
Temporal Characterization of SPEC CPU2006
Workloads: Analysis and Synthesis

Qiang Zou
School of Computer Science

Southwest University
Chongqing 400715 China

qzou@swu.edu.cn

Jianhui Yue
Dept. of Elec. & Computer

University of Maine
Orono, ME 04469 USA

jyue@eece.maine.edu

Bruce Segee
Dept. of Elec. & Computer

University of Maine
Orono, ME 04469 USA
segee@eece.maine.edu

Yifeng Zhu
Dept. of Elec. & Computer

University of Maine
Orono, ME 04469 USA

zhu@eece.maine.edu

Abstract—SPEC CPU2006 benchmark suite has been exten-
sively studied, with efforts focusing on the requirement under-
standing of memory workloads from the SPEC CPU2006 suite.
However, characterizing SPEC CPU2006 workloads from a time
dependence perspective has attracted little attention. This paper
studies the auto-correlation functions of the arrival intervals of
memory accesses in all SPEC CPU2006 traces, and concludes
that correlations in memory inter-access times are inconsistent,
either with evident correlations or with little and no correlation.
Different with the studies focused on the prior suites, we present
that self-similarity exists only in a small number of SPEC2006
workloads. In addition, we implement a memory access series
generator in which the inputs are the measured properties of the
available trace data. Experimental results show that this model
can more accurately emulate the complex access arrival behaviors
of real memory systems than the conventional self-similar and
independent identically distributed methods, particularly the
heavy-tail characteristics under both Gaussian and non-Gaussian
workloads.

I. INTRODUCTION

Accurately characterizing memory access behavior in
computation-intensive workloads is essential to understanding
the performance of the memory system. Researchers in both
academia and industry have developed various benchmark
suites, such as SPEC CPU benchmarks [1], [2], to test and
evaluate the memory systems. However, on the one hand, for
many benchmarks, it takes weeks or even months to complete
a single run on cycle accurate execution-driven simulators
such as M5 [3], and SimpleScalar [4]. On the other hand,
a memory system has a large design space to be explored,
such as transition control between different power states.
Accordingly it becomes increasingly more challenging to run
benchmarks multiple times in order to obtain comprehensive
and fair evaluation. Synthetic benchmarks provide an improved
methodology to speed up the evaluation process, and one of
the most critical issues in designing a synthetic benchmark is
to accurately characterize the memory access behavior.

In this paper, from a temporal dependence perspective,
we analyze the correlations of inter-access times in twenty
nine sets of memory traces collected in the SPEC CPU2006
benchmark suites, and show the necessity to further study the
self-similarity in the minor workloads with the evident correla-
tion of memory accesses. However, neither conventional self-
similar nor independent identically distributed (IID) methods

seem to be appropriate to characterize memory accesses in
all SPEC CPU2006 workloads. Thus, based on the alpha-
stable process, we propose and evaluate a statistical model
to faithfully synthesize memory workloads. To the best of our
knowledge, little research work conducted on this topic has
been reported in the literature.

This paper makes the following three contributions:
• Our study shows that there are strong or evident corre-

lations between inter-access times in a small number of
SPEC2006 memory workloads. This suggests that further
study of self-similarity is needed to deep understand the
statistical phenomena of memory accesses, and rigorous
statistical evidences are then presented to show that
memory accesses exhibit the self-similar property.

• Correlation study shows that there is only slight and
even no correlation between inter-access times in most
SPEC2006 workloads. So, conventional self-similar mod-
els seem to be inappropriate to characterize memory
accesses in these workloads.

• We propose a mathematical model based on the α-
stable process to accurately synthesize the memory access
series. Experimental results show that the synthetic traces
generated by our model can more faithfully emulate the
memory access behaviors than the compared conventional
IID and self-similar methods.

The rest of this paper is organized as follows. Section II
gives an overview of the SPEC2006 memory traces studied in
this paper and summarizes related research works. Section III
studies the correlation of inter-access times and discusses the
necessity of studying self-similarity in some SPEC2006 work-
loads. Section IV presents the rigorous statistical evidence of
self-similarity in SPEC2006 workloads. Section V proposes a
statistical model to synthesize the memory access series and
compares the workloads synthesized by the proposed model
with real traces and other synthetic workloads. Section VI
concludes this paper.

II. BACKGROUND AND MOTIVATION

A. SPEC CPU2006 Benchmark Suites

SPEC CPU2006 are the standardized computation-intensive
benchmark suites widely used in both academia and industry to

11978-1-4673-4883-6/12/$31.00 ©2012 IEEE

TABLE I
PROCESSOR PARAMETERS

Parameter Value
Frequency 2 GHz
Core Alpha-like out-order
L1 I-cache 32 KB
L1 D-cache 32 KB
L2 Cache 2 MB
L2 Cache Line Size 64 Bytes

comprehensively and fairly evaluate the performance of CPUs,
memory systems, and compiler techniques. These benchmarks
are developed by using platform-neutral C/C++ or Fortran
languages and thus they can run on a wide variety of computer
architectures.

SPEC2006 benchmark suites include integer and floating-
point benchmarks. Integer benchmark consists of twelve ap-
plications, i.e., perlbench, bzip2, astar, mcf, gobmk, hm-
mer, sjeng, xalancbmk, h264ref, gcc, libquantum and om-
netpp. Floating-point benchmark includes seventeen applica-
tions, i.e., cactusADM, gromacs, namd, povray, bwaves, cal-
culix, gamess, GemsFDTD, lbm, leslie3d, milc, soplex, dealll,
sphinx3, tonto, wrf and zeusmp. The detailed description of
each application is given in Ref. [5].

We have run all SPEC CPU2006 applications and collected
the memory access trace of the SPEC2006 benchmark suites
using an execution-driven processor simulator called M5 [3].
We have integrated a cycle-level DRAM simulator named
DRAMsim [6] into M5 in order to accurately simulate the
memory system. Table I and II show the parameters of
the processor and Micron DDR2 memory [7] used in our
simulation experiments, respectively.

In order to evaluate the performance of computer’s memory
system, some prior reaserch efforts have been focused on
characterizing memory workloads [8], [9], including SPLASH-
2 workloads on shared memory multiprocessors systems [10]
and SPEC CPU benchmarks [11]. On the one hand, the
presence of self-similarity in memory workloads had been
presented, and a self-similar generator of memory references
had been used to artificially generate request memory traces
ten year ago in Ref. [10]. Li [11] had also studied the scaling
properties of SPEC2000 integer benchmarks, and proposed
an on-line program scaling estimator to capture the execution
characteristics of large program in-flight. On the other hand,
SPEC CPU2006 benchmark suites tend to be much more
compute-intensive than SEPC CPU2000. This observation
motivates us to revisit SPEC2006 workloads and consider
the following key question: is it also self-similar for memory
access behaviors in SPEC2006 workloads and appropriate to
use a self-similar method to characterize memory accesses in
memory-intensive SPEC2006 applications?

B. Related Work

Analysis of memory system access characteristics and
patterns in various benchmarks such as commercial work-
loads [12], desktop applications [13], multimedia applica-
tions [14] and XQuery applications [15], has received con-

TABLE II
DRAM PARAMETERS

Parameter Value
Frequency 667 MHz
tRP: Row Precharge time 12 ns
tRCD: Row active to row active delay 12 ns
tRAS : Row Activation time 27 ns
tCAS: Delay to access a certain column 12 ns
#Ranks per DIMM 2
Rank capacity 256 MB
#Banks per Rank 4
#Rows per Bank 16,384
#Columns per Row 1,024
Channel Width 8 Bytes
Row Buffer Management Policy close page
Memory Scheduling Algorithm FCFS

siderable attention in the past few years. Several studies have
investigated the basic characteristics of memory accesses,
such as cache miss rates, memory intensity, and impacts of
page size, in SPEC CPU benchmarks [16], [17], [18], [19].
Eeckhout et al [20] model the access sequence as a Statistical
Flow Graph (SFG), in which basic blocks and their mutual
transition probability are statistically identified. Joshi et al [21]
and Bell et al [22] model memory accesses as a mixed
sequence of constant and variable strides. Li [11] studies
the scaling properties of SPEC2000 integer benchmarks and
proposes an method to estimate the short-term and long-
term execution characteristics of large programs. Sahuquillo
et al [10] studies the self-similar properties of SPLASH-2
benchmarks, and constructs a self-similar memory reference
generator which can flexibly makes a wide variety of workload
traces.

The characteristics of self-similarity in data traffic was
initially found in computer network traffic [23]. Since then
extensively research work have been done to investigate this
important nature in computer and network systems, such
as the variable-bit-rate(VBR) video traffics [24], LAN [25],
WAN [26] and web [27] traffics, file system [28] and disk-
level [29], [30], [31], [32], [33] workloads.

Intensive research work has been done to study the charac-
teristics of SPEC2006 workloads [34], [35], [19], [36], [17].
For example, based on microarchitecture-independent metrics
such as the memory level parallelism (MLP), Ganesan et
al [35] propose to extract the MLP from the real benchmark
to estimate memory access burstiness, and build a model of
the burstiness of memory accesses under the workloads of
SPEC CPU2006 by considering the variations of the time
intervals between consecutive burstiness of on-chip cache
misses. However, no research has been done to study and
examine the presence of self-similarity of memory accesses
in SPEC CPU2006 workloads, to the best of our knowledge.

While self-similarity has been explored in the prior
suite [11], in light of the more intensive burstiness in the SPEC
CPU2006 workloads, this paper will examine the appropriate-
ness of using the self-similarity to characterize memory access
behaviors in the following section.

12

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

sjeng
perlbench
hmmer
h264ref
gobmk
bzip2

(a) SPECint2006 applications

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

astar
xalancbmk
mcf
libquantum
gcc
omnetpp

(b) SPECint2006 applications

0 500 1000 1500 2000 2500
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

cactusADM
gromacs
namd
povray
bwaves
calculix
gamess
GemsFDTD

(c) SPECfp2006 applications

0 500 1000 1500 2000 2500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

lbm
leslie3d
milc
soplex
dealll
sphinx3
tonto
wrf
zeusmp

(d) SPECfp2006 applications

Fig. 1. Auto-correlation functions (ACFs) of memory accesses for the SPECint2006 and SPECfp2006 applications, respectively.

III. CORRELATION STUDY

In order to identify the statistical characteristics and gain a
deep understanding of memory access behaviors, this section
focuses on studying the correlation of inter-access times in
memory access streams by using a widely used mathematical
tool, called autocorrelation functions (ACF). The detailed in-
troduction of this mathematical tool can be found in Ref. [37].

Given a set of observations X = (Xt : t = 1, 2, . . . , N),
the correlation coefficient at lag k is defined as

ck =
1

N − k

N−k∑

i=1

(Xi − X̄)(Xi+k − X̄) (1)

where X̄ is the expectation of the time series X . Then the
auto-correlation function ACF (k), with a lag of k, is defined
as

ACF (k) =
ck

c0
. (2)

If the correlation coefficient of inter-access times quickly
decreases to zero, it can be concluded that the memory
access traffic is expected to be smooth instead of bursty and
little or no correlations exist between the inter-access times.
In this case it is reasonable to model the inter-access time
as a sequence of random variables with independently and
identically distribution (IID). On the contrary, if the correlation
coefficient does not approach to zero quickly, then there exists

some degree of correlations between inter-access times and
such memory traffic is expected to be bursty instead of smooth.
As a result, the inter-access time cannot be modeled as a
simple IID random process and further study of auto-similarity
is then necessary in order to correctly model the memory
traffic.

In the following, we use auto-correlation functions (ACF)
to study the characteristics in inter-access times for both the
integer (SPECint2006) and floating-point (SPECfp2006) mem-
ory traces from a time dependence perspective. We present the
analytical results of memory accesses in Figure 1.

Figure 1(a) and (b) respectively plot the auto-correlation
coefficient of memory accesses for the studied integer bench-
marks as the lag parameter increases gradually from 0 to 2000.
As shown in Fig. 1(a)-(b), there are evident correlations for
the memory inter-access times in bzip2 and omnetpp. However,
there is only a slight correlation for the memory inter-access
times in sjeng, perlbench, hmmer, astar, xalancbmk, mcf,
gcc, and libquantum, but only for lag < 100. And there is
almost no correlation for the memory inter-access times in
both h264ref and gobmk. The above observations indicate that
it might be reasonable to further explore the existence of self-
similarity in the bzip2 and omnetpp workloads, but not for
the sjeng, perlbench, hmmer, astar, xalancbmk, mcf, gcc, and
libquantum workloads, especially for h264ref and gobmk.

In Fig. 1(c) and (d), we plot the auto-correlation coefficients

13

of memory inter-access times for the studied floating-point
traces, as a function of lag from 0 to 2000, respectively.
As shown in Fig. 1(c)-(d), there are strong correlations for
both the auto-correlation functions of the memory inter-access
times in both gromacs and povray. Especially, the correlations
between inter-access times in povray include not only the pos-
itive correlation coefficients, but also the negative correlation
coefficients. In addition, there are also evident correlations
for the memory inter-access times in cactusCDM, gamess and
lbm. However, as can be seen from Fig. 1(c)-(d), there is only a
weak correlation for memory inter-access times in the remain
floating-point memory traces, especially for GemsFDTD, and
sphinx3, almost no correlation. Therefore, these observations
suggest that the self-similar models seem to be a plausible
option to model memory accesses in gromacs, povray, cac-
tusCDM, gamess and lbm, but not for other memory workloads
represented in Fig. 1(c)-(d).

We conclude that, in all SPEC2006 integer and floating-
point memory traces studied, there is only slight and even
no correlation between inter-access times in most SPEC2006
benchmarks. So, different with the studies focused on the prior
suites in Ref. [11], [10], the independently and identically
distributed (IID) but not self-similar property might be ap-
propriate in characterizing memory access behaviors in these
workloads.

However, there are strong or evident correlations in a small
number of remaining traces, and it might still be appropriate to
use the self-similarity to characterize memory access behaviors
in these SPEC2006 workloads. This motivates us to examine
the existence of self-similarity in SPEC2006 memory work-
loads with a rigorous statistical way in the following section.

IV. SELF-SIMILARITY STUDY

In this section, we deploy Leland’s theory and analysis
techniques [23] to analyze and examine the existence of self-
similarity in studied memory traces.

A. Theory of self-similarity

The theory behind self-similar processes is briefly summa-
rized as follows. A more thorough description can be found
in [23], [26], [25]. This section only outlines the basics that
will be used in this paper. The description of self-similarity
given below closely follows Beran et al [24].

Let X = (Xt : t = 1, 2, . . .) be a covariance stationary
stochastic process with constant mean µ = E[Xt], and
finite variance σ2 = E[(Xt − µ)2]. For the process Xt, the
autocorrelation function ACF (k) depends only on k and is
defined as follows.

ACF (k) =
E[(Xt − µ)(Xt+k − µ)]

E[(Xt − µ)2]
, for k ≥ 0. (3)

The process Xt is said to exhibit self-similarity if

lim
k→∞

ACF (k)
k−β

= c < ∞, for 0 < β < 1. (4)

Note that, in the equation above, ACF (k) is non-sumable,
i.e.,

∑
k ACF (k) = ∞. We say that such an autocorrelation

function decays hyperbolically and the corresponding process
Xt is long-range dependent. In contrast, the autocorrelation
function of a Poisson process decays exponentially and is
sumable; that is

∑
k ACF (k) = 0. Such a process is said

to be short-range dependent.
The process Xt is said to be exactly second-order self-

similar with the Hurst parameter H (0.5 < H < 1), if Xt

has an autocorrelation function of the form

ACF (k) =
1
2
[(k + 1)2−β − 2k2−β + (k − 1)2−β]. (5)

For the process Xt, its m-order aggregated process X(m) is

given as X
(m)
k = 1

m

m−1∑
j=0

Xkm−j , for k ≥ 1. And

V ar(X(m)) = σ2m−β , for 0 < β < 1. (6)

The process Xt is said to be asymptotically second-order
self-similar with the Hurst parameter H (0.5 < H < 1), if

lim
m→∞

ACF (m)(k) = ACF (k) (7)

The Hurst parameter noted H measures the self-similar
degree of a time-series, and a value in the range (0.5, 1)
indicates self-similarity [38]. The larger the Hurst estimate
is, the higher the degree of auto-similar property is. Two
commonly used techniques are well-known graphical tools,
namely variance-time plots [23], [28] and R/S analysis (Pox
plot) [23], [28]. Both are widely used to judge whether self-
similarity exists in a data traffic or not, and give the faithful
examination results.

Variance-time plot. For an asymptotically second-order
self-similar process Xt, the relation between the variance of
the aggregated process X(m) and m is defined by Equation
(6). Taking the logarithm of both sides of the equation results
in the relation

log(V ar(X(m))) ≈ a− βlog(m), (8)

where a is a constant, and m →∞ [28]. Thus, we can plot the
curve of log(V ar(X(m))) versus log(m), for various values of
m. The curve will be a linear series of points with slope −β,
and using a linear regression method we can obtain an estimate
of β. Slopes between -1 and 0 correspond to Hurst parameters
H between 0.5 and 1. This plot is called a variance-time
plot, and we can calculate the Hurst parameter H using the
following equation

H = 1− β

2
. (9)

R/S-Analysis. R/S (rescaled adjusted range) analysis, also
called Pox plot. For a given set of observations (Xt : t =
1, 2, . . . , n) with a mean X̄(n), a variance S2(n), all obser-
vations are placed into K disjoint subsets, with each subset
containing an average of n/K observations. Then the rescaled
adjusted range statistic is given by [23]

R(n)
S(n)

=
1

S(n)
[max(0,W1,W2, . . . , Wn)

−min(0,W1,W2, . . . , Wn)]. (10)

14

 log10(d)

 lo
g1

0(
va

ri
an

ce
s)

 lo
g1

0(
va

ri
an

ce
s)

 lo
g1

0(
va

ri
an

ce
s)

 log10(m) log10(m) log10(m) log10(m)

 log10(m) log10(m) log10(m) log10(m)

 lo
g1

0(
r/

s)

 lo
g1

0(
r/

s)

 lo
g1

0(
r/

s)

 lo
g1

0(
r/

s)

 log10(d) log10(d) log10(d) log10(d)

 lo
g1

0(
r/

s)

 lo
g1

0(
r/

s)

 lo
g1

0(
r/

s)

 lo
g1

0(
r/

s)

 log10(d) log10(d) log10(d)

 lo
g1

0(
va

ri
an

ce
s)

 lo
g1

0(
va

ri
an

ce
s)

 lo
g1

0(
va

ri
an

ce
s)

 lo
g1

0(
va

ri
an

ce
s)

 lo
g1

0(
va

ri
an

ce
s)

(f1) SPECfp2006_gamess

(a1) SPECint2006_bzip2 (b1) SPECint2006_omnetpp (c1) SPECfp2006_cactusADM (d1) SPECfp2006_gromacs

(e1) SPECfp2006_povray (g1) SPECfp2006_calculix (h1) SPECfp2006_lbm

 Hurst Parameter Estimate:

0.757

 Hurst Parameter Estimate:

0.850

 Hurst Parameter Estimate:

0.723

 Hurst Parameter Estimate:

0.692

 Hurst Parameter Estimate:

0.863

 Hurst Parameter Estimate:

0.638

 Hurst Parameter Estimate:

0.569

 Hurst Parameter Estimate:

0.590

 Hurst Parameter Estimate:

0.639

 Hurst Parameter Estimate:

0.583

 Hurst Parameter Estimate:

0.593

 Hurst Parameter Estimate:

0.738

 Hurst Parameter Estimate:

0.569

 Hurst Parameter Estimate:

0.754

 Hurst Parameter Estimate:

0.608
 Hurst Parameter Estimate:

0.659

(a2) SPECint2006_bzip2 (b2) SPECint2006_omnetpp (c2) SPECfp2006_cactusADM (d2) SPECfp2006_gromacs

(e2) SPECfp2006_povray (f2) SPECfp2006_gamess (g2) SPECfp2006_calculix (h2) SPECfp2006_lbm

Fig. 2. Estimating the Hurst parameter: Plot (a1)-(h1) illustrate the variance-time plots, and Plot (a2)-(h2) figure the Pox plots for the integer and floating
point benchmarks, respectively.

where Wk = X1 + X2 + . . . + Xn − k · X̄(n), for k ≥ 1.
If Xt is self-similar or long-range dependent, then the

following equation holds

E[
R(n)
S(n)

] ≈ b · nH , (11)

where n → ∞, H is the Hurst parameter of Xt, and b is a
constant. This empirical law is known as the Hurst effect.

Taking the logarithm of both sides of the equation results
in the following relation

log(E[
R(n)
S(n)

]) ≈ H · log(n) + c, (12)

where c is a constant, and n → ∞. Thus we can plot
log(E[R(n)

S(n)]) versus log(n) for varying values of n, and obtain

the estimate of the Hurst parameter H . This plot should result
in a roughly linear graph with a slope equal to the Hurst
parameter H . Such a plot is known as a Pox plot. So a least-
squares linear fit can be used to estimate the Hurst parameter.

B. Measurement of Self-similarity
In this section, both the variance-time plot and R/S-analysis

methods are used to estimate the Hurst parameter of memory
access workloads, and mathematically demonstrate the pres-
ence of self-similar behavior in SPEC2006 workloads in which
there are strong or evident correlations between inter-access
times, i.e., bzip2, omnetpp, cactusADM, gromacs, povray,
gamess, calculix, and lbm.

We generate the variance-time plots and Pox plots for all
these traces above and then estimate their Hurst parameter

15

from the plots in Fig. 2. As shown in Fig. 2, Fig. 2(a1)-
(h1) show the variance-time plots of the studied integer and
floating-point SPEC2006 traces. All eight plots are linear and
they have the Hurst parameter of 0.757, 0.850, 0.723, 0.692,
0.863, 0.638, 0.569 and 0.590, respectively. The results show
that all Hurst parameters are significantly larger than 0.5. This
verifies the presence of self-similarity in these memory access
workloads.

Fig. 2(a2)-(h2) show the Pox plots of the same integer
and floating-point benchmarks studied in Fig. 2(a1)-(h1).
Following a least-square linear fit, the Hurst parameter is
estimated as 0.639, 0.583, 0.593, 0.738, 0.569, 0.754, 0.608
and 0.659, respectively. All estimated Hurst parameters are
also significantly larger than 0.5, indicating that the memory
access behavior in these studied memory workloads are self-
similar, which validates the results of Pox plot analysis and
increases the confidence of the estimation accuracy.

The difference between the two measured H estimates for
some integer memory traces (e.g., omnetpp and povray) is
large, especially for povray. On one hand, this observation
cannot be easily explained. Taking the R/S-Analysis estimate
of povray as an example, the low value of the R/S-Analysis
estimate (0.569) perhaps is a result of the existence of
some regular memory accesses in povray, which causes
the correlation coefficients of inter-access times fluctuate
regularly in Figure 1(a). On the other hand, the difference
verifies the common wisdom that there is no single estimator
that can provide a definitive answer [39], although both the
R/S-Analysis and variance-time plot methods can qualitatively
demonstrate the existence of self-similarity.

In summary, both the R/S-Analysis and variance-time plot
methods consistently confirm that the inter-access times of
all SPEC2006 workloads studied in this section exhibit self-
similarity. This indicates that the memory accesses in the
SPEC2006 workloads in which there are strong or evident
correlations between inter-access times tend to be very bursty,
instead of smooth. If a model is required to characterize
memory access arrivals, certainly a sequence of independently
and identically distributed random processes is inappropriate.

However, the correlation studies in Section III show that
a self-similar model might be inappropriate in characterizing
memory access behaviors in most SPEC2006 workloads in
which there is only slight and even no correlation between
inter-access times. This motivates us to propose a more
effective model to accurately characterize both the self-similar
and IID SPEC2006 workloads in the next section.

V. SYNTHESIZING MEMORY WORKLOAD BASED ON
ALPHA-STABLE PROCESS

Previous sections have shown that memory access behaviors
in SPEC2006 workloads exhibit independently and identically
distributed or self-similar. In this section we presents a math-
ematical model that can be used to generate synthetically
memory access workloads while preserving both the self-
similar and IID properties.

A. Why use the alpha-stable?

Many techniques have been proposed to synthesize self-
similar traffics [40], [41], [42], [28], [29], [38], [43], [44].
For example, two successful methods include Fractional Auto-
Regressive Integrated Moving Average (FARIMA) and Frac-
tional Brownian Motion (FBM). FARIMA [42] was first
used to generate synthetic Variable Bit Rate (VBR) video
traces. However, FARIMA is not intrinsically bursty. The FBM
model used by several researchers [40], [41], [44] is easy to
construct and can model the self-similarity under the Gaussian
condition, but not the non-Gaussian condition. However, it is
important to identify the Gaussian or non-Gaussian property
for a given workload [45]. Otherwise, the real degree of access
burstiness cannot be truthfully represented. In particular, when
we synthesize the memory workloads, we also need to take the
Gaussian property into considerations to avoid miss-presenting
the burstiness.

For both integer and floating-point benchmarks, we use the
normal quantile plots (QQ plots) to measure the Gaussian
property [44]. The QQ plots of the h264ref, xalancbmk, povray
and cactusADM traces, given in Figure 3, show that xalancbmk
and povray are Gaussian, but others are non-Gaussian. In
Figure 3(b) and (c), all of the scatter points corresponding to
an access event given in the traces evidently follow a straight
line, indicating that xalancbmk and povray are Gaussian. In
Figure 3(a) and (d), all of the scatter points evidently don’t
fall into a straight line but an increasing curve, indicating
that h264ref and cactusADM are non-Gaussian. The results
above show interestingly that some memory workloads have
the Gaussian property while other memory workloads do not.
Therefore, the model used to capture the access burstiness in
memory traces should be able to represent both the Gaussian
and non-Gaussian properties. The α-stable process can meet
this requirement well [45].

For a set of observations X = (Xt : t = 1, 2, . . . , n) with
a mean µ, a variance 2σ2, the process Xt is said to be an
alpha-stable process if its stable distribution is defined by its
characteristic function [46]:

E[eiθX] =
{

e−σα|θ|α(1−iβsignθ tan πα
2)+iµθ, α 6= 1

e−σ|θ|(1+iβsignθ ln |θ|)+iµθ, α = 1
(13)

where signθ is an indicative function, 0 < α ≤ 2, σ > 0,
−1 ≤ β ≤ 1, and µ ∈ R. The characteristic exponent α
measures the degree of burstiness in the memory workload,
and β represents the degree of heavy tail in the memory
workload.

If α = 2, then β tanπ = 0 and β is then meaningless. In this
case, it is the characteristic function of a Gaussian stochastic
process, i.e., E[eiθX] = exp{−σ2θ2 + iµθ}. Otherwise, it is
one class of non-Gaussian functions. Therefore, as the value of
parameter α changes, the α-stable process is able to flexibly
represent a stochastic process under both the Gaussian and
non-Gaussian conditions.

In this paper, we extend the α-stable model developed by
Ref. [45] to synthesize memory access series. Specifically,
the inputs in the α-stable model are the measured properties

16

−5 0 5
−10

0

10

20

30

40

50

60

70

80

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 S
am

pl
e

Tr
ac

e

(a) SPECint2006 (h264ref)

−4 −3 −2 −1 0 1 2 3 4
−5

0

5

10

15

20

25

30

35

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 S
am

pl
e

Tr
ac

e

(b) SPECint2006 (xalancbmk)

−4 −3 −2 −1 0 1 2 3 4
−40

−20

0

20

40

60

80

100

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 S
am

pl
e

Tr
ac

e

(c) SPECfp2006 (povray)

−5 0 5
−100

−50

0

50

100

150

Standard Normal Quantiles

Q
ua

nt
ile

s
of

 S
am

pl
e

Tr
ac

e

(d) SPECfp2006 (cactusADM)

Fig. 3. Examine the Gaussian property of SPECint2006 (e.g., h264ref and xalancbmk) and SPECfp2006 (e.g., povray and cactusADM) workloads through
QQ plots of sample data versus standard normal.

TABLE III
ESTIMATES OF THE PARAMETER OF α-STABLE DISTRIBUTION BASED ON

MAXIMUM-LIKELIHOOD ESTIMATE.

Trace Memory α-stable parameter
type benchmarks α β σ µ

perlbench 0.725 1.00 33.3 28.33
bzip2 1.195 1.00 26.41 36.70
astar 1.402 0.395 50.27 19.8
mcf 0.725 0.56 3.81 102.6

SPECint gobmk 0.6756 0.6967 18.42 49.34
2006 hmmer 2.00 � 31.97 51

sjeng 1.07 1.00 138.9 -110.6
xalancbmk 2.00 � 10.58 73.2

h264ref 0.7775 0.617 15.49 55.55
omnetpp 0.62 0.49 10.84 20.17

gcc 1.358 0.516 43.83 17.2
libquantum 0.757 0.6492 26.27 70.1
cactusADM 0.898 1.00 15.35 0.648

gromacs 0.89 1.00 42.35 22.1
namd 0.49 0.56 20.6 39.6

povray 2.00 � 15804.6 9925
bwaves 2.00 � 31.974 49
calculix 0.6647 0.7582 24.0058 55.7115
gamess 1.1879 1.00 1310.53 -397.19

SPECfp GemsFDTD 2.00 � 25.1599 15
2006 lbm 0.9025 1.00 4.0058 4.5759

leslie3d 0.8906 1.00 3.5988 3.2536
milc 2.00 � 30.4015 13

soplex 0.9536 0.7578 11.6194 91.2489
dealll 2.00 � 40.3606 69

sphinx3 2.00 � 92.2529 84
tonto 0.6972 0.6960 17.4512 44.9905
wrf 0.6362 0.7121 17.1087 52.2860

zeusmp 2.00 � 35.1190 54

of the available trace data, including the degree of self-
similarity in the memory workload, the degree of memory
access burstiness, the degree of heavy tail in the memory
workload. This model allows us to conveniently turn the
memory workload model for different environments.

B. Experiment results

For each benchmark, we compute the access arrival rate, i.e.,
the number of accesses per time unit. We place all access ar-
rival rates into a group of stochastic numbers. The maximum-
likelihood method is used to estimate the parameters of the
α-stable process corresponding to the memory traces needed
to be measured. Table III summarizes the estimates of α-
stable parameters. In Table III, each row includes the memory
trace name and the estimates of four α-stable parameters.
Due to the fact that the α-stable distribution degenerates to a
Gaussian stochastic process if α = 2, with mean value µ and
variance 2σ2, β will be meaningless. Accordingly in Table III,
a slash will fill in the place of β if α = 2. This measurement
results prove the validity of Figure 3(b) and (c) again, i.e., the
xalancbmk and povray workloads are Gaussian.

Our model can faithfully emulate the burstiness of memory
access activities in all studied benchmarks. We used the
alpha-stable, IID (Poisson and Normal) and self-similar FBM
methods to synthesize the IID SPEC2006 workloads, and
used the alpha-stable, self-similar (FBM and FARIMA), and
IID Poisson methods to synthesize the self-similar SPEC2006

17

−10 −5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory accesses per microsec.

Fr
ac

tio
n

of
 m

em
or

y
ac

ce
ss

es

Real trace
Proposed
Poisson
Norm
FBM

(a) SPECint2006 (perlbench)

−10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory accesses per microsec.

Fr
ac

tio
n

of
 m

em
or

y
ac

ce
ss

es

Real trace
Proposed
Poisson
Norm
FBM

(b) SPECint2006 (xalancbmk)

−15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory accesses per microsec.

Fr
ac

tio
n

of
 m

em
or

y
ac

ce
ss

es

Real trace
Proposed
Poisson
FBM
FARIMA

(c) SPECfp2006 (cactusADM)

−15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory accesses per microsec.

Fr
ac

tio
n

of
 m

em
or

y
ac

ce
ss

es

Real trace
Proposed
Poisson
FBM
FARIMA

(d) SPECfp2006 (gromacs)

Fig. 4. Comparison of CDFs between synthetic memory trace and real trace for SPECint2006 (e.g., the IID perlbench and xalancbmk) and SPECfp2006
(e.g., the self-similar cactusADM and gromacs).

workloads. The cumulative distribution functions (CDFs) are
used to intuitively compare the synthetic workloads through
both our proposed and other methods and trace results. The
cumulative distribution functions (CDFs) of the synthetic and
real traces for perlbench, xalancbmk, cactusADM and gro-
macs, are illustrated in Figure 4, the X-axis shows the logscale
of memory access numbers per microsecond, and the Y-axis
denotes the percentage of the arrival rates. A point (x; y) in
the cumulative distribution curve indicates that y% of access
rates are less than or equal to an arrival rate of x.

The memory workload synthesized by the α-stable model
very closely matches the real trace data, especially for IID
perlbench and self-similar gromacs, as shown in Figure 4.
It is evident that it is difficult for the conventional IID and
self-similar methods to accurately capture the memory access
burstiness which can be precisely characterized by the α-stable
method.

A quantitative approach to evaluate the improvement is to
analyze the error. A trimmed mean [47] is widely used to mea-
sure the central tendency and it is less sensitive to outliers that
are far away from the mean. A trimmed mean is calculated by
discarding a certain number of highest and lowest outliers and
then computing the average of the remaining measurements.
Since statistically a trimmed mean is usually more resilient and
robust than a simple average mean, we use the trimmed mean
to evaluate the matching degrees between each real workload

and its corresponding synthetic workload. The trimmed means
of errors and comparison results are summarized in Table IV.

As can be seen from Table IV, the IID SPEC2006 work-
loads are difficult to be faithfully characterized by self-similar
method, and vice versa. For almost all of traces studied in this
paper, the trimmed mean of error between the real workload
and the α-stable synthetic workload is minimum, with the
exception in which the trimmed mean of error between the
hmmer trace and the α-stable synthetic workload is 41.9,
with the increase of 15 percent of 36.4, the minimum error
between the hmmer trace and the Poisson synthetic workload.
Nevertheless, comparing with the matching degree of the
Poisson synthetic workload, the matching degree of the α-
stable synthetic workload for the hmmer workload is still
reasonably good.

As shown in Table IV, for IID xalancbmk and perlbench,
the trimmed means of errors between the real trace and the
synthesized workload through the Poisson method are 61.2,
and 365.3, respectively, the trimmed means of errors between
the real trace and the synthesized workload through the Nor-
mal method are 45.5, and 271.3, respectively, and the trimmed
means of errors between the real trace and the synthesized
workload through the α-stable model with these parameter
values in Table III are 29.5and 159, respectively. Accordingly,
our proposed model can reduce the trimmed mean of error of
the Poisson models by 52% and 56%, respectively, and reduce

18

TABLE IV
THE TRIMMED MEANS OF ERRORS FOR THE SPEC2006 BENCHMARKS.

SPECint2006 Poisson Proposed Norm FBM FARIMA
perlbench 365.28 158.99 271.32 384.5 �

bzip2 55.26 32.57 � 43.8 150.1
astar 30.2 19.7 36.05 42.9 �
mcf 87.13 72.59 80.94 104.26 �

gobmk 160.81 64.75 98.3 158.4 �
hmmer 36.4 41.9 52.7 84.1 �
sjeng 501.1 276.7 352.2 459.8 �

xalancbmk 61.23 29.52 45.5 78.3 �
h264ref 115.5 44.2 57.2 128.7 �
omnetpp 57.26 40.81 � 52.9 94.7

gcc 62.4 56.05 71.83 102.2 �
libquantum 20.7 14.4 23.8 57.1 �
SPECfp2006 Poisson Proposed Norm FBM FARIMA
cactusADM 64.11 35.72 � 47.5 85.3

gromacs 183.01 115.01 � 133.9 206.1
namd 392.42 158.02 162.3 478.8 �

povray 149.47 143.64 � 148.7 267.8
bwaves 63.5 54.1 58.6 97.3 �
calculix 262.4 243.6 302.5 403.7 �
gamess 97.3 52.7 � 71.5 185.2

GemsFDTD 72.9 62.8 68.1 114.4 �
lbm 80.5 51.6 � 61.8 129.5

leslie3d 82.4 75.1 78.6 128.4 �
milc 168.5 142.9 191.1 251.5 �

soplex 159.8 157.6 184.7 320.4 �
dealll 126.5 106.4 152.9 294.2 �

sphinx3 64.4 42.5 50.8 81.6 �
tonto 80.3 73.6 104.3 138.7 �
wrf 40.4 28.2 35.9 78.2 �

zeusmp 110.3 80.7 93.4 149.5 �

the trimmed mean of error of the Normal models by 35% and
41%, respectively. So, the synthetic IID workloads generated
by the α-stable method are more accurate than the synthetic
workloads synthesized by the IID methods. For cactusADM
and gromacs, the trimmed means of errors between the real
trace and the synthesized workload through the FBM method
are 47.5 and 133.9, respectively, the trimmed means of errors
between the real trace and the synthesized workload through
the FARIMA method are 85.3 and 206.1, respectively, and
the trimmed means of errors between the real trace and the
synthesized workload through the α-stable model with these
parameter values in Table III are 35.7 and 115, respectively.
Accordingly, our proposed model can reduce the trimmed
mean of error of the FBM models by 25% and 14%, respec-
tively, and reduce the trimmed mean of error of the FARIMA
models by 58% and 44%, respectively. So, the synthetic self-
similar workloads generated by the α-stable method are more
accurate than the synthetic workloads synthesized by the self-
similar methods.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we studied the self-similarity phenomena of
the memory access in the widely used SPEC 2006 benchmark
suites. We examine the auto-correlation functions of inter-
access times for all of memory access traces collected in
SPEC2006. Results show that there are evident correlations
between memory accesses in a small number of the inte-

ger and floating-point benchmarks. Therefore, a sequence of
independent and identically distributed random variables is
inappropriate to characterize and model memory accesses in
the minor SPEC2006 workloads. This motivates us to further
study the self-similarity in those SPEC2006 workloads. We
have used rigorous statistical techniques, including variance-
time plot and R/S analysis (Pox plot), to show the presence
of self-similar property and estimate the Hurst parameter of
memory access traces. In our experiments, all estimated Hurst
parameters are significantly larger than 0.5.

However, correlation studies show that correlations in mem-
ory inter-access times are inconsistent. While with evident
correlations between inter-access times in a small number
of SPEC2006 benchmarks, there is only slight and even no
correlation between inter-access times in most SPEC2006
workloads which cannot be accurately characterize by self-
similar model. As a result, when characterizing the memory
workloads or designing synthetic benchmark to evaluate a
memory system, the characteristics in SPEC2006 memory ac-
cesses, should be taken into consideration to correctly preserve
or emulate the access burstiness.

In addition, based on the α-stable process, we implement
a memory access series generator in which the inputs are
the measured properties of the available memory trace se-
ries. Experimental results show that this model can faithfully
capture the complex access arrival characteristics of memory
workloads, particularly the heavy-tail characteristics under
both Gaussian and non-Gaussian workloads.

One limitation of this study is that all traces studied ignore
the spatial information such as close/open bank model, address
mapping schemes. Our immediate future work is to collect
and study SPEC2006 memory traces in both the temporal and
spatial locality.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
helpful comments in reviewing this paper. This project is
supported by the US National Science Foundation (under
Grant No. CNS-1117032, EAR-1027809, IIS-091663, CCF-
0937988, CCF-0737583, CCF-0621493), the National Key
Technology R&D Program under Grant No. 2012CB318208,
the Fundamental Research Funds for the Central Universities
under Grant No. XDJK2012A006, and the Ph.D. Foundation
of Southwest University under Grants No. SWU111015.

REFERENCES

[1] “Spec cpu2006 published results,” http://www.spec.org/cpu2006/results.
[2] “Spec cpu2000 published results,” http://www.spec.org/cpu2000/results.
[3] N. L. Binkert, R. G. Dreslinski, and L. R. Hsu, “The m5 simulator:

Modeling networked systems,” IEEE Micro, vol. 26(4), pp. 52–60.
[4] D. C. Burger and T. M. Austin, The simplescalar tool set, version 2.0.

University of Wisconsin, Madison: Technical Report CS-TR-97-1342,
1997.

[5] J. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34(4), pp. 1–17, 2006.

[6] D. Wang, B. Ganesh, and N. Tuaycharoen, “Dramsim: a memory system
simulator,” SIGARCH Computer Architecture News, vol. 33(4), pp. 100–
107, 2005.

19

[7] M. Inc., “Micron 512mb: Ddr2 sdram data sheet,”
http://www.micron.com.

[8] Y. Kim, M. Papamichael, and O. Mutlu, “Thread cluster memory
scheduling: Exploiting differences in memory access behavior,” in
Proceedings of the MICRO-43, Atlanta, Georgia, December 2010.

[9] Y. Kim, D. Han, and O. Mutlu, “Atlas: A scalable and high-performance
scheduling algorithm for multiple memory controllers,” in Proceedings
of the HPCA-16, Bangalore, India, January 2010.

[10] J. Sahuquillo, T. Nachiondo, and J. Cano, “Self-similarity in splash-2
workloads on shared memory multiprocessors systems,” in Proceedings
of the 26th EUROMICRO, Maastricht, The Netherlands.

[11] T. Li, “Using a multiscale approach to characterize workload dynamics,”
in Proceedings of the Workshop on Modeling, Benchmarking and
Simulation (MoBS), Madison, Wisconsin, June 2005.

[12] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory system
characterization of commercial workloads,” in Proceedings of the 25th
International Symposium on Computer Architecture (ISCA), Barcelona,
Spain, June 1998.

[13] D. Lee, P. Crowley, J. Baer, and T. Anderson, “Execution characteristics
of desktop applications on windows nt,” in Proceedings of the 25th
International Symposium on Computer Architecture (ISCA), Barcelona,
Spain, June 1998.

[14] Z. Xu, S. Sohoni, R. Min, and Y. Hu, “An analysis of the cache perfor-
mance of multimedia applications,” IEEE Transactions on Computers,
vol. 53(1), pp. 20–38, 2004.

[15] H. Liu, R. Li, and Q. Gao, “Characterizing memory behavior of xml
data querying on cmp,” in Proceedings of the Workshop for Computer
Architecture Evaluation of Commerical Workloads (CAECW’08), in con-
junctions with the 14th International Symposium on High Performance
Computer Architecture (HPCA-14), Salt Lake City, Utah, 2008.

[16] J. Henning, “Spec cpu2000: Measuring cpu performance in the new
millennium,” IEEE Computer, vol. 33(7), pp. 22–27, 2000.

[17] A. Jaleel, “Memory characterization of workloads using instrumentation-
driven simulation–a pin-based memory characterization of the spec
cpu2000 and spec cpu2006 benchmark suites,” VSSAD Technical Report,
2007.

[18] S. Sair and M. Charney, “Memory behavior of the spec cpu2000
benchmark suite,” IBM Thomas J. Watson Research Center Technical
Report RC-21852, Oct. 2000.

[19] D. Ye, J. Ray, and D. Kaeli, “Characterization of file i/o activity for spec
cpu2006,” ACM SIGARCH Computer Architecture News, vol. 35(1), pp.
112–117, 2007.

[20] L. Eeckhout, R. H. B. Jr., and B. Stougie, “Control flow modeling in
statistical simulation for accurate and efficient processor design studies,”
in Proceedings of the 31st International Symposium on Computer
Architecture (ISCA), Munchen, Germany, June 2004.

[21] A. Joshi, L. Eeckhout, R. H. B. Jr., and L. K. John, “Performance
cloning: A technique for disseminating proprietary applications as
benchmarks,” in Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC’06), San Jose, California, 2006.

[22] R. H. B. Jr., R. R. Bhatia, and L. K. John, “Automatic testcase syn-
thesis and performance model validation for high performance powerpc
processors,” in Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’06), Austin,
Texas, March 2006.

[23] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
nature of ethernet traffic (extended version),” IEEE/ACM Transactions
on Networking, vol. 2, pp. 1–15, Feb. 1994.

[24] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, “Long-range
dependence in variable-bit-rate video traffic,” IEEE Transactions on
Communications, vol. 43, pp. 1566–1579, Mar. 1995.

[25] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-
similarity through high-variability: Statistical analysis of ethernet lan
traffic at the source level,” IEEE/ACM Transactions on Networking, vol.
5(1), pp. 71–86, 1997.

[26] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson
modeling,” IEEE/ACM Transactions on Networking, vol. 3(3), pp. 226–
244, 1995.

[27] M. E. Crovella and A. Bestavros, “Self-similarity in world wide web
traffic: evidence and possible causes,” IEEE/ACM Transactions on
Networking, vol. 5, pp. 835–846, 1997.

[28] S. Gribble, G. Manku, and E. Brewer, “Self-similarity in high-level file
systems: Measurement and applications,” in Proceedings of the Joint In-

ternational Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS/Performance98), Madison, Wisconsin, June 1998.

[29] M. Gomez and V. Santonja, “Self-similarity in i/o workload: Analysis
and modeling,” in Proceedings of the 1st IEEE International Workshop
on Workload Characterization (WWC’98), Dallas, Texas, 1998.

[30] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Characteri-
zation of storage workload traces from production windows servers,”
in Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC’08), Seattle, WA, September 2008.

[31] A. Riska and E. Riedel, “Disk drive level workload characterization,” in
Proceedings of the 2006 USENIX Annual Technical Conference, Boston,
MA, June 2006.

[32] B. Hong and T. Madhyastha, “The relevance of long-range dependence
in disk traffic and implications for trace synthesis,” in Proceedings
of the IEEE Conference on Mass Storage Systems and Technologies
(MSST’05), Monterey, California, April 2005.

[33] A. Riska and E. Riedel, “Long-range dependence at the disk drive level,”
in Proceedings of the Third International Conference on the Quantitative
Evaluation of Systems (QEST), University of California, Riverside, CA,
September 2006.

[34] J. Lin, Y. Chen, and W. Li, “Memory characterization of spec cpu2006
benchmark suite,” in Proceedings of the Workshop for Computer Ar-
chitecture Evaluation of Commerical Workloads (CAECW’08), in con-
junctions with the 14th International Symposium on High Performance
Computer Architecture (HPCA-14), Salt Lake City, Utah, 2008.

[35] K. Ganesan, J. Jo, and L. K. John, “Synthesizing memory-level par-
allelism aware miniature clones for spec cpu2006 and implantbench
workloads,” in Proceedings of the 2010 International Symposium on
Performance Analysis of Systems and Software (ISPASS), White Plains,
NY, March 2010.

[36] W. Korn and M. S. Chang, “Spec cpu2006 sensitivity to memory page
sizes,” ACM SIGARCH newsletter, Computer Architecture News, March
2007.

[37] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Y. Zhang, and
S. Nagar, “Synthesizing representative i/o workloads for tpc-h,” in
Proceedings of the Tenth International Symposium on High Performance
Computer Architecture (HPCA-10), Madrid, Spain, February 2004.

[38] M. Gomez and V. Santonja, “Analysis of self-similarity in i/o workload
using structural modeling,” in Proceedings of the 8th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), College Park, Maryland, Oc-
tober 1999.

[39] T. Karagiannis, M. Faloutsos, and R. Riedi, “Long-range dependence:
Now you see it, now you don’t!” in Proceedings of the GLOBECOM,
Taipei, Taiwan.

[40] Norros, “On the use of fractional brownian motion in the theory of
connectionless networks,” IEEE Journal on Selected Areas in Commu-
nications (JSAC), vol. 15, pp. 200–208, 1997.

[41] Z. Kurmas, K. Keeton, and K. Mackenzie, “Synthesizing representa-
tive i/o workloads using iterative distillation,” in Proceedings of the
11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS),
Orlando, Florida, October 2003.

[42] M. W. Garrett and W. Willinger, “Analysis, modeling and generation of
self-similar vbr video traffic,” in Proceedings of the ACM SIGCOMM’94
Conference on Communications Architectures, Protocols and Applica-
tions, London, UK, September 1994.

[43] M. Wang, T. Madhyastha, and et al., “Data mining meets performance
evaluation: Fast algorithms for modeling bursty traffic,” in Proceedings
of the 16th International Conference on Data Engineering (ICDE), San
Jose, California, February 2002.

[44] C. Stathis and B. Maglaris, “Modelling the self-similar behaviour of
network traffic,” Computer Networks, vol. 34, pp. 37–47, 2000.

[45] Q. Zou, D. Feng, Y. Zhu, and H. Jiang, “A novel and generic model
for synthesizing disk i/o traffic based on the alpha-stable process,” in
Proceedings of the 16th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Baltimore, Maryland, Septem-
ber 2008.

[46] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variance. New York: Chapman
and Hall, 1994.

[47] Z. J. Liu and et al., Computational Science Technique and Matlab.
Beijing, P. R. China: Science Press, 2001.

20

