction and assume each
segment holds three data blocks, then only three sequential
data blocks are laid out in the radical direction and only
two data blocks in the two adjacent tracks are rewritten. This
segment-based shingled recording reduces the effect of write
amplification to a quarter of traditional shingled data layout.
Generally, the write amplification of data layout based on
segmentation is 1/n of traditional data layouts, where n is
the total number of segments in a region.

C. Address mapping structure

To reduce the amount of metadata and ensure consistence,
we construct the address mapping structure between cache,
buffer and disk. The logical address space of MEM buffer
and SSD cache is divided into independent blocks which are
the same size with the blocks of shingled disk as shown in
the right side of Figure 5. There are only one hash table
which mapping the logical address of requests to the cache
or buffer space. If a request is on a miss, it accesses the disk
directly using the following address transform formula:

𝑁𝑟𝑒𝑔 = 𝐿𝐵𝐴/𝑆𝑟𝑒𝑔 (1)

𝑁𝑠𝑒𝑔 = (𝐿𝐵𝐴 mod 𝑆𝑟𝑒𝑔)/𝑆𝑠𝑒𝑔 (2)

𝑁𝑏𝑙𝑘 = (𝐿𝐵𝐴 mod 𝑆𝑠𝑒𝑔)/𝑆𝑏𝑙𝑘 (3)

𝑁𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐿𝐵𝐴 mod 𝑆𝑏𝑙𝑘 (4)

𝑃𝐵𝐴 = 𝑁𝑟𝑒𝑔∗𝑆𝑟𝑒𝑔+𝑁𝑏𝑙𝑘∗𝑆𝑇 +𝑁𝑠𝑒𝑔∗𝑆𝑏𝑙𝑘+𝑁𝑜𝑓𝑓𝑠𝑒𝑡 (5)

where LBA and PBA are the logical and physical address
respectively(in sectors); 𝑁𝑟𝑒𝑔 , 𝑁𝑠𝑒𝑔 , 𝑁𝑏𝑙𝑘 and 𝑁𝑜𝑓𝑓𝑠𝑒𝑡 are
the logical section number, segment number, block number
and sector number respectively; 𝑆𝑇 is the track size (For the
convenience of representation, we assume all tracks have the
same size); 𝑆𝑟𝑒𝑔, 𝑆𝑠𝑒𝑐 and 𝑆𝑏𝑙𝑘 are region size, section size
and block size respectively (in sectors).

We construct a segment hash table (SHT) which stores
segment information in each hash node. Each segment node
contains two types of arrays that store block locations.
SBmap stores the block location in the SSD cache and
MBmap stores the block location in MEM buffer as shown
in the middle of Figure 5.

SHT is used to speed up the lookup in SBmap and
MBmap. If an element in one array is valid, then the request-
ed data content is stored at the location of corresponding
devices. If invalid, then the requested data is not in SSD
and Mem, and then the disk will be accessed. Figure 5
gives an example of data lookup operations for two read
requests (LBA1 and LBA3) and one write request (LBA2)
in HWSR. We assume that the number of blocks per segment
is four and the segment hash value is 𝑁𝑠%4, where 𝑁𝑠 is the
segment number. In case of read request LBA1 (S5, B3, R),
the content of bracket mean that the read request accesses
the block 3 in the segment 5, MBmap[3] and SBmap[3] are
both NULL, then the request accesses shingled recording
disk and the desired data is prefetched to SSD cache. In
the case of LBA2, the content of MBmap[3] is valid, so
the location of the target block is stored in block 4 of the
MEM buffer. In the case of LBA3, the content of SBmap[2]
is SB0, which mean the block required is stored in block 0
in SSD cache.

D. Replacement policy

On a miss, cache or buffer must select a block to be
replaced. HWSR uses different replacement policies for SSD
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cache and MEM buffer. Note that MEM buffer is mainly
used to buffer writes and SSD cache is only used to cache
reads because of its limited write cycles. In addition evicted
blocks out of MEM buffer must be written to the disk to
maintain consistence while the replaced blocks out of SSD
cache are not written to disk because the data isn’t changed.

As price per byte of SSD continues to decrease. SSD with
a relative small capacity (several hundred Mbytes) does not
incur a significant cost. However, such as a small SSD can
effectively capture most hot data and have a high hit rate,
as proved by our experimental results presented later. For
simplicity, we use LRU to manage the SSD cache.

There are two LRU queues in MEM buffer: one for
blocks and the other for segments. The LRU block queue
takes advantage of temporal locality but it replaces only one
block at a time. This increases the number of defrag and
write amplification because of rewriting about a segment per
defrag. The LRU segment queue replaces a segment each
time and reduce write amplification. But it wastes a lot of
cache space. For example, some blocks are hot while the
other blocks are cold in a segment. Then this segment is in
the front of LRU queue and its cold blocks will never be
replaced.

We introduce an new LRU algorithm based on the least
write amplification for MEM buffer as shown in Figure 6.
We construct an LRU circular linked list of blocks. An
incoming write is added to the head of the circular list.
During a miss, the victim block is chosen within a predefined
window starting from the tail of the circular link. The victim
block should belong to the same segment as MB13. MB15
and MB12 belong to the same segment (segment1) as MB13.
Because replaced blocks often belong to the same segment,
which limits the rewrites to one segment, this algorithm not
only maintains the most hot data and discards the cold data,
but also reduces write amplification.

III. DISCUSSION

In this section, we discuss some key issues existing in
our HWSR and S-block architecture which is a typical
example of conventional shingled recording disk based on
circular log. Those key issues have a significant impact on
the performance of shingled recording disk.
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A. Write Amplification

The SSD and MEM works similar to a two-level hier-
archical cache to the shingled disk. Upon a miss, it leads
to prefetching data from the disk or defraging data to disk.
Compared with the S-block architecture [11] that collects
garbage when the request is on a miss, our HWSR system
only rewrites one segment at most. The average number of
valid Sblocks that have to be immigrated to the head in
garbage collection is 𝜔 as shown in Table I. Note that the
Sblock in S-block architecture is the same size as segment in
HWSR, so we replace Sblock with segment for convenience.
For our HWSR, we also need to rewrite some blocks in
defrag operation when the request is a miss. However, the
amount of rewrite data of HWSR is limited to the size of
one segment when defrag occurs. As a result, the ratio of
the average data immigration of S-block to HWSR is 𝜔.

Assume the number of segments in a region is n, and the
spare segments in each region is 𝛽*n. The spare segments
are used to reduce 𝜔 in S-block architecture. Generally,
𝛽 ∕= 0. If 𝛽 = 0, the entire segments of circular log are
immigrated to the head to free one invalid S-block when
there are only one invalid segment in the head of circular
log. Write amplification is the total number of segments in
circular log. Because each incoming update write is added to
the head of circular log and the head segment are frequently
updated, which means that in most cases invalid segments
are mostly concentrated to the head of circular log and
almost all segments have to be immigrated to the head in
order to free the invalid head segment. Approximately, 𝜔
can be considered as 1

𝛽 , because we write 𝛽*n to a region
and it will cause approximately n Sblocks immigrated when
the whole segment is filled with n Sblocks. Note that there
are always 𝛽*n invalid segments (spare segments) in each
region. Moving all segments in circular log can release at
least 𝛽*n invalid segments. We neglect the cases that there
are some invalid segments in the tail or near the tail of
circular log. This is reasonable because after a long term of
writing, there are less invalid segments in the tail of circular
log in the whole process.

Figure 7 compares the average segment immigration of
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S-block architecture with different spare capacity rate and
the average segment rewritten of HWSR. As 𝛽 increases,
the average segment immigration decreases.

B. Disk Utilization

As discussed previously, we assume that each region
consists of n segments. The guard band and internal guard
band both contains 𝜅 tracks, where 𝜅 is the number of
tracks which are overlapped with the adjacent track. There
are internal guard bands in circular log-based data layout.
Internal guard band is used to prevent the written data blocks
from affecting existing blocks in each region. There are 𝛽*n
spare segments that aim to mitigate the data immigration in
S-block architecture. The region utilization rate of HWSR is
1 because HWSR doesn’t need any spare segments in each
region. The region utilization rate of S-block architecture
is 𝑆𝑟𝑒𝑔−𝛽∗𝑆𝑟𝑒𝑔

𝑆𝑟𝑒𝑔
. The region utilization ratio of HWSR to S-

lock architecture is 1
1−𝛽 . We also take the guard band and

internal guard band into consideration.
The track utilization rate of S-block architecture which

uses traditional shingled recording is 𝑆𝑟𝑒𝑔

𝑆𝑟𝑒𝑔+2𝜅 . The track

utilization of HWSR is 𝑆𝑟𝑒𝑔

𝑆𝑟𝑒𝑔+𝜅/2 . The track utilization

ratio of HWSR to S-block architecture is 2∗(𝑆𝑟𝑒𝑔+2∗𝜅)
2∗𝑆𝑟𝑒𝑔+𝜅 . So

the disk utilization ratio of HWSR system to S-block is
2∗(𝑆𝑟𝑒𝑔+2∗𝜅)

(2∗𝑆𝑟𝑒𝑔+𝜅)(1−𝛽) .
Figure 8(a) compares the disk utilization ratio of HWSR

to S-block when 𝜅 is eight and the region size varies. We
observe that the disk utilization of HWSR is 2.65 × of S-
block architecture when 𝑆𝑟𝑒𝑔 is 10 and 𝛽 is 0.3. Figure 8(b)
studies the disk utilization ratio when 𝛽 is fixed to 0.3. The
H-S ratio has a maximum value of 2.65 and it decreases
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gradually as 𝑆𝑟𝑒𝑔 increases. The H-S ratio increases if 𝜅
and 𝛽 increases. As shown in Figure 8, disk utilization rate
of HWSR doubles the traditional circular log-based shingled
recording disk. As a result, HWSR improves the capacity of
a shingled writing disk by around 2 times.

C. Metadata

HWSR directly uses address translation and it doesn’t
require a mapping table to map a logical address to it
physical location on the disk. The data layout based on
circular log requires a translation table to map LBAs to
PBAs because their mapping information are not fixed.
A large translation table creates significant overhead in a
circular log-based shingled disk. According to Ref. [16],
1TB shingled writing disk requires over 24GB space to store
the metadata, which will certain require a large memory
space. In addition, data lookup in such a large table is often
very slow.

D. Design issues

Higher average seek time is a key problem in our HWSR
because of segmentation along the radical direction. Sequen-
tial data blocks are distributed on three adjacent tracks as
shown in Figure 4. If the required data is located on mul-
tiple blocks, the traditional sequential data layout shingled
recording has less seek time than the data layout based on
segmentation. In our design, we make a tradeoff between
write application and average seek time. There are three
reasons. (1) Based on the observation in our experiments,
the writes latency contributes to a large proportion of total
latency, and the segment-based data layout optimizes the
write performance due to lower write amplification. (2)
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Table II
HARDWARE DETAILS

Hardware details 

OS Linux version 2.6.35.6-45.fc14.x86_64 

CPU Intel (R) Xeon (R) CPU E5506 @2.13GHz 

Memory Hynix HMT151R7AFP4C-H9 DDR3 REG 4GB PC3-10600R 2R*4 

Hard disk Western Digital RE4 1TB WD1003FBYX 3.5” SATA/64MB Cache 3Gb/s 7200rpm  

SSD Intel SSDSA2M080G2GC 2.5” 3Gb/s SATA SSD 80G 

Experiment parameters 

Hard disk 821GB 

SSD 200MB 

MEM 100MB 

Table III
PARAMETER LIST

Trace W / R 
Average request 

size (KB) 
Unique data 

accessed (GB) 
Total request 

data (GB) 
Total request 

number (10000) 
Financial1 5.3033 3.61 0.53 18.35 533.5 
Financial2 0.2779 2.65 0.47 9.36 369.92 

Proj 0.007 23.46 123.81 144.64 646.56 
Hm 2.0557 7.99 2.71 30.44 399.33 

Rsrch 7.7725 8.93 0.51 12.21 143.37 
Src 1.724 56.26 21.19 62.07 115.69 
Stg 2.0587 11.58 6.45 22.42 203.09 
Ts 2.7448 9 1.29 15.47 180.17 

Web 0.6727 14.99 7.34 29.02 202.99 
Mds 0.0177 56.8 85.23 88.71 163.77 
Prn 0.1698 19.8 95.51 212.14 1123.34 

Wdev 2.5973 9.08 0.65 9.9 114.33 

HWSR use SSD to cache reads, which effectively reduces
the number of random reads to disk, resulting in better
read performance. (3) Compared with circular log-based data
layout, which moves valid blocks from the tail to the head
during garbage collection and thus generate a lot migration
data traffic, HWSR exhibits stable performance even under
the workload with a lot random access as shown in the
following section.

IV. EXPERIMENTAL EVALUATION

We implemented a prototype of HWSR. This shingled
disk is emulated by using a conventional disk. The capacity
of each track on the disk is 8×1024 sectors (512 bytes in one
sector). We constructed S-block architecture by organizing
data as circular log. Except the data layout of shingled disk,
the parameters of buffer or cache of S-block architecture is
the same as HWSR. The hardware details and our experi-
ment parameters are shown in Table II. We directly replay 12
different I/O traces in our prototype implementation. The key
characteristics of these traces are summarized in Table III.
The first two traces (Financial1 and Financial2) are collected
from OLPT applications which run at two large financial
institutions [19]. The other ten traces are collected from
enterprise servers at Microsoft Research Cambridge [20].

A. Performance of random Access

In our experiments, a block has 64 sectors and a segment
has 20 tracks. In addition, we used a traditional disk without
shingled tracks in our prototype. The traditional disk also
has a MEM buffer which has the same size in S-block
architecture and HWSR.

We show the response time of each 10,000 requests
for HWSR and S-block in Figure 9(a). The first 80,000
requests of Financial1 exhibit a very low response time
and a high performance, until the MEM buffer is full and
defrag operations start, the performance drops dramatically
as shown by red curve of S-block.

Figure 9(b) plots the number of Sblocks immigrated or
segments rewritten per 10,000 requests on Financial1. The
first 80,000 requests have a small number of Sblocks immi-
grated. Note that the average number of segment rewritten
of HWSR is only 1. The sharp pattern of the curve of S-
block architecture in Figure 9(a) is similar to Figure 9(b).
This indicates that as more data is immigrated, the system
performance is degraded more severely. Compared with S-
block, the green curve of HWSR exhibits a stable and
superior performance.

Traditional magnetic disk has the lowest response time as
shown by blue curve. The performance of HWSR almost
reaches the performance of magnetic disk. Figure 9(c) plot
the cumulative distribution of response time with Financial1.
About 90% response time (per 10,000 requests) of HWSR
is less than 5 seconds while about 90% response time of
S-block architecture is around 27 seconds. Figure 10 plots
the response time, average number of Sblock immigration or
segment rewritten and cumulative distribution of Financial2.
S-block architecture has a lower data immigration and
exhibits good performance until it compete the first 490,000
requests. It performs data immigration later than Financial1.

And with a read intensive workload of Financial2, the
performance of HWSR exceeds magnetic disk because H-
WSR uses SSD cache while magnetic disk doesn’t, which
mean that combined with SSD, HWSR can almost reach the
performance of a magnetic disk with no shingled recording.

B. Block size and segment size

We study the performance impact of block size and
segment size in both HWSR and S-block. Figure 11 plots
the read, write and total average response time with different
block sizes. Solid line represents the average response time
for both reads and writes. In financial1, the average response
time of HWSR and S-block is 0.3ms and1.8ms respectively
when the block size is 64 sectors. When the block size is
reduced to 16 sectors, the average response time of HWSR
and S-block increase to 0.8ms and 5.7ms respectively (see
Figure 11(a)). We observe that when the block size is
increased, the performance of HWSR and S-block become
better in the workload of Financial1, which is opposite to
Financial2. Comparing the two different traces, we observe
that Financial 1 has more writes and larger request size.
A larger block can capture more requests in Financial1
and accordingly less requests are separated to different
blocks. For HWSR, the average seek time is reduced because
less requested data are divided into different blocks which
are mostly located on two adjacent tracks. For S-block
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architecture, the buffer hit rate is higher and thus less data
immigrates occur.

HWSR exhibits a slightly lower performance on reads
compared with S-block architecture as shown in Figure 11.
The average read response time is only about 0.1ms more
than S-block architecture, because some request data is on
two blocks and read two blocks on adjacent tracks cost
more seek time than reading two sequential blocks on one
track. For financial2, the average write time of S-block
dramatically increase when the block size increases. The
maximum average time of S-block is 1.7ms when the block
size is 64 sectors.

HWSR exhibits a stable performance under these two
workloads. The write latency accounts for most proportions
of the total latency, thus HWSR often achieves a better
performance than S-block due to our write optimization.
When the block size is 16 sectors, S-block architecture is
slightly better than than HWSR. As the block size decreases,
more blocks can be cached in MEM cache and thus less
data immigrations occurs in S-block architecture under the
Financial2 workload. This shows that the performance of S-
block is sensitive to the change of block size. HWSR exhibit
a stable performance under different block sizes.

Segment size has a slight impact on the performance of
HWSR as shown in Figure 12(a). The response time of S-
block decreases when the region size gets bigger as shown
in Figure 12(b) while the response time of HWSR increases.
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Figure 11. average response time with different block size

C. workload history impact

Figure 13 shows the average response time of HWSR sys-
tem and S-block architecture with 𝛽 = 0.1 on ten Microsoft
traces. The size of MEM buffer and SSD cache we used
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with Microsoft traces is same as Financial1 and Financial2.
As shown in Figure 13, compared with S-block architecture,
HWSR has a significant lower write average response time
and total response time with most traces except web and
mds because the read hit rate is very low. The average write
response time of S-block is around twice HWSR with proj
and prn. But the average read response time of HWSR is a
little bit higher than S-block architecture.

V. RELATED WORK

Recently many researches work on high density recording
technology.

One approach of improving the areal density of mag-
netic disks is to change recording medium to avoid the
superparamagnetic limit. Examples include Bit-patterned
magnetic recording (BPMR), Heat-assisted magnetic record-
ing (HAMR), and microwave assisted magnetic recording
(MAMR). BPMR stores each recording bit in a fabricated
magnetic island of around 10nm [13] [6] to extend the cur-
rent superparamagnetic limit. HAMR softens the magnetic
material to make it easier to magnetize [4]. MAMR [12]

[8] make the thermally stable and hard-to-write media more
writable by using microwaves focusing on small areas. All
above technologies dramatically change the structure of
underlying and mechanical design and disk head sensors of
existing magnetic disk, which might introduce significant
costs to disk manufacture.

A different approach to achieve high density is shingled
recording technology that partially overlaps tracks to narrow
the track width. Cross and Montemorra [15] demonstrated
that by using a conventional disk head, the areal density
of shingled recording disk can exceed 800Gb/in2. And with
the stronger write field, the areal density of shingled write
disk can be increased to around 2Tb/in2 [7] [3]. Miura [14]
pointed out that high density can be attained when the reader
is accurately placed on the center line of data tracks by
analyzing different heads and media and estimating the max-
imum track density of shingled writing. Combined with 2-D
readback and advanced signal processing, which referred to
as 2-D magnetic recording (TDMR), can achieve an areal
density of 10 Tb/in2 [10] [6]. Reading from narrower tracks
by using a wide reader causes inter-track interference (ITI).
To address this problem, Ozaki et al. [18] proposed an ITI
canceller to reproduce waveform from a shingled recording
disk.

Shingled disks have attracted a lot of attentions due to
its density improvement by at least 2T/in2 [3] and its cost-
effectiveness since it does not require to rework the storage
media. But its inferiors performance, particularly for random
writes, limit its application scope to minimal update work-
loads, such as archival workloads. Currently most existing
research works tackle this problem by designing new data
layout for shingled disks. Amer et al. [12] introduced a data
layout of bands, with each band organized as circular log.
All logs at each level store different data and take different
clean strategies. Cassuto et al. [11] constructed an indirect
system which contains two data layout methods. The first
one is a disk cache based architecture that caches random
writes and rewrites to native region through set associative
mapping. The second one is S-block architecture which
organizes data as a circular log. Park et al. [16] proposed
H-SWD to reduce the garbage collection of circular log by
using a hot data identification mechanism.

It is mentioned that SSD and NVRAM can be embedded
as cache for delaying updates to shingled recording disks and
reduce data rewritten [12] [6] [2]. Gibson and Ganger [1]
proposed a shingled translation layer (STL) in an embedded
controller to mask the random write restriction and integrat-
ed shingled writing into magnetic disks.

VI. CONCLUSIONS

In this paper, we presented a hybrid wave-like shingled
recording disk system (HWSR) to address the problem of
slow performance for small writes on shingled disks. We
design the new data layout that can not only double the disk
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space utilization of conventional circular log-based shingled
disks, but also effectively limit the write amplification to
a small segment. Our hybrid system combines shingled
disks with fast memory that works as buffer for writes and
SSD that works as cache for reads. We design a new LRU
algorithm based on least write amplification to optimize the
overall I/O performance. Experimental evaluation on our
prototype evaluation under a variety of I/O intensive work-
loads show that HWSR system improves the performance
of small writes significantly. Results show that our design is
not sensitive to many design parameters such as the block
size and the segment size. While our new data layout slightly
increase the average seek time as sequential data blocks are
stored on adjacent tracks, such degradation can be effectively
hide by the memory buffer and the SSD cache.
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