
Energy and Thermal Aware Buffer Cache Replacement Algorithm

Jianhui Yue, Yifeng Zhu, Zhao Cai, Lin Lin

Department of Electrical and Computer Engineering,
University of Maine, Orono, USA

{jyue, zhu, zcai, llin}@eece.maine.edu

Abstract—Power consumption is an increasingly impressing
concern for data servers as it directly affects running costs and
system reliability. Prior studies have shown most memory space
on data servers are used for buffer caching and thus cache
replacement becomes critical. Temporally concentrating memory
accesses to a smaller set of memory chips increases the chances
of free riding through DMA overlapping and also enlarges the
opportunities for other ranks to power down. This paper proposes
a power and thermal-aware buffer cache replacement algorithm.
It conjectures that the memory rank that holds the most amount
of cold blocks are very likely to be accessed in the near future.
Choosing the victim block from this rank can help reduce the
number of memory ranks that are active simultaneously. We use
three real-world I/O server traces, including TPC-C, LM-TBF
and MSN-BEFS to evaluate our algorithm. Experimental results
show that our algorithm can save up to 27% energy than LRU
and reduce the temperature of memory up to 5.45oC with little
or no performance degradation.

Index Terms—Buffer cache, memory energy, data servers

I. INTRODUCTION

In order to bridge the ever-widening gap between disk and
processor speeds, high-end storage servers often require a
large-capacity main memory. For example, the IBM Bluegene
at LLNL has 32 TB [1] and up to 2 TB can be installed on a
single server [2]. Previous studies [3], [2], [4] have shown that
main memory is one of major sources of power consumption.
It is believed that memory energy consumption is 50% more
than processor power on many production servers [5]. In
addition, memory can also consume more power than hard
disks. For example, in a representative high-end server with
3.8 TB memory and 115 TB local disks [6], the disks consume
6KW while the memory takes 19KW, according to a validated
power estimation tool [7]. Large energy consumption not
only increases running costs, but more importantly, raises
the temperature of server components and thus reduces their
reliability. As the memory capacity continues to increase
rapidly to alleviate the I/O bottleneck, its energy efficiency
becomes a pressing concern, especially for high-density racks
and blade servers.

Buffer cache replacement algorithms play an important role
in conserving memory energy, since buffer cache takes more
than 77% of the total available memory on a PC desktop
frequently and much more on a server [8]. Replacement algo-
rithms influence the memory energy from two sometimes con-
flicting aspects: (1) algorithms with high hit rates help shorten
the overall running time and directly reduce the energy; (2)
algorithms decide which data blocks to be evicted and thus

determine the access sequence and utilization of individual
memory chips, which eventually influences the opportunities
of power saving for each chips. The power saving techniques
considered in this paper includes (1) dynamically setting a
memory chip to a low-power mode if idling longer than some
idle-time limit and (2) DMA overlapping that allows a memory
chip to perform multiple DMA I/Os simultaneously to improve
its throughput and reduce its active time.

Most existing replacement algorithms only aim to maximize
cache hit rates and ignore the current power status of memory
chips when selecting victim blocks upon cache misses. Energy
saved due to higher hit rates and shorter running time may not
offset the extra energy cost when keeping more memory chips
active simultaneously. This observation motivates us to study
new replacement algorithms that optimize the tradeoff between
cache hit rates and memory energy-efficiency.

In this paper, we propose a new energy- and thermal-aware
buffer cache replacement algorithm that saves energy and
reduces chip temperature with no or little sacrifice to cache hit
rates. The basic idea of our algorithm is to select victim blocks
from the chip that very likely holds the maximum number
of least recently used blocks. As a result, our algorithm can
naturally cluster most I/O requests to a small set of active
memory chips and hence increase the opportunity for the other
chips to power down. At the same time, it makes no or little
degradation to hit rates when comparing with LRU. Instead of
evicting out the block that will be accessed potentially in the
farthest future, our algorithm evicts the one that are suboptimal
in terms of hit rates but potentially has a larger energy saving.
Our algorithm differs from existing studies [2], [4], [8], [9],
[10], [11], [12] in that ours does not rely on data migration
and thus has much less bookmarking and running overheads.

The rest of this paper is organized as follows. Section II
briefly describes the background of power-aware memory
chips, Fully Buffer DIMM, and DMA overlapping. Section III
presents our energy-efficient buffer cache management algo-
rithm. Section IV gives our evaluation methodology and sim-
ulation results. The related works are discussed in Section V.
Section VI concludes the paper.

II. BACKGROUND

A. DDR2 DRAM Memory

In order to reduce DRAM power consumption, nowadays
DDR2 chips offer a number of energy states, including
read/write, precharge, power down and self refresh. A DRAM
system consists of a set of ranks and each rank can be9781-4244-7153-9/10/$26.00 c©2010 IEEE

independently set to one of these states. In the read/write
state, the data is accessed and a rank in this state has the
largest power consumption rate. In order to activate a rank
with a row to reading or writing, the rank must be precharged
so that the read or write can start at the next clock edge.
In the power down state, the rank powers off I/O buffer,
sense amplifiers and row/column decoders to conserve energy
and thus it cannot access data before switching back to the
precharge state. In addition, DRAM must periodically refresh
stored data to prevent data loss due to charge leakage. The
transition from a lower power state to a higher one causes
some time delay for synchronization.

B. FB-DIMM (Fully Buffered DIMM)

FB-DIMM is a widely used DRAM technology to increase
reliability, speed and density of memory systems. It introduces
an advanced memory buffer (AMB) between the memory
module and the memory controller including write link and the
other read link. AMB acts as a pass-through switch. With this
architecture, each data/command frame targeted to one specific
memory module pass through every AMB in this channel,
which makes AMB consume extra power.

C. DMA Overlapping

Direct Memory Access (DMA) has been widely used to
transfer data blocks between main memory and I/O devices
including disks and network. Fig. 1 gives an example of disk-
network datapath on a storage server when cache misses occur
for two external I/O requests A and B received from the
network. The datapath consists of four steps from 0 to 3.
When a read request arrives through a network interface (NIC),
the server first performs data address translation and then
checks whether desired data blocks are stored in the main-
memory buffer cache. If the target data are in the memory,
the host processor on the storage server initiates a network
DMA operation to transfer the data out directly from the
main memory through NIC. If they are not, the processor
first performs a disk DMA transfer to copy the data from
disks to the main-memory buffer cache, and then the processor
conducts a network DMA transfer to send the data out to the
client applications. For write requests, the datapaths are similar
but flow in the reverse direction.

On a storage server, recent DMA controllers, such as
Intel’s chipset E8870 and E7500 [13], allow multiple DMA
transfers on different buses to access the same memory module
simultaneously in a time multiplexing fashion. Typically, the
peak transfer rate of a memory chip can be a multiple factor of
the bandwidth of the PCI bus. For example, the transfer rate of
most recent DDR2 SDRAM is up to 5.3GB/s, while a typical
PCI-X bus only gives a maximum rate of 1.064GB/s and the
second-generation SATA disk DMA throughput is only 300
MB/s.

Multiplexing various slow disk and network I/Os to the
same memory rank can reduce the waste of active memory
cycles and hence save memory energy. Most DMAs move

Disk DMA

Channels

Memory Chips

Disk Array

Network DMA

Channels

Network

I/O Requests

Network

Adapters

Network I/O

DMA

Disk I/O

DMA
A1

B1 A2
B2

B3

A3

B0

A0

Fig. 1. I/O datapaths when cache misses occur for two read requests A and
B on a storage server (following steps from 0 to 3)

a large amount of data, usually containing multiple 512-
byte disk sectors or several KByte memory pages. Without
multiplexing, a memory rank is periodically touched during a
DMA transfer and such access period is too short to justify
the transition to a low-power mode [2], [4], [14] As a result,
significant amount of active energy is wasted. However, when
DMAs on different I/O buses are coordinated to access the
same memory rank, such energy waste can be reduced. For
example, when the concurrent requests A and B in Fig. 1 are
directed to the same memory rank, the DMA transfers A1in
and B1 can overlap with each other in time and accordingly
one of them takes a “free ride” and consumes zero background
energy, without causing any performance penalty. Similarly,
A2 and B2 can also overlap with each other if they use
different DMA channels.

III. ENERGY AND TEMPERATURE AWARE REPLACEMENT

ALGORITHM

The Least Recently Used (LRU) algorithm or its clock-
based approximation is used in most operating systems to man-
age buffer cache due to the advantages of simple implemen-
tation and constant space and time complexity. Accordingly,
this paper focuses on improving the energy efficiency based
on LRU, without losing its simplicity. Specifically, we design
a new variant of LRU that optimizes the tradeoff between
cache hit rates and memory energy efficiency. Our basic idea
is generic and can be applied to many other cache replacement
algorithms too.

Our previous study [15], [16] shows that the interplay
among the following three factors appears to be the most
important for memory energy saving: the cache performance
in terms of hit rates, the cache’s ability to temporally align
memory accesses to the same chips, and the cache populating
schemes to allocate buffers. The cache hit rates can directly
translate performance gain into energy saving by reducing
the running time. The cache populating schemes perform
buffer allocation and affect access locality at the chip level.

The strategies used to allocate buffers before the cache is
full, called cache populating schemes. Ref. [17] advocates
sequential placement in virtual memory. However, high-end
data servers usually run data-intensive applications and page
allocation schemes then have little impacts to the memory
energy efficiency. This is because few page allocations are
performed after the buffer cache is full. As a result, the cache
performance in terms of hit rates and the clustering capability
are the most important factors for data servers.

For a given sequence of memory I/O stream, the order in
which memory ranks are accessed are in fact determined by
the cache replacement algorithm. Upon a cache miss, LRU
replaces the block whose last reference was the earliest among
all cached blocks. The key weakness of LRU is that it tends to
access memory ranks in a random order. This leads to energy
inefficiency from two aspects: (1) too many memory ranks
are accessed simultaneously and few have chances to enter to
a low power state; (2) less DMA overlap operations can be
performed since the target data of different DMAs tend to be
located in different memory ranks.

We design a new algorithm based on LRU to better save
memory energy. The basic idea is to limit cache replace
operations to a small set of memory ranks, without decreasing
much hit rates. When a cache miss occurs, instead of replacing
the block that is the least likely to be accessed in the future, we
choose to replace a block that meets two requirements: (1) the
block is not likely to be accessed very soon and (2) victim rank
has the most cold blocks at decision time. Our solution is to
first identify those blocks that are not accessed very frequently,
i.e., cold blocks, and then evict cold block from same victim
rank until no sufficiently stale blocks remain it.

Our algorithm, as summarized in Alg. 1, consists of two
steps: first identify a victim memory rank and then choose a
victim block to be replaced from this memory bank. During the
first step, this algorithm scans search window blocks starting
from the LRU bottom and chooses the rank with the largest
number of blocks as the victim rank. Here search window
is a predefined constant. Among all blocks that are located in
the victim rank and are among the predefined bottom window
of the LRU stack (i.e., threshold window), the least recently
accessed one is chosen as the victim block. Note that the same
victim rank is repeatedly chosen to be evicted until this rank
has no more data blocks within the bottom LRU stack window.
In another word, the array rank cnt is not updated for every
cache miss; it is only get updated if last victim cnt reaches
zero.

Compared with LRU, our algorithm selects the victim
rank much less randomly and thus avoids touching a large
set of memory ranks simultaneously. This creates a larger
opportunity for the other memory banks to enter low power
modes to conserve energy and reduce temperature. In order to
minimize the reduction in cache hit rates, this algorithm wisely
chooses the victim rank as the one that has the largest number
of blocks within a predefined distance from the bottom of the
LRU stack. After the victim rank is identified, the victim block
will be the least recently used block within the victim rank.

We call this algorithm Bottom Most.

Algorithm 1 Bottom Most
/* Global variables : */
/* last victim rank: last victim rank */
/* last victim cnt: # of un-replaced blocks in last victim
rank that are in the bottom search window of the LRU
stack */
/* stack: LRU stack */
/* rank cnt[i]: # of blocks in bank i that are in the bottom
search window of the LRU stack */
/* LRU block: the least recently used block in the stack*/

/* Local variables */
R: the total number of memory ranks
N : the total number of blocks in the LRU stack

/*Step 1: choosing the victim rank */
if last victim cnt == 0 then

/*scan search window blocks starting from the LRU
bottom and find victim rank that has the largest number
of blocks within this window */
for i = 1 to R, do rank cnt[i] ⇐ 0, end for
for i = 1 to search window do
item⇐ stack[N − i]
rank cnt[item.rank] + +

end for
victim cnt⇐ max(rank cnt[i]), 0 ≤ i ≤ R
victim rank is the i that achieves the maximum above
last victim rank ⇐ victim rank
last victim cnt⇐ victim cnt− 1

else
victim rank ⇐ last victim rank

end if

/*Step 2: choosing the victim block */
for i = 0 to ThresholdWindow do
b⇐ stack[N − i]
if b.rank == victim rank then
victim block ⇐ b
last victim cnt⇐ last victim cnt− 1
return victim block

end if
end for
/* Otherwise, degrade to standard LRU */
return LRU block

Fig. 2 gives an example that compares Bottom Most
and LRU when the access sequence is {X,Y, Z}. For the
simplicity, assume that the memory has only three ranks and
each rank can store only three blocks. We also assume that
the interval between the request for block X and the request
for block Y is shorter than DRAM power down threshold. In
this example, both search window length and thresh window
are 5. LRU chooses victim blocks A, B and C, respectively
for the missed request X , Y and Z only taking their recency

Top

Bottom

H

B

C

D

E

G

J

A

I

Least recently

used block

Most recently

used block

search_window = 5

LRU Stack

A B C

D G H

E I J

Rank 0 Rank 2Rank 1

Memory Physical Layout

(a)

Requst-blk Victim-blk Victim-rank Victim-blk Victim-rank

X

Y

Z

Total # of

touched ranks

A 0 A 0

B 1 D 0

C 2 E 0

3 1

LRU Bottom-Most

(b)

Fig. 2. A simple example compares LRU and Bottom Most. Assume the memory has three ranks and each rank can hold three blocks. The LRU stack
has nine blocks. The table compares the total number of memory ranks accessed for a given access sequence {X, Y, Z}.

into accounting. As a result, three memory ranks are accessed
during this access sequence. In the Bottom Most algorithm,
A is chosen as the victim block for two reasons: (1) rank 0 has
more blocks in the LRU bottom window than rank 1 and rank
2, and (2) A is the least recently accessed among all blocks
of rank 0. When Y is missed, the victim block is D because
rank 0 because it still has two blocks in the search window
and D is the least recently accessed block in rank 0. In sum,
LRU activates three ranks while Bottom Most activates only
one rank in this example.

IV. PERFORMANCE AND ENERGY EVALUATION

This section presents the evaluation of our algorithm via
trace-driven simulations.

A. Simulation framework

DMA Running Queue
DMA

Wating

Queue

Disk

Waiting

Queue

Cache

Algorithm

Disksim Memsim

I/O Trace

NIC DMA request if cache hitdisk request if cache miss

NIC DMA Req when disk

DMA completes

disk DMA request

Issue when resource available

memory

requestrequest

schedule

disk

callback

callback to

retire request

Fig. 3. Event-driven simulation framework

The simulation framework is composed of three major com-
ponents: cache simulator, disk array simulator, and memory
simulator. Disksim [18], a well validated disk array simulator,
is incorporated to precisely emulate the timing of I/O traffic.
These three components interact with each other through two
event queues and two request queues shown in Fig. 3.

Disksim APIs with callback functions are used to generate
disk I/O events and place these events into the disk event queue
waiting for DMA operations. The memory simulator and the
cache simulator coordinate with each other to determine the
chip address. Before the cache is full, the memory simulator
resolves the chip address of each missed block based on
populating schemes. When the buffer cache is full, the cache
simulator determines logically the victim block. For each
chip the memory simulator simulates the DMA overlapping
operations and maintains the power state transitions based on
a timeout mechanism used in Ref. [4].

When a request is issued from the I/O trace, the cache
simulator generates a disk access event, sends it to the disk
request queue if the cache is missed. A network DMA request
event is then generated and sent to the DMA request queue. A
DMA request is served if the target DMA channel is available
and the target memory chip is active. The DMA request queue
emulates DMA overlapping and contentions.

This paper assumes that a separate set of memory chips are
dedicated for kernel codes, process pages, stacks and heaps.
The energy of these dedicated chips is not studied in this
paper. Our memory simulator only calculates the energy of
memory chips used as buffer cache, which typically takes
a large portion of memory on data servers. We share this
assumption with previous studies on memory energy [4], [8].

It was a challenge for us to validate our simulation frame-
work since it is very difficult to accurately measure the
memory energy consumption in real systems [8], [19]. First
of all, the trace collector’s memory accesses cannot be easily
separated out and thus interfere the native memory traffic.
Second we do not have specifically designed servers that allow
the direct measurement of energy consumed by memory chips.
Third, no RTL-level memory simulator is publically available
for us to validate our simulation framework. IBM’s memory
simulator [19] is validated against a proprietary RTL simulator
that contains 1.5 million lines of VHDL codes. To overcome
these challenges, Ref. [8] use the product of memory access

Parameter value

rank powerdown delay 3 memory cycles
rank powerup delay 10 memory cycles
rank powerdown threshold 30 memory cycles
tRP: Row Precharge time 15ns
tRCD: Row active to row active delay 15ns
tRAS : Row Activation time 45ns
tCAS: Delay to access a certain column 15ns
IDD0: Active precharge current 80mA
IDD2P: Precharge powerdown current 7mA
IDD2N: Precharge standby current 45mA
IDD3N: Active standby current 55mA
IDD3P: Active powerdown current 240mA
IDD4R: Burst read current 145mA
IDD4W:Burst write current 140mA
IDD5: Burst refesh current 170mA
IDD6: Self refresh current 7mA
AMB Power1: the last AMB static power 2W
AMB Power: other AMB static power 2.55W
AMB dynamic power for local traffic 3.55W
AMB dynamic power for forwarding traffic 2.8W
AMB read bandwidth 6.4GB/s
AMB write bandwidth 3.2GB/s
of ranks per DIMM 2
of DIMMS per channel 8
Rank capacity 256MB
Vdd: Supply voltage 1.8v

TABLE I
DRAM PARAMETERS

time duration and the requested data size to approximate the
real energy consumption. However, this approach cannot be
used in our study since it ignores the energy saved through
DMA overlapping.

B. Simulation parameters

The data server simulated in this paper is configured with
6 network adaptors (NIC) and 12 disks with exception for
the TPC-C trace which has 305 disks. All disks and NICs
are attached to one 133 MHz PCI-X bus. A DMA request is
performed on the corresponding PCI-X bus that has the target
device. Due to the lack of client information in the I/O traces,
we assign each incoming I/O request to a NIC in a round-
robin fashion. The server response a request through assigned
NIC. The simulator emulates FB-DIMM with DDR2 memory
whose parameters are given in Table I. The simulator precisely
models the memory access timing and power consumption
complying with DRAM power module published by Micron
Technology Inc.

We follow the method and parameters give in Ref. [20] to
model the dynamics of DIMM and AMB temperature. Equa-
tion (1) and (2) are used to compute the stable temperatures
for AMB and DRAM, respectively [21]. Besides influenced
by the ambient temperature, both AMB and DRAM power
dissipation can affect each other’s temperature by mutual
thermal resistance ψAMB DRAM and ψDRAM AMB .

We use the same method presented in Ref. [22], [23]
to dynamically update all temperatures (see Equation (3)).
Basically, all temperatures are treated in the same way as
the voltage in an electrical RC circuit. In our simulator, the
thermal resistance from DRAM and AMB to the ambient is
11.2oC/W and 4.9oC/W , respectively. The thermal resis-
tance is 4.3oC/W from DRAM to AMB and 5.3oC/W from

Trace Working Set(GB) Traffic(GB) Duration(Sec)
TPC-C 66.53 465.3 360
LM-TBE 143.9 205.5 3604
MSN-BEFS 10.58 18.05 603

TABLE II
TRACE STATISTICS

AMB to DRAM. The ambient temperature to set to be 85oC
in all experiments.

TAMB = TA + PAMB ∗ ψAMB

+PDRAM ∗ ψDRAM AMB (1)

TDRAM = TA + PAMB ∗ ψAMB DRAM

+PDRAM ∗ ψDRAM (2)

T (t+ Δt) = T (t) + (Tstable − T (t)) ∗ (1 − e−
Δt
τ) (3)

where TAMB and TDRAM are the temperature of AMB and
DRAM; TA is the ambient temperature; ψAMB is thermal
resistance from the AMB to ambient; ψDRAM is thermal
resistance from DRAM to ambient.

We simulate the traces by replaying all I/O events at pre-
determined time instants specified in the traces, independent
of the performance of the memory hierarchy. This approach
is used mainly because all traces that we have access to do
not record the dependence between request completion and
subsequent I/O arrivals. This is one of the major limitations
of this study. Three real-life data server traces are used,
including TPC-C, LM-TBE, and MSN-BEFS [24]. All these
traces were collected in 2008. TPC-C is transaction processing
workload. The LM-TBE is I/O traces of image tile back-end
server in the Live Map. The MSN-BEFS trace is collected for
the MSN storage server which provides Live data services.
Table II summaries the statistics of these three traces. In our
experiments, we make workload more intensive by reducing
arrival intervals by a factor of ten.

The default search window and threshold window in
the bottom-most replacement algorithm are 1024. The default
data block size is 64KB, a typical value in NFS3 file systems
on data servers.

C. TPC-C Workload

Under the TPC-C workload, we conclude that our algorithm
can achieve significant energy savings with very little scarifi-
cation to the performance in terms of hit rates. As shown in
Fig. 4(d), the average energy saving across different cache
sizes is 22% compared with LRU. The maximum energy
saving over LRU can be as much as 27% at cache size of
4.5GB. It is interesting that the energy saving curve reaches
the lowest point when the cache size is 4.5 GB. There are
two conflicting factors to effect theBottom Most algorithm’s
energy efficiency. As the number of memory ranks increases,
our algorithm has a larger opportunity to choose a better
victim rank. However, increasing memory capacity makes
memory ranks spend more time in power down mode and
hence the percentage of active energy reduction achieved by
our algorithm becomes smaller. As a result, as the cache size

.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Cache Size (GB)

H
it

R
a
te

LRU
bottom_most

(a) Cache Hit Rates

.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
1400

1500

1600

1700

1800

1900

2000

2100

Cache Size (GB)

R
u
n
n
in

g
 T

im
e
 (

s)

LRU
bottom_most

(b) Running Time

.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0.5

1

1.5

2

2.5

3

3.5

R
a
tio

 o
f
C

lu
st

e
r

A
b
ili

ty
 r

a
te

d
 t
o
 L

R
U

Cache Size (GB)

(c) Cluster Ability Rated to LRU

.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Cache Size (GB)

E
n

e
rg

y
(J

)

LRU
bottom_most

0

5

10

15

20

25

30

P
re

ce
n

ta
g

e
 o

f
E

n
e

rg
y

S
a

vi
n

g

% energy saving

(d) Total Energy Consumption

.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
90

95

100

105

110

115

120

125

Cache Size (GB)

A
ve

ra
g
e
 T

e
m

p
e
ra

tu
re

 (o
C

)

LRU_AMB
bottom_most_AMB
LRU_DIMM
bottom_most_DIMM

(e) Average Temperature

.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

10

20

30

40

50

60

70

80

90

100

Cache Size (GB)

P
e
rc

e
n
ta

g
e
 o

f
T

im
e

LRU_active
bottom_most_active
LRU_idle
bottom_most_idle

(f) Time Components

Fig. 4. Comparison of cache hit rates,memory temperature and total energy consumption using workload TPC-C .

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Cache Size (GB)

H
it

R
a
te

LRU
bottom_most

(a) Cache Hit Rates

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
355

356

357

358

359

360

361

Cache Size (GB)

R
u
n
n
in

g
 T

im
e
 (

s)

LRU
bottom_most

(b) Running Time

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

R
a
tio

 o
f
C

lu
st

e
r

A
b
ili

ty
 r

a
te

d
 t
o
 L

R
U

Cache Size (GB)

(c) Cluster Ability Rated to LRU

.5 .75 1 1.251.51.75 2 2.252.52.75 3 3.253.53.75 4
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Cache Size (GB)

E
n
e
rg

y
 (

J
)

LRU
bottom_most

13

14

15

16

17

18

19

20

21

P
re

c
e
n
ta

g
e
 o

f
E

n
e
rg

y
 S

a
v
in

g

% energy saving

(d) Total Energy Consumption

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
85

90

95

100

105

110

115

Cache Size (GB)

A
ve

ra
g

e
 T

e
m

p
e

ra
tu

re
 (o

C
)

LRU_AMB
bottom_most_AMB
LRU_DIMM
bottom_most_DIMM

(e) Average Temperature

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
0

10

20

30

40

50

60

70

80

90

100

Cache Size (GB)

P
e
rc

e
n
ta

g
e
 o

f
T

im
e

LRU_active
bottom_most_active
LRU_idle
bottom_most_idle

(f) Time Components

Fig. 5. Comparison of cache hit rates, memory temperature and total energy consumption using workload LM-TBE .

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cache Size (GB)

H
it

R
a
te

LRU
bottom_most

(a) Cache Hit Rates

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
64

66

68

70

72

74

76

78

Cache Size (GB)

R
u

n
n

in
g

 T
im

e
 (

s)

LRU
bottom_most

(b) Running Time

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

R
a
tio

 o
f
C

lu
st

e
r

A
b
ili

ty
 r

a
te

d
 t
o
 L

R
U

Cache Size (GB)

(c) Cluster Ability Rated to LRU

.5 .75 1 1.251.51.75 2 2.252.52.75 3 3.253.53.75 4
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Cache Size (GB)

E
n
e
rg

y
(J

)

LRU
bottom_most

4

5

6

7

8

9

10

11

12

13

14
P

re
ce

n
ta

g
e
 o

f
E

n
e
rg

y
S

a
vi

n
g

% energy saving

(d) Total Energy Consumption

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
90

95

100

105

110

115

120

Cache Size (GB)

A
ve

ra
g
e
 T

e
m

p
e
ra

tu
re

 (o
C

)

LRU_AMB
bottom_most_AMB
LRU_DIMM
bottom_most_DIMM

(e) Average Temperature

.5 .75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4
0

10

20

30

40

50

60

70

80

90

100

Cache Size (GB)

P
e
rc

e
n
ta

g
e
 o

f
T

im
e

LRU_active
bottom_most_active
LRU_idle
bottom_most_idle

(f) Time Components

Fig. 6. Comparison of cache hit rates, memory temperature and total energy consumption using workload MSN-BEFS .

increases, such two conflicting factors interplay with each year
and the energy efficiency achieve an optimal value under some
certain cache size.

Due to large energy saving and accordingly less hit dissipa-
tion, the temperature of AMB and DIMM is decreased signifi-
cantly (see Fig. 4(e)). The maximum temperature reduction for
DIMM and AMB is 5.45oC and 4.82oC, respectively, while
the average reduction is 4.59oC and 4.03oC. The reason why
our algorithm reduces more temperature for the DIMM than
AMB is that every memory request packet is relayed through
AMBs in other DIMM within one channel. And for the same
reason, AMB temperature is higher than DIMM.

When comparing the average hit rate across all experiments
under different cache sizes, bottom most is only inferior than
LRU by 0.03% (see Fig. 4(a)). The completion time of LRU
and bottom most are almost the same under all experiments.
This confirms that our algorithm does not cause any slowdown
or performance degradation for TPC-C workload.

We use the overlap time to measure the capability of
clustering I/O onto the same rank for better opportunities of
DMA overlapping. For a given workload, a larger overlapping
time means stronger clustering capability. The overlap ability
is defined here as the ratio of two algorithms’ overlap time
and larger value means stronger overlap ability. Fig. 4(c)
shows that the overlap ability of our algorithm against LRU.
The results confirm that our algorithm overlap ability is

always stronger than LRU under all experiments under TPC-C
workload. Our algorithm clusters consecutively missed blocks
to one victim rank and thus creates more DAM overlap
operations than LRU.

Fig. 4(f) shows the percentage of active time and idle
time replacement algorithms spend. We have the following
observations. First, as the number of memory ranks increases,
the idle time increases but the active time decreases. Second,
our algorithm’s active time is smaller than LRU’s active time,
and our idle time is larger than LRU’s idle time. Clustering
consecutively missed blocks into a wisely chosen victim rank
contributes to reduced active time and increased idle time.
This time breakdown also confirms Bottom Most algorithm
outperforms LRU in terms of energy efficiency.

D. LM-TBF Workload

The energy simulation results under the LM-TBF workload
are given in Fig. 5(d). The energy saving of bottom most
over LRU can reach up to 20% at cache size of 1.5GB, with
an average of 18% over all experiments. We find that when
the memory size is larger than 1GB, the energy efficiency of
Bottom Most is better in experiments when the number of
ranks is even. This is because two ranks share one AMB and
the memory with odd number ranks consumes extra energy in
AMB.

Fig. 5(a) and Fig. 5(b) show that there is no performance
degradation in LM-TBF. The maximum average temperature

reduction are 3.83oC and 3.36oC respectively for AMB and
DIMM. The average of average temperature reduction are
2.8oC and 2.45oC respectively for AMB and DIMM. The
overlap ability comparison in Fig. 5(c) and the time component
comparison in Fig. 5(f) are consist with the energy results.

It is also noted that the completion time under different
cache sizes does not change, as shown in Fig. 5(b). This
is because we use the open model to issue requests from
trace due to being lack of data dependency information in
the original applications. The LM-TBF trace’s requests are not
burst. As a result, the simulation completion time is roughly
the same as the arrival time of the very last request in the
trace.

E. MSN-BEFS Workload

In the MSN-BEFS workload, the same conclusions can
be obtained as in TPC-C and LM-TBF. Compared to LRU,
bottom most achieves an average of 11.0% energy saving,
with a maximum of 13.3% at cache size of 1.5GB (see
Fig. 6(d)). bottom most achieves the same hit rates and com-
pletion time of as LRU, as shown in Fig. 6(a) and Fig. 6(b).
The maximum temperature reduction is 2.49oC and 2.19oC
respectively for AMB and DIMM, with average reduction of
1.98oC and 1.73oC (See Fig. 6(e)).

V. RELATED WORKS

Existing research works of reducing memory energy con-
sumptions can be classified into the software and hardware
approaches.

A. Software approaches to reduce memory power consumption

The memory energy management can be done in three
different areas, including OS, compiler, and database. In the
area of operating systems, the power-aware page allocation [4]
uses the sequential first touch policy to allocate pages accord-
ing to their access order and only activates ranks where the
running process’ pages reside. PAVM [25] clusters a process
pages into as a smaller set of ranks as possible by specifying
the rank which pages are allocated from. After the process
scheduler has chosen the next-to-run process, the PVAM puts
this process’ rank set to be active state while putting other
ranks to low power state for achieving power reduction and
hiding latency caused by powering up low power state rank.
PABC [8] exploits spatial locality in the page access that (1) a
file’s buffer caches are usually accessed together and (2) files
used by a process are most likely accessed together. PABC
clusters buffer cache associated with a file to a small set of
ranks and it also places a process’s user space pages and buffer
pages belonged files accessed by this process to the same set
ranks. Taking advantages of slack in memory demand, the
memory miser [26] power down memory ranks with no data. It
migrates pages between memory ranks and also uses a classic
PID control algorithm to compute the number of high power
ranks serving memory requests.In the compiler area, Ref. [27]
reduces the loop energy consumption which dominates the
memory energy consumption in the embedded applications. It

clusters the data with similar lifetime pattern to same bank to
achieve memory energy saving.In the database area, Ref. [28]
clusters each table’s data into a rank to achieving energy
saving. In addition, we propose two memory energy efficient
buffer cache management schemes in previous research works
[29], [30].

B. Hardware approaches to reduce memory power consump-
tion

The hardware approaches not only exploit exiting low power
states but also investigate new memory organizations to save
energy. Ref. [31] proposes to add a small prefetching cache
in the AMB in order to not only improve performance but
also reduce energy consumption. This energy reduction comes
from the number of row access operations is reduced since
high prefetch cache hit rate saves row access operations. Mini-
rank [32] advocates to increase the bus width of DRAM
devices so that each memory rank actives less DRAM devices
simultaneously. By placing a small cache in the DRAM device,
Ref. [33] cannot only improve performance but also reduce
DRAM energy consumption due to the cache effect. Since
delaying write operations won’t give much penalty to the
overall performance, Ref. [34] proposes to add a write buffer
between the processor and DRAM to improve row buffer hit
rate and thus to reduce DRAM power consumption. Ref. [35]
reduces memory energy saving through DRAM command
scheduling. Each memory cycle, the memory controller checks
each active rank’s activities against all scheduled commands
and issues the power-down command to ranks which won’t
be accessed by the scheduled commands. In order to avoid
consuming the peak-power, Ref. [12] limits the memory
power consumption without exceeding the power budget. The
memory chips are organized as a LRU list according to their
access order and inactive chips will be put into deeper power
states after their idle durations exceed the break-even time.
Ref. [36] proposes changes the interleave degree according
to workload to consume as lower energy as possible without
exceeding the performance degradation.

VI. CONCLUSION AND FUTURE WORK

As increasingly more memory is used on data servers for
buffer caching to bridge the processor/disk speed gap, the
memory energy consumption becomes a pressing concern. To
the best of our knowledge, this paper is the first to study
directly on power aware buffer caching replacement algorithms
without using data migration.

This paper proposes a new generic power- and thermal-
aware algorithm. This algorithm limits cache replacements to
a small set of memory ranks without decreasing much hit rate.
Thus choosing this rank as a victim rank help make memory
chips less randomly touched. This eventually reduces the total
number of ranks that are simultaneously active. While our
strategies can be incorporated many conventional non-power
aware replacement algorithms, we integrate these strategies
into LRU, the most popular algorithm in real systems.

We use three real-world I/O server traces, including TPC-
C, LM-TBF and MSN-BEFS, to evaluate our algorithm. Ex-
perimental results show that our power aware algorithm can
save up to 27% energy, comparing with LRU , and reduce the
temperature of memory up to 5.45oC without performance
degradation. It is important to emphasize that our algorithm
is generic and they provide useful heuristics and insights to
improve the energy efficiency of many other state-of-the-art
replacement algorithms.

We do not consider data migration in this paper. Periodically
migrating data blocks between memory banks can reshape
the memory data layout and may help reduce power. In the
future, we will study migration algorithms to further improve
the memory energy efficiency and reduce the memory runtime
temperature.

ACKNOWLEDGEMENTS

This work is supported by a UMaine Startup Grant,NSF
IIS-0916663, NSF CCF-0937988, and NSF CCF-0621493.

REFERENCES

[1] M. E. Tolentino, J. Turner, and K. W. Cameron, “An implementation
of page allocation shaping for energy efficiency,” in Proceedings of 3rd
Workshop on High-Performance, Power-Aware Computing, April 2007.

[2] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini, “DMA-aware memory
energy management for data servers,” in The Proceedings of the 10th
International Symposium on High-Performance Computer Architecture
(HPCA’06), 2006.

[3] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. W. Keller, “Energy management for commercial servers,” Computer,
vol. 36, no. 12, pp. 39–48, 2003.

[4] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page alloca-
tion,” in ASPLOS-IX: Proceedings of the ninth international conference
on Architectural support for programming languages and operating
systems. New York, NY, USA: ACM Press, 2000, pp. 105–116.

[5] G. Papadopoulos., “Impacts and importance
of energy efficiency: industry viewpoint,”
http://www.energystar.gov/ia/products/downloads/GPapadopoulos Keynote.pdf.

[6] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, and D. D. E.
Long, “File systemworkload analysis for large scale scientific computing
applications,” in MSST ’04: Proceedings of the 21nd IEEE / 13th
NASA Goddard Conference on Mass Storage Systems and Technologies
(MSST’04). Washington, DC, USA: IEEE Computer Society, 2004.

[7] A. Leventhal, “Flash storage memory,” Communication of The ACM,
vol. 51, no. 7, 2008.

[8] M. Lee, E. Seo, J. Lee, , and J. Kim, “Pabc: Power-aware buffer
cache management for low power consumption,” IEEE Transactions on
Computers, vol. 56, no. 4, 2007.

[9] P. Ramamurthy and R. Palaniappan, “Performance-directed energy man-
agement using bos,” SIGOPS Oper. Syst. Rev., vol. 41, no. 1, pp. 66–77,
2007.

[10] V. D. L. Luz, M. Kandemir, and I. Kolcu, “Automatic data migration for
reducing energy consumption in multi-bank memory systems,” in DAC
’02: Proceedings of the 39th conference on Design automation. New
York, NY, USA: ACM Press, 2002, pp. 213–218.

[11] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load
balancing and unbalancing for power and performance in cluster-based
systems,” in Proceedings of the Workshop on Compilers and Operating
Systems for Low Power COLP’01, September 2001. [Online]. Available:
http://research.ac.upc.es/pact01/colp/paper04.pdf

[12] B. Diniz, D. Guedes, W. M. Jr., and R. Bianchini, “Limiting the power
consumption of main memory,” in Proceedings of the International
Symposium on Computer Architecture ISCA. ACM Press, June 2007,
pp. 290–301.

[13] Intel, “Server and workstation chipsets,”
http://www.intel.com/products/server/chipsets/.

[14] X. Li, Z. Li, Y. Zhou, and S. Adve, “Performance directed energy
management for main memory and disks,” ACM Trans. Storage, vol. 1,
no. 3, pp. 346–380, 2005.

[15] J. Yue, Y. Zhu, and Z. Cai, “Evaluating memory energy efficiency in
parallel I/O workloads,” in Proceedings of IEEE International Confer-
ence on Cluster Computing, Best Paper Award, Austin, TX, 2007, pp.
21–30.

[16] J. Yue, Y. Z. Zhu, and Z. Cai, “An energy-oriented evaluation of buffer
cache algorithms using parallel i/o workloads,” IEEE Trans. Parallel
Distrib. Syst., vol. 19, no. 11, pp. 1565–1578, 2008.

[17] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page
allocation,” SIGOPS Oper. Syst. Rev., vol. 34, no. 5, pp. 105–116, 2000.

[18] J. S. Bucy, G. R. Ganger, and et al., “The disksim simulation environ-
ment version 3.0 reference manual,” www.pdl.cmu.edu/DiskSim.

[19] I. Hur, “Enhancing memory controllers to improve dram power and
performance,” Ph.D. dissertation, University of Texas at Austin, 2006,
http://www.cs.utexas.edu/ lin/papers/ibrahim.pdf.

[20] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang, “Thermal modeling
and management of dram memory systems,” in The 34th International
Symposium on Computer Architecture, 2007.

[21] K. Man, “Bensley fb-dimm performance/thermal management,” Intel
Developer Forum, Tech. Rep., 2006.

[22] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic tech-
niques and thermal-rc modeling for accurate and localized dynamic ther-
mal management,” in HPCA ’02: Proceedings of the 8th International
Symposium on High-Performance Computer Architecture. Washington,
DC, USA: IEEE Computer Society, 2002, p. 17.

[23] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” SIGARCH Com-
put. Archit. News, vol. 31, no. 2, pp. 2–13, 2003.

[24] S. Kavalanekar, B. L. Worthington, Q. Zhang, and V. Sharda, “Character-
ization of storage workload traces from production windows servers,” in
The 4th International Symposium on Workload Characterization, 2008.

[25] H. Huang, P. Pillai, and K. G. Shin, “Design and
implementation of power-aware virtual memory,” in USENIX
Annual Technical Conference, 2003, pp. 57–70. [Online]. Available:
citeseer.ist.psu.edu/article/huang03design.html

[26] M. E. Tolentino, J. Turner, and K. W. Cameron, “Memory miser:
Improving main memory energy efficiency in servers,” IEEE Trans.
Comput., vol. 58, no. 3, pp. 336–350, 2009.

[27] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Energy-
oriented compiler optimizations for partitioned memory architectures,”
in CASES ’00: Proceedings of the 2000 international conference on
Compilers, architecture, and synthesis for embedded systems. New
York, NY, USA: ACM, 2000, pp. 138–147.

[28] J. Pisharath, A. Choudhary, and M. Kandemir, “Energy management
schemes for memory-resident database systems,” in ACM Thirteenth
Conference on Information and Knowledge Management (CIKM’05).
Washington, DC, USA: ACM Press, Nov 2004.

[29] J. Yue, Y. Zhu, and Z. Cai, “Energy efficient buffer cache replacement,”
in Proceedings of 16th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’08), Baltimore, MD, USA,
2008.

[30] J. Yue, Y. Zhu, and C. Zhao, “Impacts of indirect blocks on buffer cache
energy efficiency,” in ICPP’08: Proceedings of the 2006 International
Conference on Parallel Processing. Portland, Oregon, USA: IEEE
Computer Society, 2008.

[31] n. Z. Z. n. Z. Z. H. D. Jiang Lin, null Hongzhong Zheng, “Dram-
level prefetching for fully-buffered dimm: Design, performance and
power saving,” in ispass ’07: 2007 IEEE International Symposium on
Performance Analysis of Systems & Software. IEEE Computer Society,
address = Washington, DC, USA,, 2007.

[32] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu,
“Mini-rank: Adaptive dram architecture for improving memory power
efficiency,” in MICRO ’08: Proceedings of the 2008 41st IEEE/ACM
International Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 210–221.

[33] N. AbouGhazaleh, B. Childers, D. Mosse, and R. Melhem, “Near-
memory caching for improved energy consumption,” in ICCD ’05:
Proceedings of the 2005 International Conference on Computer Design.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 105–110.

[34] S. Liu, S. O. Memik, Y. Zhang, and G. Memik, “A power and
temperature aware dram architecture,” in DAC ’08: Proceedings of the

45th annual Design Automation Conference. New York, NY, USA:
ACM, 2008, pp. 878–883.

[35] C. Hur, I. Lin, “A comprehensive approach to dram power management,”
in HPCA ’08: IEEE 14th International Symposium on High Performance
Computer Architecture. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 305–316.

[36] H. S. Khargharia, B. and M. S. Yousif, “An adaptive interleaving
technique for memory performance-per-watt management.” IEEE Trans.
Parallel Distrib. Syst., vol. 20, no. 7, pp. 1011–1022, 2009.

