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Abstract— Phase-change Memory (PCM) is a promising alter-
native or complement to DRAM for its non-volatility, scalable
bit density, and fast read performance. Nevertheless, PCM has
two serious challenges including extraordinarily slow write speed
and less-than-desirable write endurance. While recent research
has improved the write endurance significantly, slow write speed
become a more prominent issue and prevents PCM from being
widely used in real systems.

To improve write speed, this paper proposes a new memory
micro-architecture, called Parallel Chip PCM(PC2M), which
leverages the spatial locality of memory accesses and trades
bank-level parallelism for larger chip-level parallelism. We also
present a micro-write scheme to reduce the blocking for read
accesses caused by uninterrupted serialized writes. Micro-write
breaks a large write into multiple smaller writes and timely
schedules newly arriving reads immediately after a small write
completes. Our design is orthogonal to many existing PCM write
hiding techniques, and thus can be used to further optimize PCM
performance. Based on simulation experiments of a multi-core
processor under SPEC CPU 2006 multi-programmed workloads,
our proposed techniques can reduce the memory latency of
standard PCM by 68.5% and improve the system performance
by 30.3% on average. PC2M and Micro-write significantly
outperform existing approaches.

I. INTRODUCTION

Increasingly larger amounts of memory are required to
alleviate I/O performance bottleneck. Unfortunately, DRAM
technology is facing the transistor scaling limitation and it is
a great challenge to fabricate high density of DRAM beyond
22nm [1]. In addition, DRAM technology also has a challeng-
ing thermal issue on most large servers since DRAM chips
are energy-hungry and current green-computing technology
achieves much less power saving on memory chips than
processors. While the power dissipation of an idle processor
can be lowered to a very small value via technologies such
as dynamic voltage scaling, the background power of DRAM
chips stills accounts for more than 40% of DRAM power [2].
Fortunately, phase-change memory (PCM) has a better scala-
bility than DRAM and a PCM prototype is fabricated with a
feature size as small as 3nm [3]. In addition, PCM consumes
less leakage current and requires no refresh operations due
to its non-volatile property. Compared with DRAM, PCM is
much more energy efficient. As a result, PCM is emerging
as a promising memory alternative and complementation to
DRAM.

However, PCM has two major weaknesses: slow write
performance and weak write endurance. A PCM cell endures
around 108−1010 write cycles while a DRAM cell can support

over 1015 writes. Recent research work has successfully [4]
extended the PCM lifetime to over 7 years via fine-grained
wear-leveling methods. The significant improvement in write
endurance has made the other weakness, slow write, more
prominent and urgent to solve.

Writes are slow in PCM because the crystallization process
is time-consuming and the number of concurrent writes is
limited due to circuit constraints. When writing data to a
PCM storage cell, large electric current is drawn to heat up
the cell’s GST material in order to change its resistance.
Different resistances represent different logic values stored
in each cell. Compared with reading PCM, writing operation
requires an electric current pulse with a much larger width and
amplitude [3]. Furthermore, the noise at the power line restricts
charge pump to provide a large electric current instantaneously
for writing PCM cells, and thus the number of concurrent
writes in a chip is limited to N bits, which is referred as xN
write division mode [5]. The typical value for N can be 2,
4, 8 and 16 bits. This constrain limits the number of bytes
that can be written to a bank each time, which is referred
as write unite. The size of write unit is proportional to the
size of write division mode. Accordingly, writing a cache line,
typically 64 bytes, needs multiple serially executed write units.
These serially executed write units of a cache line exacerbate
the performance of PCM write. For example, writing a cache
line of 64 bytes to a PCM bank is about 30 times slower
than reading 64 bytes from the same bank [6]. Thus an
on-going slow PCM write often unnecessarily blocks newly
arriving read requests for a long time, significantly degrading
the overall performance and preventing it from being widely
deployed in real systems.

We propose a new memory micro-architecture, called Par-
allel Chip PCM (PC2M), to leverage the spatial locality of
memory accesses, increase the speed of memory writes, and
reduce the chance of a write blocking outstanding reads. We
augment a PCM bank with extra chips to increase the size
of write unit without violating power constrains at the chip
level. Our novelty lies in that we leverage the fact that write
requests tend to cluster to a small set of banks due to spatial
access locality. Accordingly we trade bank-level parallelism
for more chip-level parallelism to reduce the number of write
units for each cache line. Compared with conventional memory
architecture with the same number of PCM chips, our design
takes less time to write a cache line, with the sacrifice that the
number of concurrent writes to different banks is reduced.
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To further mitigate the performance degradation of write
blocking for read accesses in PCM, we propose another opti-
mization technique, called micro-write, which allows the mem-
ory controller to schedule a waiting read request whenever a
write unit completes, rather than waiting for the completion
of writing a whole cache line. Typically in PCM a cache line
is broken multiple write units and these unites are written into
a bank in a serial order. Our micro-write technique converts a
batch of uninterrupted serial writes into multiple interruptible
micro-writes so that time-critical outstanding read requests are
blocked for a shorter amount of time.

We evaluate our proposed techniques by simulating a multi-
core system under the SPEC CPU 2006 benchmark suite.
Experimental results under ten multi-programmed workloads
show that PC2M and micro-write reduce the read latency of
the standard PCM systems by 65.8% and 25.3% on average,
and the total running time by 30.3% and 7.89%, respectively.
We also compare our design with two state-of-the-art write-
latency hidden technology, including Flip-N-Write and Write
Cancellation. Compared with recently proposed Flip-N-Write,
PC2M achieves on average 8.8% performance improvement.
In addition, micro-write outperforms Write Cancellation by
7.41%.

The rest of paper is organized as follows. Section II in-
troduces the PCM background and memory architecture. Sec-
tion III presents our PC2M architecture design and Section IV
presents our micro-write scheme. Section IV discusses the ex-
perimental results. Related work is summarized in Section VI
and conclusions are given in Section VII.

II. BACKGROUND

A. Phase Change Memory

Phase change memory exploits remarkably different proper-
ties of phase change material in a memory cell to store digital
information. Phase change material, such Ge2Sb2Te5(GST),
has two phases: an amorphous phase that has a high resistance
in MΩs and a crystalline phase that has low resistance in
KΩs. PCM can exploit the different resistances associated
with the amorphous or crystalline phase to represent bit 0
and bit 1, respectively. Essentially, PCM is a one-transistor,
one-resistor (1T1R) device shown in Figure 1, while DRAM
is a one transistor, one-capacitor (1T1C) device.
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Fig. 1. Phase Change Memory

Write latency of PCM is much larger than its read latency.
Reading a PCM cell is to sense the current flowing from the
bit line, which is determined by the resistance of the cell.
However, writing a PCM cell is more complex than reading,
since GST needs to be heated up to change its phase, as shown
in Figure 1. If bit 0 is written, a large current is applied to
the cell for a short duration in order to heat GST abruptly
and leave it in the amorphous phase. On the other hand,
if bit 1 is written, a relatively smaller current is applied to
the cell for a longer duration. After such a slow heat, GST
remains in the crystalline phase. Since bit 0 and 1 are non-
deterministically distributed among memory cells, the memory
controller chooses the slow time of writing 1 as the basic time
required to write a bit.

B. PCM Division Write Modes

The write performance is also limited by the electronic cir-
cuits constraints inside a PCM chip. As discussed previously,
writing 0 needs a large amount of electric current to heat
GST. Upon a write, the bit line is raised to a voltage higher
than the phase change voltage, typically ranging from Vdd+1
to Vdd+3. With higher programming voltage and current,
writing PCM consumes much power. The Dickson charge
pump, widely used inside the PCM chip, provides the current
to write driver. The noises at the power line restricts charge
pump to provide the large amount of instantaneous current
for writing PCM cells [5] inside a chip. In addition, the poor
efficiency of charge pump further limits parallel writings [7].
This limitation of current provision constraints the number of
concurrent written bits to 2, 4, and 8 typically in a chip [5].
This writing scheme is refereed to write division mode [7],
resulting in increased time to write large data. For example,
writing 16 bits to a PCM chip takes 8, 4 and 2 unit time when
writing under x2, x4 and x8 write division mode, respectively.

C. Memory Architecture
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Fig. 2. Memory Architecture

Memory is often organized in a hierarchical way, as shown
in Figure 2. A memory system usually consists of multiple
memory ranks and each rank includes several banks. A bank
is an independent device to serve data accesses. A bank is
composed by a set of memory chips which include the array
of storage cells. Each chip can provide multiple I/O bits
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and multiple chips are connected to concurrently feed the
data bus to provide data to the processor. The width of data
bus determines the number of chips required to construct a
memory bank.

III. PARALLEL CHIP PCM (PC2M)

Due to the circuit constraints within PCM chips, the number
of bits that can be written concurrently to a PCM bank is often
limited and is referred to write unit size [8]. If the data bus
has 64 bits, the write unit size is typically 1 byte, 2 bytes,
4 bytes and 8 bytes respectively in the x2, x4, x8 and x16
division write node [5], [8]. Thus writing a cache line of 64
bytes needs to perform 64, 32, 16, and 8 writes in the x2,
x4, x8 and x16 division write node, respectively. Small size
of write unit is one of the key reasons for slow write speed in
PCM.
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Fig. 3. Parallel Chip PCM Bank
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Fig. 4. Time Sequence of Conventional PCM Writing
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Fig. 5. Time Sequence of PC2M Writing

In conventional bank architecture, the number of chips is
determined by the number of I/O bits of this chip and the

width of the data bus. For example, if the data bus has a
width of 64 bits, a bank needs to concurrently feed 64 bits
data to the data bus and thus consists of four x16 PCM chips.
Each chip can write 16 bits simultaneously under x16 write
division mode each time and hence a bank can write 4 × 16

bits, i.e. 8 bytes, concurrently. Since the slow write speed, the
next write unit waits long time, 430ns in our experiments, until
the previous write unit is finished, as shown in Figure 4.

In order to increase the write unit size, we propose the
Parallel Chips PCM (PC2M) that re-architects PCM banks, as
shown in Figure 3. We augment the PCM bank with extra
chips to a PCM bank to increase the number of bits that
can be written to this bank in parallel. For example, the size
of write unit of the bank with 8 chips is increased to 16
bytes. Accordingly, the increased write unit size reduces the
number of write units when writing a cache line to PCM and
hence shortens the time to complete writing a cache line to
PCM. Each chip in the PC2M bank still comply the circuit
constraints.

A set of chips inside PC2M are organized into a chip set
and the width of a set of chips is the same as the width of the
data bus. Chips in a set are concurrently accessed to serve
requests from/to data bus. In order to simplify the design,
the total number of chips added to PC2M is a multiple of
the chip number within a chip set and thus they can provide
sufficient amount of bits to feed the data bus. The PC2M
bank is referred to as PC2Mxn if it has n chip sets.Data are
interleaved among different chip sets with the granularity of
column and thus neighbouring columns of data are stored at
different chip sets which are determined by least significant
bits of column address. In order to avoid modification of bank
interface to data bus, we add a chip set selector (CSS) to
access different chip sets. The CSS includes read part and
write part and they are used to select chip sets for read
and write operation respectively. Upon a memory write, the
memory controller sends several pieces of data to different
chip sets within a very short time as shown in Figure 5. The
data size is limited by the number of parallel write bits for
a chip set. Assume a chip set has the same number of chips
as a conventional bank and a PC2M bank has 2 chip sets,
then the size of write unit for this PC2M bank is 2 times of
the conventional bank. In this way, we increase the size of a
write unit of a PC2M bank. These data have different column
addresses, which differ only on least significant bits and these
different address bits are used to control the selection of chip
set for writing. For example, PC2Mx2 and PC2Mx4 use the
col[0] and col[0..1] respectively, which are least significant
collum address bit, to select the chip set for different data, as
shown in Figure 3.

We also add a circuit to manage reading data from various
chip sets in PC2M. Firstly, we need to change memory
prefetch length, which is a parameter stored in a configuration
register in the memory device. Secondly, we add a clock
counter to control the switching of data bus between different
chip sets in a PC2M bank. The edge signal of the clock triggers
the clock counter and activates the corresponding chip set

271



according to its value. This counter is based on module-N ,
where N is the total number of chip sets in a bank, as shown
in Figure 3. Assume each bank has two chip sets. On rising
edge, the counter value is 0 and correspondingly the chip set
0 is selected; on the falling edge, the counter value is 1 and
thus the chip set 1 is selected. Note that each time the memory
controller sends the same amount of data as the write unit of
a chip set. Our design overhead is very small since only a
counter and a switch is added for each bank.

Figure 4 and Figure 5 compares the difference of write
operations between PCM and PC2Mx2. In this example, when
writing two units, the second write has to wait for 430ns before
issuing the second write command WRT, the second address
A2. However, in PC2M, while the first write is being served in
one chip set, the second write command WRT can be issued
immediately after the target address of the first write has been
successfully decoded. As a result, these two writes can be
simultaneously serve by two different chip sets.

In our design, we make a tradeoff between the bank level
parallelism (BLP) and chip level parallelism (CLP). Specifi-
cally, we trade BLP for a larger CLP. The high density of PCM
usually offers much more banks than DRAM. For example, the
product grade PCM prototype [6] has 16 banks while DRAM
typically has only 8 or 4 banks. However, due to spatial access
locality, most workloads studied in a multi-core environment
have a BLP less than 7, as presented in the result section later.
So PC2M aims to reduce the opportunity of chips being idle by
reorganizing them to improve CLP to accelerate PCM write.
When the number of chips in a bank increases, the number of
banks is reduced proportionally. As a result, our design does
not need more chips than conventional memory organization.

IV. MICRO-WRITE

In DRAM, memory arrays are operated in a burst mode
to improve the utilization of data bus. In the burst mode,
memory accesses for a cache line continuously come or go to
memory device without interruption. Combined with the fact
that the latency of read and writes has no noticeable difference
in DRAM, it is natural that the memory controller schedules
the next request after all data bursts for a request are finished.

However, in PCM the burst mode is suitable for reads but
ill-suitable for writes. The write burst is subject to chip’s
constrains and only a write unit is written at a time. Thus
a cache line is broken into several write units. However, the
conventional PCM controller still follows DRAM’s scheduling
policy and only schedules a waiting read request only after all
bytes of a cache line are written to PCM, i.e., the conventional
scheme schedules an outstanding read request only after all
write units of a cache line are written. These serialized write
units of a cache line make all newly arrived read requests
waiting for a large amount of time.

We propose micro-write to reduce the long latency caused
by uninterrupted serialized write units. Micro-write breaks a
large write, typically a cache line, into a number of small
writes, which is a micro-write in this paper. A micro-write
is a basic schedule unit when serving a write request. When

a micro-write completes, the memory controller can imme-
diately schedule a waiting read request, rather than waiting
all write units for a cache line are finished. Essentially,
micro-write converts a batch of uninterrupted serialized write
units into multiple interruptible micro-writes in order to block
outstanding read requests less. Only after all micro writes of
a write request complete does memory controller release its
data entry in the request queue. If a read request hits the
request queue in the memory controller, the memory controller
retrieves data directly from the corresponding data entry in
the queue, which avoid creating data consistency issues. The
memory controller performs bookmarking to record partially
completed write requests so that these writes can continue
executing the rest micro-writes when PCM is idle. Note that
the micro-write only changes the scheduling granularity for
write, not for read.

����� ��� ��� ��� �����

��� �����

��	

� �  � � � � � � � ��

�� ������

����
������� ����


	���������


Fig. 6. Comparison of Conventional PCM Write and Micro-Write

Figure 6 uses a simple example to illustrate the difference
between the conventional PCM write and our micro-write. In
the conventional write, the slow write WR blocks the timing-
critical read request RDa and RDb for 6.5 time units and
5 time units, respectively. In the micro-write, the memory
controller will stop processing the next write unit immediately
after a write unit completes. In this example, a cache line is
broken into 8 write units, identified by the subscript for a write
request. In our micro-write scheme, the memory controller
schedules RDa at time unite 2, which only blocks RDa for
0.5 time unit. After RDa finishes, WR continues to execute
the next write unit. Again, when a write unit finishes, the read
request RDb arrives and then is executed immediately after
the second write units completes. While the average waiting
time of read requests in the conventional scheme is 5.75 time
units, the average of waiting for read requests in our micro-
write approach is 0.25 time unit.

The micro-write shares the same sprite with write paus-
ing [9] which pauses PCM writing and schedules a waiting
read request in order to reduce the read latency. However, our
micro-write differs from write pause in two major aspects.
Firstly, they operate at different time granularity. Write pause
pauses between different write-verify iterations, while the
micro-write pauses between different serial write units. Sec-
ondly, while write pausing highly relies on PCM to add a new
interface through which memory controller has knowledge of
programming and verification iteration and has ability to pause
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the on-going iteration, our micro-write does not require any
modification of PCM chip. As a result, micro-write is much
easier to implement in real systems.

V. EXPERIMENTAL METHODOLOGY

We evaluate the performance by using the execution-driven
processor simulator M5 [10] and the cycle-level memory
simulator DRAMsim [11]. Table I shows the parameters of
simulated processor and product grade PCM [6]. In order to
accurately model memory access, we use the out-order core
because it produces more parallel and independent memory
accesses than in-order core. After passing through cache, the
memory accesses go to PCM. The simulated processor has
four cores with 32 MB L3 cache. The PCM read latency
and write latency for a cell are set as 57ns and 430ns
respectively [6].

Taking PCM chip constrains into account, we model the
PCM write unit to be 8 bytes. As a result, writing a cache
line of 64 bytes to PCM needs 8 × 430ns = 3440ns while
reading a cache line is less than 100ns due to the chip-level
prefetch. To tolerate slow PCM write, we add a large off-
chip L3 DRAM cache. In addition, since the memory write
back is not in the performance critical path, we use the Read
Instruction and Fetch First (RIFF) scheduling algorithm to
improve the performance [9].

The SPEC CPU 2006 benchmark suit is used to construct 10
multi-programmed workloads with intensive memory accesses.
All test applications in each workload runs in parallel and
each application is fast-forwarded 5 billion instructions and
then simulated 250 million instructions. Table II summa-
rizes memory Read Per Kilo Instructions (RPKI), memory
Write Per Kilo Instructions(WPKI), Memory Level Parallelism
(MLP) [12] and Bank Level Parallelism (BLP) [13] for each
workload. RPKI and WPKI are indicators of memory access
intensity of a workload and most of them are larger than 1.
While our L3 cache has 32MB and is smaller than the one used
in other studies [9], [14], the intensity of memory accesses
measured in our workloads is very close to theirs and thus we
believe a larger L3 cache is unnecessary.

Importantly, in Table II, we find that BLP for most work-
loads is less than 7, which is much smaller than the number
of banks available in most conventional memory system.
This observation motivates our PC2M design that exploits the
otherwise idle PCM chips to accelerate the slow PCM writing
by increasing the chip-level parallelism.

We compare our design with the baseline scheme that uses
the same parameters as listed in Table I but does not have any
PCM optimization. We also compare ours against two recently
proposed PCM write optimization techniques including Write
Cancellation (WC) [9] and Flip-N-Write (FNW) [8]. Through
comparison with old data, Flip-N-Write reduces the number
of actual written bits by less than half and doubles the size
of write unit, speeding up write. Write cancellation aborts
an on-going write for a newly-arriving read request targeted
to the same bank if the write operation is not close to
completion. When there are no read requests, the cancelled

Parameter Value

System 4-core CMP, 4 GHz
Execution Core Alpha-like out-order processor
L1 Cache 32KB I-cache, 32KB D-cache
L2 Cache Latency 20ns, 2MB, 4-way, 64B

cache line
L3 Cache Latency 50ns, 32MB, 8-way, 64B

cache line
Memory Controller RIFF request scheduling algorithm,

page level interleaving address
mapping

Width of data bus 64 bits
Number of Ranks 2
Number of Banks 16
Number of Chips per Bank 4
Width of a PCM Chip 16 bits
Time to write a PCM cell 430ns
Time to read a PCM cell 53ns
PCM write unit size 8 bytes

TABLE I

SIMULATION PARAMETERS

write requests are re-executed. The static threshold value for
write cancellation is set to be 75%, which was reported as the
optimal value under the SPEC 2006 workloads [9]. We also
compare these algorithms against an ideal PCM whose write
latency is very small (57ns, the same latency as read), which
acts as an upper bound of the performance improvement for
PCM writing.

We do not compare ours with write pause [9] and write trun-
cation [14] since they depend on hard-to-obtain information
about PCM writing statistic behavior. On the other hand, our
proposed techniques are orthogonal to the previous techniques.

A. PC2M

In the baseline system, each PCM bank has four x16 chips
to match the 64-bit data bus. In order to eliminate the issue
of a small number of bits written in parallel in PCM, we
augment a bank with more PCM chips. We add N times of
chips into a bank and thus increase the size of write unit by
N times, which is denoted as PC2MxN . In our experiments,
we choose N to be 2 and 4. The write unit size is 8 bytes in
baseline and the write unit size is increased to 16 bytes and
32 bytes respectively in PC2Mx2 and PC2Mx4. In order to
fairly compare PC2M against the baseline, the total number
of chips in PC2M and the baseline is exactly the same. For
example, if the baseline has 2 ranks, the total number of
chips is 2 × 16 × 4 = 128 for the baseline with 2 ranks.
Correspondingly, PC2Mx2 also has two ranks, each rank has
8 banks, and each bank has 2× 8 = 16 chips. Thus the total
number of chips in PC2Mx2 is 2× 8× 8 = 128.

1) PC2M Read Latency: Figure 7 presents PC2M’s and the
other schemes’ read latency reduction compared with the base-
line. In all ten workloads studied, PC2Mx4 can successfully re-
duce the read latency more than Write Cancellation (WC) and
Flip-N-Write (FNW). On average, the read latency reduction
of PC2Mx2 and PC2Mx4 is 45.1% and 65.8% smaller than
the baseline respectively, while Write Cancellation and Flip-N-
Write achieve only 12.3% and 50.8% respectively. Although
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Benchmark Description RPKI WPKI MLP BLP
MIX1 astar, astar, asta, rastar 52.3677 40.8805 51.8186 6.1961
MIX2 astar, bzip2, milc, leslie3d 2.8253 2.7557 32.7038 4.7073
MIX3 leslie3d, leslie3d, milc, milc 3.3761 2.1986 26.8651 4.6363
MIX4 leslie3d, leslie3d, soplex, soplex 4.3020 2.4331 47.2699 3.7872
MIX5 libquantum, libquantum, libquantum, libquantum 49.4452 49.5580 68.0637 4.0746
MIX6 milc, libquantum, lbm, GemsFDTD 3.1718 2.5785 40.8732 4.7492
MIX7 milc, astar, milc, astar 4.5038 3.1436 17.6526 6.3863
MIX8 milc, milc, milc, milc 2.6383 2.3019 24.0918 5.6910
MIX9 sjeng, sjeng, sjeng, sjeng 1.0531 0.8473 6.2170 4.9882
MIX10 soplex, soplex, soplex, soplex 2.5687 1.5518 42.4891 3.6368

TABLE II

WORKLOADS
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Fig. 7. PC2M Read Latency Reduction
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Fig. 8. PC2M Total Running Time Reduction

the number of bits that can be concurrently read is the same,
PC2M allows more bits to be written simultaneously. As a
result, PC2M reduces the number of write units for a cache
line write, resulting in shorter waiting time for outstanding
read requests.

It is interesting that PC2Mx4 achieves more read latency
reduction than PC2Mx2. Compared with PC2Mx2, PC2Mx4
augments twice amount of PCM chips into a bank, doubles
the write unit size to 32 bytes, and spends only half of the
time to write a cache line. The experiment results show that
the benefits of increased chip-level parallelism outweigh the
sacrifice of bank-level parallelism.

PC2Mx2’s read latency is close to Flip-N-Write but
PC2Mx4’s read latency is better than Flip-N-Write. With
flipping bits, Flip-N-Write doubles size of write unit and
achieves read latency reduction without changing memory
organization. However, PC2Mx2 doubles the size of write unit
but its number of banks is reduced by half. With a less number
of banks in the memory system, we could potentially lose
opportunities to concurrently serve more requests at different
banks, which depends on how many concurrent requests go
to different banks on average. This explains why PC2Mx2 is
close to Flip-N-Write. On the other hand, Flip-N-Write cannot

increase the write unit larger than 2 times of the baseline
while PC2M can further increase the write unit size by adding
more chips into a bank. Increasing the number of chips for
a bank leads to less banks, which is potentially harmful to
performance. But the average BLP for each workload is less
than 7, as shown in Table II, and PC2Mx4 has 8 banks. So
PC2Mx4 can meet the workload’s BLP and thus enjoy the
benefit of reduced write time of a cache line.

It is also noted that Write Cancellation provides the lowest
read latency in the workload MIX9. This is because Write
Cancellation works well if the BLP of a workload is close
to its MLP. For example, as shown in Table II, BLP and
MLP are 6.2 and 4.9 respectively in MIX9. In workloads
where requests are evenly distributed over different banks,
Write Cancellation can reduce the possibility of re-executing
cancelled writes and hence effectively reduce read latency. We
call these workloads Write Cancellation friendly workloads.
However, Write Cancellation is less effective for unfriendly
workloads with remarkably different BLP and MLP. In Write
Cancellation, an on-going write still blocks read requests if it
has finished more than K% of the time of writing a cache
line, where K% is a predefined threshold. In our experiments,
with a threshold of 75%, Write Cancellation can block a
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read request for 860ns in the worst case. This possibility
of blocking read increases with the more occurrences of re-
execution of cancelled writes. As a result, for unfriendly
workloads with very different BLP and MLP, most requests
are clustered to a smaller number of banks, resulting in high
frequent occurrences of write cancellations. This increases the
possibility of read blocking.

2) PC2M Performance: Figure 8 shows PC2M’s and other
schemes’ total running time reduction compared with the
baseline. PC2M’s reduced read latency is directly translated
into performance gain. On average, PC2Mx2 and PC2MX4
provide 19.9% and 30.3% performance improvement over the
baseline, respectively. Note that the performance of PC2Mx2
is close to Flip-N-Write due to its reduced number of banks
but on average PC2Mx4 is 8.8% better than Flip-N-Write due
to its larger write unit.

It is noted that under the MIX1 workload Write Cancellation
reduces the total running time by 9.56% (see Figure 8) but
has a larger read latency than the baseline (see Figure 7). This
is because the re-execution of cancelled writes increases the
possibility of blocking read request when an executing write
finishes more than 75%. On the other hand, by cancelling write
requests, Write Cancellation can improve BLP. For example,
the BLP of MIX1 is 7.59 and 6.17 respectively in Write
Cancellation and the baseline. The performance influenced by
both read latency and BLP. So it is possible that the running
time is reduced but read latency is increased.

B. Micro-write

Our micro-write scheme breaks a cache line write into a
number of micro-writes and creates an opportunity for the
memory controller to stop unfinished cache line writing and
schedules a waiting read targeted to the same bank. However,
micro-write introduces performance overhead caused by the
loss of pipelined operations. In conventional system, the
address transmission, address decoding, data transmission and
data writing to cell for each write unit are executed in a
pipeline way. Since a micro-write is the basic schedule unit,
micro-write cannot perform these operations in a pipeline
way across the boundary of each micro-write unit. Generally
more micro-writes incur a larger overhead. We evaluate the
micro-write schemes with the size of one write unite and
two write units. Correspondingly each cache line write has
8 and 4 micro-writes, which are denoted as microWritex8 and
microWritex4 respectively.

1) Micro-Write Latency: Figure 9 compares the read la-
tency reduction over the baseline for four schemes, including
Micro-Write, Write Cancellation (WC), Flip-N-Write (FNW),
and the ideal PCM case.

Micro-Write achieves more reduction of read latency than
Write Cancellation. On average, the latency reduction for
micro-writex8 and micro-writex4 is 25.3% and 20.9% respec-
tively, while Write Cancellation only has 12.3%. Compared
with Micro-Write, Write Cancellation has a larger overhead
associated with re-execution of cancelled writes. This is
because Micro-Write chooses a micro write to be a basic

write schedule unit and has a smaller opportunity to block
a read request. However, micro-write achieves less latency
reduction than Flip-N-Write under all workloads expect under
the workload MIX9. Flip-N-Write reduces the time to write
a cache line by half almost with small performance overhead
while micro-write has some overhead caused by loss of pipe-
lined operations across micro writes when writing a cache line.

We also note that microWritex8 performs worse than mi-
croWritex4 under some workloads in terms of read latency.
A smaller size of micro-write implies that each micro-write
occupies the bank for a shorter time and thus blocks waiting
read less. However, microWritex8’s overhead is two times of
microWritex4. In the workloads in which more writes are
clustered to a bank, such as MIX6, write requests are likely to
be serially executed and the performance overhead of micro-
write is accumulated more seriously. So its negative impact
to read latency is more manifested under a larger number of
micro-writes. Conversely, in the workloads where less writes
are clustered to a bank, such as MIX3, the overhead of
micro-write becomes smaller. The workload MIX6 and MIX3
have similar memory access intensity but different extents
to which accesses are clustered to the same bank. This is a
good example to show that when memory accesses are more
concentrated to a small set of memory banks, the performance
gain of micro-write tends to decrease with large number of
micro writes while the performance gain of micro-write with
larger number of micro writes increase when memory accesses
are less skewed to a small set of banks.

2) MicroWrite Performance: The running time reduction
over the baseline is shown in Figure 10. While Micro-Write
outperforms Write Cancellation by 7.41% on average, it is
worse than Flip-N-Write except under workload MIX9. BLP
and MLP are almost the same in MIX9. Accordingly Micro-
Write can schedule more waiting read requests to different
banks. On the other hand, when write requests are concentrated
to a small set of banks, i.e., when MLP is significantly
larger than BLP, the overhead of micro-write is larger than
Flip-N-Write and experiences poor performance. However,
note that micro-write is orthogonal to Flip-N-Write and can
be used together with Flip-N-Write to further improve the
performance.

VI. RELATED WORK

Due to the advantage of scalability, PCM has emerged as a
promising non-volatility memory technology which can com-
pensate and potential replace DRAM. Most existing research
work focuses solve issues of its write endurance issue and
slow writes in order to make it practical in real systems.

The write endurance issue has received extensive attentions
recently. Ref. [15] presents removing data bit redundant, row
shifting and segment swapping to prolong the PCM lifetime.
Ref. [16] shows a start-gap wear leveling technique to improve
the PCM endurance with negligible overhead. Ref. [17] pro-
poses dynamically replicating memory writes data to different
pages with disjoint failures and reading data from both pages
in case of data corruption based on the observation that it
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Fig. 9. MicroWrite Read Latency
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Fig. 10. MicroWrite Total Running Time

is easy to find two pages with the same failure distribution
over storage space. Ref. [18] designs Error-Correcting Pointers
(ECP) that permanently encodes the locations of failed bits
into a table and replaces failed bits with healthy ones in
order to correct corrupted bits. Ref. [19] proposes to partition
memory into partitions with at most one failed bit and then use
error correction codes to for each partition. Ref. [4] exploits
the healthy bits in faulty block to store remapping information
without any storage overhead in PCM and extend the PCM
lifetime to over 7 years. These achievements have successfully
made PCM more reliable to be used as main memory.

Several research projects have aimed to hide the long write
latency of PCM. Ref. [20] adds a buffer to each PCM bank
and exploits the data locality to mitigate the slow write. They
further proposes a partial write strategy for a cache line to
reduce the amount of data written to PCM.

Flip-N-Write [8] is a simple read-modify-write technique
to write either flipped or unflipped to reduce write time.
During a write, Flip-N-Write first reads the old value out of
PCM and then calculate the number of different bits between
the new data and the old data, as well as the number of
different bits between the bit-flipped new data and old data,
and finally choose to write either the flipped or unflipped
new data depending on which has more unmodified data. This
scheme requires an extra bit to record whether associated data
have been flipped or not.

Write cancellation and write pausing [9] are proposed to
indirectly improve the PCM read performance. Write can-
cellation aborts an on-going write for a newly-arriving read
request targeted to the same bank if the write operation is
not close to completion. When there are no read requests,
the cancelled write requests are re-executed. Write pausing
is a similar technique that pauses a PCM write at the end
of a PCM write iteration and start to serve a waiting read
request. Our micro-write differs from write pausing. Write
pausing uses a much smaller time granularity to switch to reads

and requires more bookmarking overhead. While write pausing
stops a write between write-verify iterations, the micro-write
pauses on different serial write units. In addition, while write
pausing highly relies on PCM to add a new interface through
which memory controller has knowledge of programming and
verification iteration and has ability to pause the on-going
iteration, our micro-write does not require any modification
of PCM chip.Recently, write truncation and form switch [14]
are proposed to improve write performance for the multiple-
level-cell PCM. Based on the observation that not all bits for
a block of data need the same number of write iterations,
the write truncation early terminates the write iteration when
most bits have been successfully written and then recover the
data with extra error correction code during reading. The form
switch compresses data to reduce the storage space overhead
of write truncation.

VII. CONCLUSION

This paper presents and evaluates two new optimization
techniques, including Parallel Chip PCM (PC2M) and micro-
writes, to reduce the negative impact of slow writes on time-
critical reads in PCM. PC2M re-architects a PCM bank with
extra memory chips and increases the size of write unit to
speed up writing a cache line to PCM. PC2M leverages the
spatial locality of memory accesses and accordingly trades
bank-level parallelism for increased chip-level parallelism. The
other technique, micro-write, enables memory controller to
early schedule the waiting read requests after a subset unit of a
cache line is written to PCM rather than until completion of the
whole cache line. Unlike other write hiding techniques, micro-
write does not require to make any modification to PCM chips.
Using SPEC CPU 2006 benchmark suit to evaluate a four-core
system with PCM memory, our experiment results based on
ten different multi-programmed workloads show that PC2M
and micro-write can reduce the read latency respectively by
65.8% and 25.3% on average over a standard PCM baseline.
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PC2M and micro-write reduce more read latency by 15% and
13% than Flip-N-Write and Write Cancellation respectively,
two state-of-the-art PCM optimization techniques.
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