
RACE: A Robust Adaptive Caching Strategy for Buffer Cache

Yifeng Zhu Hong Jiang
Electrical and Computer Engineering Computer Science and Engineering

University of Maine University of Nebraska - Lincoln
Orono, ME 04469 Lincoln, NE 68588

zhu@eece.maine.edu jiang@cse.unl.edu

Abstract— While many block replacement algorithms for
buffer caches have been proposed to address the well-
known drawbacks of the LRU algorithm, they are not
robust and cannot maintain a consistent performance
improvement over all workloads. This paper proposes a
novel and simple replacement scheme, called RACE, which
differentiates the locality of I/O streams by actively detect-
ing access patterns inherently exhibited in two correlated
spaces: the discrete block space of program contexts from
which I/O requests are issued and the continuous block
space within files to which I/O requests are addressed. This
scheme combines global I/O regularities of an application
and local I/O regularities of individual files accessed in
that application to accurately estimate the locality strength,
which is crucial in deciding which blocks to be replaced
upon a cache miss. Through comprehensive simulations
on real-application traces, RACE is shown to significantly
outperform LRU and all other state-of-the-art cache man-
agement schemes studied in this paper, in terms of absolute
hit ratios.

I. INTRODUCTION

Designing an effective block replacement algorithm is

an important issue in improving memory performance.

In most systems, the replacement algorithm is based

on the Least-Recently-Used (LRU) scheme [1], [2] or

its clock-based approximation [3]. While LRU has the

advantages of simple implementation and constant space

and time complexity. it often suffers severely from two

pathological cases.

• Scan pollution. After a long series of sequential

accesses to cold blocks, many frequently accessed

blocks may be evicted out from the cache imme-

diately, leaving all these cold blocks occupying the

buffer cache for an unfavorable amount of time and

thus resulting in a waste of the memory resources.

• Cyclic access to large working set. A large number

of applications, especially those in the scientific

computation domain, exhibit a looping access pat-

tern. When the total size of repeatedly accessed data

is larger than the cache size, LRU always evicts the

blocks that will be revisited in the nearest future,

resulting in perpetual cache misses.

To address the limitations of the LRU scheme, several

novel and effective replacement algorithms [4], [5], [6],

[7] have been proposed to avoid the two pathological

cases described above by using advanced knowledge of

the unusual I/O requests. Specifically, they exploit the

patterns exhibited in I/O workloads, such as sequential

scan and periodic loops, and apply specific replacement

polices that can best utilize the cache under that refer-

ence pattern.

According to the level at which the reference patterns

are observed, these algorithms can be divided into three

categories.

1) At the application level, DEAR [4] observes the

patterns of references issued by a single appli-

cation, assuming that the I/O patterns of each

application is consistent. Since many applications

access multiple files and exhibit a mixture of

access patterns, as shown in [6] and later in this

paper, this approach tends to have a large amount

of inertia or reluctance and may not responsively

detect local patterns, although it can correctly

recognize global patterns.

2) At the file level, UBM [6] examines the references

to the same file, with an assumption that a file is

likely to be accessed with the same pattern in the

future. The file-based detection [6] has a smaller

observation granularity than the application-based

approach but has two main drawbacks that limit

its classification accuracy. First, a training process



needs to be performed for each new file and thus

is likely to cause a misclassification for the refer-

ences targeted at new files. Second, to reduce the

running overhead, the access patterns presented in

small files are ignored. Nevertheless, this approach

tends to have good responsiveness and stability due

to the fact that most files tend to have stable access

patterns, although large database files may show

mixed access patterns.

3) At the program context level, PCC [5] and

AMP [7] separate the I/O streams into substreams

by program context and detect the patterns in each

substream, assuming that a single program context

tends to access files with the same pattern in the

future. This approach trains only for each program

context and has a relatively shorter learning period

than the file-based one. While it can make correct

classification for new files after training, it clas-

sifies the accesses to all files touched by a single

program context into the same pattern category,

and thus limits the detection accuracy. In addition,

it bases its decision on aggregate statistical infor-

mation and thus is not sensitive to pattern changes

over an individual file. In fact, as explained in

Section III, multiple program contexts may access

the same set of files but exhibit different patterns if

observed from the program-context point of view.

This paper presents a novel approach for buffer cache

management, called RACE (Robust Adaptive Caching

Enhancement for buffer cache). Our new scheme can

accurately detect access patterns exhibited in both the

discrete block space accessed by a program context and

the continuous block space within a specific file, which

leads to more accurate estimations and more efficient

utilizations of the strength of data locality. We show

that our design can effectively combine the advantages

of both file-based and program context based caching

schemes. Our trace-driven simulations by using real life

workloads show that RACE significantly outperforms

LRU, PCC, AMP, UBM, LIRS and ARC cache man-

agement schemes.

The rest of this paper is organized as follows. Sec-

tion II briefly reviews relevant studies in buffer cache

management. Section III explains our RACE design in

detail. Section IV presents the trace-driven evaluation

method and Section V evaluates the performances of

RACE and other algorithms and discusses the experi-

mental results. Finally, Section VI concludes this paper.

II. RELATED WORK ON BUFFER CACHE

REPLACEMENT STRATEGIES

Off-line optimal policy [8], [9], replacing the block

whose next reference is farthest in the future, provides a

useful theoretical upper bound on the achievable hit ratio

of all practical cache replacement policies. As described

below, the practical replacement algorithms proposed

in the last few decades can be classified into three

categories: 1) replacement algorithms that incorporate

longer reference histories than LRU, 2) replacement

algorithms that rely on application hints, and 3) re-

placement algorithms that actively detects the I/O access

patterns.

A. Deeper-history Based Replacement

To avoid the two pathological cases in LRU, de-

scribed in the previous section, The replacement algo-

rithms LRU-K [10], 2Q [11], LRFU [12], EELRU [13],

MQ [14], LIRS [15], and ARC [16] incorporate longer

reference histories than LRU. These algorithms base

their cache replacement decisions on a combination of

recency [17] and reference frequency information of

accessed blocks. However, they are not able to explic-

itly exploit the regularities exhibited in past behaviors

or histories, such as looping or sequential references.

Thus their performance is confined due to their limited

knowledge of I/O reference regularities [5].

B. Reactive Hint Based Replacement

Application-informed caching management schemes

are proposed in ACFS [18] and TIP [19], and they

rely on programmers to insert useful hints to inform

operating systems of future access patterns. However,

this technique cannot achieve satisfactory performance

level if the I/O access pattern is only known at runtime.

2



Artificial intelligence tools [20] are proposed to learn

these I/O patterns at execution time and thus obtain the

hints dynamically.

C. Active Pattern-detection Based Replacement

Depending on the level at which patterns are de-

tected, the pattern-detection based replacement can be

classified into four categories: 1) block-level patterns,

2) application-level patterns, 3) file-level patterns, and

4) program-context level patterns. An example of block-

level pattern detection policy is SEQ [21], which detects

the long sequences of page cache misses and applies

the Most-Recently-Used(MRU) [22] policy to such se-

quences to avoid scan pollution.

At the application level, DEAR (Detection Adaptive

Replacement) [4] periodically classifies the reference

patterns of each individual application into four cat-

egories: sequential, looping, temporally-clustered, and

probabilistic. DEAR uses MRU as the replacement

policy to manage the cache partitions for looping

and sequential patterns, LRU for the partition of the

temporally-clustered pattern, and LFU for the partition

of the probabilistic pattern.

At the file level, the UBM (Unified Buffer Manage-

ment) [6] scheme separates the I/O references accord-

ing to their target files and automatically classifies the

access pattern of each individual file into one of three

categories: sequential references, looping references and

other references. It divides the buffer cache into three

partitions, one for blocks belonging to each pattern

category, and then uses different replacement policies

on different partitions. For blocks in the sequentially-

referenced partition, MRU replacement policy is used,

since those blocks are never revisited. For blocks in the

periodically referenced partition, a block with the longest

period is first replaced and the MRU block replacement

is used among blocks with the same period. For blocks

that belong to neither the sequential partition nor the

looping partition, a conventional algorithm, such as LRU,

is used.

At the program context level, the Program Counter

based Cache (PCC) [5] algorithm exploits virtual pro-

gram counters exhibited in application’s binary execu-

tion codes to classify the program signatures into the

same three categories as UBM and then uses the same

replacement policies for these categories respectively.

While UMB classifies the I/O access patterns based on

files, PCC classifies the patterns based on the virtual

program counters of the I/O instructions in the program

code. Adaptive Multi-Policy caching scheme (AMP) [7]

inherits the design of PCC but proposes a new pattern

detection algorithm. It defines an experiential mathe-

matical expression to measure recency and classifies

program counters according to the comparison between

the average recency and a static threshold.

III. THE DESIGN OF RACE ALGORITHM

This section presents the design of the RACE caching

algorithm in detail. We first introduce the recently de-

veloped PC-based technology in buffer caching and then

presents the details of our RACE algorithm.

I/O wrappers

System calls

Applications

PC6:read() PC7:sendfile() PC8:mmap()

PC5: fread()PC4:fscanf()

PC0:main()

PC1:fun#1() PC2:fun#2()

PC3:fun#3()

Fig. 1. An example call graph of some application

A. Concepts of Program Counters

Program counters, which indicate the location of the

instructions in memory, have been utilized in cache

management algorithms, such as including PCC [5] and

AMP [7]. A call graph represents the runtime calling re-

lationships among a program’s functions or procedures,

in which a node corresponds to a function and an arc

represents a call. An example call is given in Figure 1.

To uniquely identify the program context from which an

I/O operation is invoked, a program counter signature

is defined as the sum of the program counters of all

functions along the I/O call path back to main(). For

simplicity, program signatures are denoted as PCs in the

rest of this paper.

3



B. The Design of RACE

Our RACE scheme is built upon the assumption that

future access patterns have a strong correlation with

both the program context identified by program signa-

tures and the past access behaviors of current requested

data. While UBM only associates its prediction with

the data’s past access behaviors, PCC and AMP only

consider the relationship between future patterns and

the program context in which the current I/O operation

is generated. Our assumption is more appropriate for

real workloads, as demonstrated by our comprehensive

experimental study presented in Section V.

Our RACE scheme automatically detects an access

pattern as belonging to one of the following three types:

• Sequential references: All blocks are referenced one

after another and never revisited again;

• Looping references: All blocks are referenced re-

peatedly with a regular interval;

• Other references: All references that are not sequen-

tial or looping.

Figure 2 presents the overall structure of the RACE

caching scheme. RACE uses two important data struc-

tures: a file hash table and a PC hash table. The file

hash table records the sequences of consecutive block

references and is updated for each block reference. The

sequence is identified by the file description (inode), the

starting and ending block numbers, the last access time

of the first block, and their looping period. The virtual

access time is defined on the reference sequence, where

a reference represents a time unit. The looping period

is exponentially averaged over the virtual time. The PC

hash table records how many unique blocks each PC has

accessed (fresh) and how many references (reused) each

PC has issued to access blocks that have been visited

previously. Although PCC also uses two counters, our

RACE scheme is significantly different from PCC in that:

1) PCC’s counters do not accurately reflect the statistic

status of each PC process, resulting in misclassification

of access patterns, as discussed later in this section, and

2) PCC only considers the correlations between the last

PC and the current PC that accesses the same data block.

Buffer
Cache

Partition Size Coordinator
(Marginal Gain Functions)

Partition for Looping Partition for OtherPartition for
Sequential

pc fresh reused period

start end last
timeinode

2 6 1501

1 30 25010

Pattern Detector

Partition Allocator

Sequential / Looping / Other

inode

block

PC

15 20 3 100

37 10 80 200

period

10

10

File hash table

PC hash table

Fig. 2. Overall structures of the RACE scheme. The partition allocator
and the Partition size coordinator take the results of pattern detector
to adaptively fine-tune the size of each cache partition.

In fact, many PCs exist in one application and it is likely

more than two PCs access the same data blocks.

The detailed pattern detection algorithm is given in

Algorithm 1. The main process can be divided into three

steps. First, the file hash table is updated for each block

reference. RACE checks whether the accessed block

is contained in any sequence in the file hash table. If

found, RACE updates both the last access time and

the sequence’s access period. The updating method is

based on the assumption that the access periods of all

blocks in a sequence are exactly the same. Thus we

reduce the problem of finding the access period of the

current block to identifying the access period of the first

block in this sequence. When a block is not included in

any sequence of the file hash table, RACE then tries to

extend an existing sequence if the current block address

is the next block of that sequence or otherwise RACE

assumes that the current request starts a new sequence.

Second, RACE updates the PC hash table by changing

the fresh and reused counters. For each revisited block,

fresh and reused of the corresponding PC are decreased

and increased, respectively. On the other hand, for a

block that has not been visited recently, the fresh counter

is incremented. The last step is to predict access patterns

based on the searching results on the file and PC hash

tables. If the file table reports that the currently requested

4



Virtual time

B
lo

ck
 a

dd
re

ss

File
 B

PC1

PC2 PC2

File
 A

PC2 PC1

PC2

S: Sequential
L: Looping
O: Other

PC2

PC1

File
 C

PC2

O S O L OUBM L O S L O

AMP O L OS O S

PCC O S O S L S L S L

O L

RACE O S L

Fig. 3. An example of reference patterns. The sequentiality thresholds
for UBM, PCC and RACE are 3. The sequentiality threshold, looping
threshold and exponential average parameter for AMP are 0.4, 0.01,
and 4 respectively. All incorrect classification results are underscored.

block has been visited before, a “looping” pattern is

returned. If the file table cannot provide any history

information of the current block, RACE relies on the

PC hash table to make predictions. A PC with its reused

counter larger than its fresh counter is considered to show

a “looping” pattern. On the other hand, a PC is classified

as “sequential” if the PC has referenced a certain amount

of one-time-use-only blocks and as “others” if there are

no strongly supportive evidence to make a prediction. By

using the hashing data structure to index the file and PC

tables, which is also used in LRU to facilitate the search

of a block in the LRU stack, RACE can be implemented

with a time complexity of O(1).
By observing the patterns both at the program context

level and the file level and by exploiting the detection

mechanism in both the continuous block address space

within files and the discrete block address space in

program contexts, RACE can more accurately detect

the access patterns. An example, shown in Figure 3, is

used to illustrate and compare the classification results

of RACE, UBM, PCC, and AMP, in which all false

classification results are underscored.

RACE File A is initially classified as other. After File

A is visited, the fresh and reused counters of

PC1 are set to 2 and 0 respectively. After the

first block of File B is accessed, the pattern

of PC1 immediately changes to be sequential

since the fresh count becomes larger than

the threshold. Thus during the first iteration of

accesses to File A and B, RACE incorrectly

classifies the first three blocks as other and then

next three blocks as sequential. However, after

the first iteration, RACE can correctly identify

the access patterns. During the second and third

iterations, the sequences for both File A and

File B are observed in the file hash table and

are correctly classified as looping. Although

File C is visited for the first time, it is still

correctly classified as looping. This is because

the fresh and reused counters of PC1 are 0

and 6 respectively before File C is accessed.

After that, all references are made by PC2 and

they are classified as looping since the file hash

table have access records of File B and C.

UBM Since the total number of blocks in File A is

less than the threshold in UBM, all references

to File A are incorrectly classified as other.

The initial references to the first three blocks

and the fourth block of File B are detected as

other and sequential, respectively. After that all

references to File B are classified as looping.

Similar classification results are observed for

references to File C.

PCC While the blocks of a sequential access de-

tected by UBM has to be contiguous within

a file, PCC considers sequential references as

a set of distinct blocks that may belong to

different files. The initial three blocks accessed

by PC1 are classified as other and then PC1

is classified as sequential. Although PC2 is ac-

cessing the same set of blocks as PC1, it is still

classified first as other and then as sequential

when the threshold is reached. Before File C

is accessed, the values of both seq and loop

of PC1 are 6. Since seq of PC1 is increased

and becomes larger than loop, accesses to File

C made by PC1 are classified as sequential.

Before File C is revisited by PC2, the values of

both seq and loop of PC2 have changed to be 0

5



and 6 respectively through the references made

by PC1, thus references to File C are detected

as looping. After File C is accessed, the values

of both seq and loop of PC2 are 6. References

to File A made by PC2 are classified first as

sequential and then as looping

AMP The classification results are reported by the

AMP simulator from its original author. To

reduce the computation overhead, AMP uses

a sampling method with some sacrifice to the

detection accuracy. Since the sample trace used

here is not large, the entire results are collected

without using the sampling function in the

AMP simulator. The initial recency of a PC,

defined as the average ratios between the LRU

stack positions and the stack length for all

blocks accessed by the current PC, is set to

be 0.4. Last references to File A made by

PC2 are incorrectly detected as other, which

indicates that AMP has a tendency to classify

looping references as other in the long term.

We can use a shorter and simpler reference

stream to further explain it. Given a looping

reference stream L = {1, 2, 3, 4, 3, 4, 3, 4}, the

average recency of L is 0.67 that is higher than

the threshold, 0.4. Accordingly, AMP falsely

considers the pattern of L as other. In ad-

dition, AMP has another anomaly in which

it has a tendency to erroneously classify a

sequential stream as a looping one. For ex-

ample, for a sequential reference stream S =
{1, 2, 1, 2, 3, 4, 5, 6, 7, 8}, the average recency

of S is 0 and AMP identifies this sequential

pattern as looping. The first anomaly is more

commonly observed in the workloads studies in

this paper, which explains why the performance

of AMP tends to be close to that of ARC in

our experiments shown in Section V.

IV. APPLICATION TRACES USED IN THE

SIMULATION STUDY

The traces used in this paper are obtained by using a

trace collection tool provided by [5]. This tool is built

upon the Linux strace utility that intercepts and records

all system calls and signals of traced applications. The

modified strace investigates all I/O-related activities and

reports the I/O triggering PC, file identifier(inode), I/O

staring address and request size in bytes.

We use trace-driven simulations with three types of

workloads, cscope, gcc and gnuplot, to evaluate the

RACE algorithm and compare it with other algorithms.

The cscope and gcc are used in [23], [5], [15], [6], [7]

and the gnuplot is used in [4]. Table I summarizes the

characteristics of these traces.

TABLE I

TRACES USED AND THEIR STATISTICS

Trace cscope gcc gnuplot

Request Num. 2131194 8765174 677442
Data Size (MB) 240 89.4 121.8

File Num. 16613 19875 8
PC Num. 40 69 26

1) cscope [24] is an interactive utility that allows

users to view and edit parts of the source code

relevant to specified program items under the aux-

iliary of an index database. In cscope, an index

database needs to be built first by scanning all

examined source code. In our experiments, only

the I/O operations during the searching phases are

collected. The total size of the source code is

240MB and the index database is around 16MB.

2) gcc is a GNU C compiler trace and it compiles

and builds Linux kernel 2.6.10.

3) gnuplot is a command-line driven interactive plot-

ting program. Five figures are plotted by using

four different plot functions that read data from

two raw data files with sizes of 52MB and 70MB,

respectively.

We plot the traces of cscope, gcc and gnuplot in

Figures 4, 5, and 6, respectively, showing trace address

as a function of the virtual time that is defined as the

6



number of references issued so far and is incremented

for each request.

0 0.5 1 1.5 2 2.5

x 10
6

0

1

2

3

4

5

6

7

8

9

10
x 10

5

Virtual time

L
o

g
ic

 b
lo

ck
 n

u
m

b
er

PC 1

PC 1 PC 1 PC 1 PC 1

Fig. 4. cscope trace.

0 1 2 3 4 5 6 7 8 9

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Virtual time

L
o

g
ic

 b
lo

ck
 n

u
m

b
er

Fig. 5. gcc trace.

0 1 2 3 4 5 6 7

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

5

Virtual time

L
o

g
ic

 b
lo

ck
 n

u
m

b
er

PC 1 PC 2 PC 3 PC 4

Fig. 6. gnuplot trace.

V. PERFORMANCE EVALUATION

This section presents the performance evaluation of

RACE by comparing it with a number of most recent and

representative cache replacement algorithms, through

trace-driven simulations. We use hit ratio as our primary

metric and compare the performance of RACE with

seven other replacement algorithms, including UBM [6],

PCC [5], AMP [7], LIRS [15], [25], ARC [16], LRU and

the off-line optimal policy (OPT). Simulation results of

UBM, LIRS and AMP were obtained using simulators

from their original authors respectively. We implemented

the ARC algorithm according to the detailed pseudocode

provided in [26]. We also implemented the PCC simu-

lator and our RACE simulator by modifying the UBM

simulator code. The UBM’s cache management scheme

based on the notion of marginal gain is used in PCC

and RACE without any modification, which allows an

effective and fair comparison of the pattern detection

accuracies of UBM, PCC, and RACE.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
it 

ra
te

Cache size (MB)

OPT
RACE
UBM
PCC
AMP
LIRS
ARC
LRU

Fig. 7. Hit ratios for cscope.

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it 

ra
te

Cache size (MB)

OPT
RACE
UBM
PCC
AMP
LIRS
ARC
LRU

Fig. 8. Hit ratios for gcc.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
it 

ra
te

Cache size (MB)

OPT
RACE
UBM
PCC
AMP
LIRS
ARC
LRU

Fig. 9. Hit ratios for gnuplot.

7



The experimental results on these workloads, given in

Figures 7, 8 and 9 show that RACE is more robust than

all other algorithms. RACE can successfully overcome

the drawbacks of LRU and improve its absolute hit ratios

by as much as 52.0%, 37.3% and 45.9% in cscope, gcc

and gnuplot respectively. Compared with other state-of-

the-art pattern-detection based schemes, RACE outper-

forms UBM, PCC and AMP by as much as 6.0%, 21.5%
and 12.4%, with an average of 3.0%, 7.4% and 8.3%,

across all traces, respectively. In the cscope trace, RACE

is 1.0% inferior to PCC on average due to the following

fact: Although RACE correctly classifies files accessed

at the end of first iteration as looping, these files are only

accessed twice, as shown in Figure 4, and RACE wastes

partial memory by caching them. Compared with the

state-of-the-art recency/frequency based schemes, RACE

consistently beats ARC in all workloads and outperforms

LIRS in most workloads except cscope and gcc. In the

cscope and gcc traces, RACE is on average 1.1% and

0.7% inferior to LIRS in absolute hit ratio. Since RACE

improves the hit ratios of LIRS with an average of

6.0% over the eight workloads, we believe that such

slight performance degradation in cscope and gcc is not

severe. The gcc workload is extremely LRU-friendly,

in which 89.4 MB data is accessed and a LRU cache

with a size of 1.5MB can achieve a hit ratio of 86%.

It is our future work to avoid such slight performance

degradation by improving our detection algorithm or by

incorporating LIRS into RACE to manage the cache

partitions. In sum, RACE improves the hit ratios of

UBM, PCC, AMP, LIRS, ARC, and LRU relatively

by 18.1%, 25.9%, 39.8%, 43.2%, 50.9% and 60.5%
on average. This superiority indicates that our RACE

scheme is more robust and adaptive than any of the other

six caching schemes and also proves our assumption that

the future access patterns are highly correlated with both

program contexts and requested data.

VI. CONCLUSIONS

In this paper, we propose a novel and simple

block replacement algorithm called RACE. Simulation

study conducted under three real-application workloads

demonstrated that RACE, through its exploitation of

the detection mechanism in both the continuous block

address space within files and the discrete block ad-

dress space in program contexts, is able to accurately

detect reference patterns from both the file level and the

program context level and thus significantly outperforms

other state-of-the-art recency/frequency based algorithms

and pattern-detection based algorithms.

Our study has two limitations. First, we have not

implemented our design and evaluated it in real systems.

Secondly, in order to achieve a direct comparison of pat-

tern detection accuracy, RACE, as well as PCC, uses the

marginal gain functions proposed in the UBM scheme

to dynamically allocate the buffer cache. We believe that

a more effective allocation scheme will be helpful to

further improve the hit ratios. In the future, we will

implement RACE into Linux systems and investigate

other efficient allocation schemes.

REFERENCES

[1] M. J. Bach, The design of the UNIX operating system. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.

[2] A. S. Tanenbaum and A. S.Woodhull, Operating Systems Design
and Implementation. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1987.

[3] R. W. Carr and J. L. Hennessy, “WSCLOCK - a simple and effec-
tive algorithm for virtual memory management,” in Proceedings
of the eighth ACM symposium on Operating systems principles
(SOSP). New York, NY, USA: ACM Press, 1981, pp. 87–95.

[4] J. Choi, S. H. Noh, S. L. Min, and Y. Cho, “An implementation
study of a detection-based adaptive block replacement scheme,”
in Proceedings of the 1999 USENIX Annual Technical Confer-
ence, June 1999, pp. 239–252.

[5] C. Gniady, A. R. Butt, and Y. C. Hu, “Program-counter-based
pattern classification in buffer caching.” in Proceedings of 6th
Symposium on Operating System Design and Implementation
(OSDI), Dec. 2004, pp. 395–408.

[6] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim, “A low-overhead, high-performance unified
buffer management scheme that exploits sequential and looping
references,” in 4th Symposium on Operating System Design and
Implementation (OSDI), Oct. 2000, pp. 119–134.

[7] F. Zhou, R. von Behren, and E. Brewer, “AMP: Program context
specific buffer caching,” in Proceedings of the USENIX Technical
Conference, Apr. 2005.

[8] L. A. Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–
101, 1966.

[9] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evalu-
ation techniques for storage hierarchies.” IBM Systems Journal,
vol. 9, no. 2, pp. 78–117, 1970.

[10] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The lru-k page
replacement algorithm for database disk buffering,” in Proceed-
ings of the 1993 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM Press, 1993,
pp. 297–306.

8



[11] T. Johnson and D. Shasha, “2Q: A low overhead high perfor-
mance buffer management replacement algorithm,” in Proceed-
ings of the 20th International Conference on Very Large Data
Bases (VLDB). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1994, pp. 439–450.

[12] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim, “On the existence of a spectrum of policies that
subsumes the least recently used (LRU) and least frequently used
(LFU) policies,” in Proceedings of the 1999 ACM SIGMETRICS
International conference on Measurement and Modeling of Com-
puter Systems, 1999, pp. 134–143.

[13] Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: simple and
effective adaptive page replacement,” in Proceedings of the 1999
ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, New York, NY, USA, 1999,
pp. 122–133.

[14] Y. Zhou, J. Philbin, and K. Li, “The multi-queue replacement
algorithm for second level buffer caches,” in Proceedings of
the General Track: 2002 USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 2001, pp. 91–104.

[15] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance,” in Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, June 2002, pp.
31–42.

[16] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low over-
head replacement cache,” in Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST), Mar. 2003,
pp. 115–130.

[17] C. Ding and Y. Zhong, “Predicting whole-program locality
through reuse distance analysis,” in PLDI ’03: Proceedings of
the ACM SIGPLAN 2003 conference on Programming language
design and implementation. New York, NY, USA: ACM Press,
2003, pp. 245–257.

[18] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “Implementation
and performance of integrated application-controlled file caching,
prefetching, and disk scheduling,” ACM Transactions on Com-
puter Systems, vol. 14, no. 4, pp. 311–343, 1996.

[19] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka, “Informed prefetching and caching,” in Proceedings
of the fifteenth ACM symposium on Operating systems principles
(SOSP). New York, NY, USA: ACM Press, 1995, pp. 79–95.

[20] T. M. Madhyastha and D. A. Reed, “Learning to classify parallel
input/output access patterns,” IEEE Trans. Parallel Distrib. Syst.,
vol. 13, no. 8, pp. 802–813, 2002.

[21] G. Glass and P. Cao, “Adaptive page replacement based on mem-
ory reference behavior,” in Proceedings of the ACM SIGMET-
RICS international conference on Measurement and Modeling of
Computer Systems. New York, NY, USA: ACM Press, 1997,
pp. 115–126.

[22] K. So and R. N. Rechtschaffen, “Cache operations by MRU
change.” IEEE Trans. Computers, vol. 37, no. 6, pp. 700–709,
1988.

[23] P. Cao, E. W. Felten, and K. Li, “Application-controlled file
caching policies,” in USENIX Summer Technical Conference,
June 1994, pp. 171–182.

[24] J. L. Steffen, “Interactive examination of a C program with
Cscope,” in Proceedings of Winter USENIX Technical Confer-
ence, Jan. 1985.

[25] J. Song and Z. Xiaodong, “Making LRU friendly to weak locality
workloads: A novel replacement algorithm to improve buffer
cache performance,” IEEE Transactions on Computers, vol. 54,
no. 8, pp. 939–952, 2005.

[26] N. Megiddo and D. S. Modha, “One up on LRU,” ;login: - The
Magazine of the USENIX Association, vol. 4, no. 18, pp. 7–11,
2003.

Algorithm 1 Pseudocode for RACE pattern detection
algorithm.

1: RACE(inode, block, PC, currT ime)
2:

3: /* Updating the file hash table */
4: Find an entry f in the file hash table such that

f.inode == inode and f.start ≤ block ≤ f.end;
5: if f �= NULL then
6: lastT imenew = currT ime − (block − f.start);

/* infer the last reference time of the block start
*/

7: f.period = α·f.period+(1−α)·(lastT imenew−
f.lastT ime); /* exponential average */

8: f.lastT ime = lastT imenew;
9: else

10: Find an entry f2 in the file hash table, such that
f2.inode == inode and f2.end == block − 1;

11: if f2 �= NULL then
12: f2.end = block; /* extend existing sequence */
13: else
14: Insert (inode, block, block, currT ime, ∞) into

the file hash table; /* start a new sequence */
15: end if
16: end if
17:

18: /* Updating the PC hash table */
19: if PC is not in the PC hash table pcTable then
20: Insert (pc, 0, 0, ∞) into pcTable;
21: else
22: if f �= NULL then
23: pcTable[PC].reused + +;
24: pcTable[PC].fresh−−;
25: pcTable[PC].period = β · period + (1 − β) ·

pcTable[PC].period; /* exponential average */
26: else
27: pcTable[PC].fresh + +;
28: end if
29: end if
30:

31: /* Detecting pattern */
32: if f �= NULL then
33: return(“looping”, f.period);
34: else if pcTable[PC].reused ≥ pcTable[PC].fresh

then
35: return(“looping”, pcTable[PC].period);
36: else if pcTable[PC].fresh > threshold then
37: return(“sequential”);
38: else
39: return(“other”);
40: end if

9


