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Abstract—A challenging issue in performance evaluation
of parallel storage systems through trace-driven simulation
is to accurately characterize and emulate I/O behaviors
in real applications. The correlation study of inter-arrival
times between I/O requests, with an emphasis on I/O-
intensive scientific applications, shows the necessity to
further study the self-similarity of parallel I/O arrivals.
This paper analyzes several I/O traces collected in large-
scale supercomputers and concludes that parallel I/Os
exhibit statistically self-similar like behavior. Instead of
Markov model, a new stochastic model is proposed and
validated in this paper to accurately model parallel I/O
burstiness. This model can be used to predicting I/O
workloads in real systems and generate reliable synthetic
I/O sequences in simulation studies.

I. INTRODUCTION

Understanding I/O workload characteristic is crit-
ical in system modeling and simulation-based per-
formance evaluation. Identifying representative I/O
workloads allows us to fairly compare existing de-
signs and faithfully evaluate new alternatives. Two
basic approaches are widely taken to obtain rep-
resentative workloads. One is to collect I/O traces
in a production environment and then carefully
reconstruct it during simulation [1]. The other is to
use synthetic workloads that capture the behaviors
of observed workloads and permit us to flexibly
study the effects of some workload parameters.
Both approaches require accurate statistical observa-
tions [2]. This paper aims to understand the parallel
I/O characteristics of scientific applications that run
in object storage systems.

An object data storage (ODS) is a new gen-
eration high performance parallel I/O architecture
that promise unmediated host access to storage [3],
[4]. Hence, data can flow in parallel between client

hosts and object stores without passing any central-
ized server. Currently object storage systems, such
as Luster [5] and Panasas [6], have been widely
deployed in cluster supercomputers for scientific
applications. This data access characteristics in ob-
ject storages differ significantly from conventional
network attached storages (NAS) that have been
well studied. This is simply due to two important
reasons: 1) Their workloads are substantially dif-
ferent. A NAS is typically designed for generic
applications where parallel data accesses are rare
while an ODS is usually for scientific applica-
tions that simultaneously run on a large number
of computational nodes. 2) Data access mechanism
changes I/O characteristics. While all data accesses
are mediated by a centrally-managed file server in
a NAS, an ODS can have many data paths flow
independently without passing any single point of
contact. Both factors lead to a larger degree of
data parallelism and burstness in an OSD and this
observation motivates us to analyze and model of
its I/O burstness.

The traces analyzed in this paper, LLNL’s sci-
entific application traces, are collected in a Lustre
cluster at the Lawrence Livermore National Labora-
tory (LLNL) [7] and mainly include three parallel
scientific applications: ior2, f1 and m1. Application
ior2 consists of three parallel I/O benchmarks, i.e.,
ior2-fileproc, ior2-shared and ior2-stride. LLNL’s
scientific applications simultaneously run on a large
number of nodes in the Lustre [5] with more than
800 dual-processor nodes. Applications f1 and m1
are representative physics simulations. Both appli-
cations include two phases. While f1 has f1-restart
and f1-write, m1 involves m1-restart and m1-write.
These traces were collected in September 2003 and
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detailed description of these applications can be
found in Ref. [8].

This paper analyzes and models the self-similarity
of parallel I/O workloads for short-term scales. To
the best of our knowledge, little research work
has been made on this topic. Most of existing
I/O burstiness studies are for general-purpose file
systems [9]. This paper takes a first step to analyze
the self-similarity in a set of scientific application
I/O traces. The paper has the following conclusions.

1) The correlation study results show that it is
necessary to further explore the self-similarity
in parallel I/O workloads.

2) Parallel I/O workloads are self-similar for
short-term time scales. Thus traditional
Markov arrival processes are inappropriate to
model the I/O demands.

Furthermore, we develop a stochastic model to
accurately emulate or forecast future I/O arrival
rates. We successfully validate our model by com-
paring the prediction results against the real traces.
This model is helpful to generate synthetic I/O trace
for performance evaluation and to predict future
workloads for load balancing in real systems.

The rest of this paper is organized as follows.
Section 2 gives an overview of the related works.
Section 3 then explores several analytic tools to de-
tect and analyze the self-similarity. We develop and
validate a model to predict the I/O workload with
self-similarity in Section 4. Section 5 concludes the
paper.

II. RELATED WORK

Prior research works have focused on the stud-
ies of synthesizing I/O workload both at the disk
level [10], [11], [12], [13], [14], [15] and at the file
system level [9]. At the disk level, the focus has
been on trace synthesis [10], [11], [13], [14] and
disk access pattern identification [11], [13], [14],
[16], [17]. At the file system level, many studies
provide useful insight into the design and analysis of
various file systems for performance gains [8], [9].
In particular, Ref. [9] analyzes two sets of detailed,
short-term application traces collected from general-
purpose file systems, and finds that both exhibit
self-similar like behaviors, with consistent Hurst
parameters.

However, scientific applications tend to deviate
significantly from commercial or generic applica-
tions in their I/O behaviors [18]. So far, several

prior studies [8], [19], [20], [21] have analyzed
the I/O behavior of parallel scientific applications,
for tuning, managing, or optimizing parallel file
systems. Ref. [8] examines the I/O burstiness of
parallel I/O workloads using a simple methodology.
They measure the cumulative distribution functions
(CDF) of I/O inter-arrival times and conclude that
I/O activities in the LLNL traces are very bursty
in the ior2 benchmark and the f1 application. But
F. Wang et al. hadn’t further explored the charac-
teristics in parallel I/O burstiness, such as the self-
similarity.

Ref. [19] has proposed a Markov model to syn-
thesize and predict I/O requests for scientific appli-
cations. Ref. [22] analyzes several I/O traces as well
as used in Ref. [8], and concludes that correlations
in parallel I/O inter-arrival times are inconsistent,
either with little correlation or with evident and
abundant correlations. Thus conventional Poisson or
Markov arrival processes are inappropriate to model
I/O arrivals in some applications. But Ref. [22]
hadn’t further studied the self-similarity in I/O-
intensive parallel workloads.

This observation motivates us to re-examine the
parallel I/O workloads studied in Ref. [8] and pro-
vide a rigorous statistical analysis to characterize
the I/O burstiness in the following section.

III. SELF-SIMILARITY DETECTION

In order to gain a deep understanding of workload
behaviors, it is typically required to study the corre-
lations of I/O inter-arrival times and characterize the
I/O arrival patterns from a time dependence perspec-
tive first. In the following, we use auto-correlation
functions (ACF) [23], [24] to study the patterns and
characteristics in I/O inter-arrival times. The LLNL
I/O traces studied in this paper are collected in
many nodes. We find that the analytical results based
on the traces collected on different nodes are very
similar to one another in each scientific application.
Therefore, this paper only presents the results of
the traces collected at a randomly chosen node. The
ACFs of these randomly selected traces are plotted
in Fig. 1. As shown in Fig. 1, it might be appropriate
to use an independently and identically distributed
(IID) method such as Markov model to synthesize
the ior2-stride workload, but not likely be useful
in modeling the I/O requests in other workloads
represented in Fig. 1. Examination results above
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(a) ior2
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(b) f1 and m1

f1−write
f1−restart
m1−write
m1−restart

ior2−fileproc
ior2−stride
ior2−shared

Fig. 1. From (a) to (b): ACFs of I/O inter-arrival times for ior2, f1 and m1, respectively.

motivate us to further study the self-similarity of
parallel I/O workloads in the following.

Degrees of self-similarity can be expressed as the
speed of decay of series autocorrelation function
using the Hurst parameter. Let X = (Xt : t =
0, 1, 2, . . .) be a covariance stationary stochastic
process; that is, a process with constant mean µ =
E[Xt], finite variance σ2 = E[(Xt − µ)2], and an
ACF (k) = E[(Xt − µ)(Xt+k − µ)]/E[(Xt − µ)2],
k ≤ 0, that depends only on k. We say the process
X is self-similar if its ACF has the following
property:

lim
k→∞

ACF (k)

k−β
= c < ∞, for 0 < β < 1. (1)

In particular, the process X is exactly second-order
self-similar with Hurst parameter H = 1 − β/2 if
the ACF is of the form:

ACF (k) =
1

2
[(k + 1)2−β − 2k2−β + (k − 1)2−β]. (2)

The ACF of a self-similar process has an asymptot-
ically hyperbolic decay as shown in Equation (1).
Note that the ACF is non-summable, i.e.

∑
k r(k) =

∞.
The Hurst parameter, H , gives a measure of the

degree of self-similarity of a given time-series. A
value in the range (0.5, 1) indicates the existence of
self-similarity and a larger value implies a stronger
temporal dependence. To estimate the Hurst param-
eter, we use one of the most popular analytic tools,
R/S analysis (i.e., Pox plot), to detect and estimate
the Hurst exponent to a set of observations. A brief
description of the methods can be found in [13],
[16], and a detailed analysis of various graphical
and analytical methods are described in [25].

In the following, we use R/S analysis method
to estimate the Hurst exponent values of LLNL
I/O traces collected in many nodes. Without the

TABLE I
ESTIMATION OF H BY R/S ANALYSIS FOR I/O EVENTS ON ior2, f1

AND m1 TRACES, RESPECTIVELY.

Traces Estimation of H
Streams 1 2 3 4 5

ior2-fileproc 0.67 0.66 0.65 0.69 0.70
ior2-shared 0.72 0.78 0.83 0.84 0.86
ior2-stride 0.52 0.49 0.45 0.40 0.41

f1-write 0.55 0.56 0.54 0.58 0.56
f1-restart 0.51 0.59 0.52 0.50 0.64
m1-write 0.66 0.67 0.67 0.65 0.66

m1-restart 0.67 0.65 0.66 0.64 0.63

loss of generality, we only present a few randomly
selected streams in each trace in this paper. The
Hurst exponent values of these randomly selected
traces are shown in Table 1. All the estimates are
the optimal estimates produced by a simple mathe-
matical technique named least-square linear fitting.
As shown in Table 1, most of the Hurst exponent
values are above 0.5 except the I/O events in ior2-
stride. This observation indicates the comprehensive
existence of self-similarity in the LLNL I/O traces
studied in this paper.

IV. SELF-SIMILARITY MODELING

A. Modeling Assumptions
In order to narrow down the huge number of

potential models, we check the basic assumptions
required by those models. We fortunately find that
the parallel I/O traces studied meet the major re-
quirements of a widely used model named Frac-
tional Brownian Motion (FBM) [26], [27]. So we
use FBM to synthetically model I/O workloads.

This paper defines a self-similar stochastic pro-
cess by A(t) = λt +

√
αλZ(t), where A(t) denotes

the amount of I/O requests that has arrived at the
storage pool in the time interval [0, t), λ is the
I/O mean arrival rate, α is a parameter related
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to the variance of A(t), and Z(t) is the FBM
process, characterized by the Hurst parameter H ,
t is a random variable with normal distribution,
zero mean, variance= 1. Then, A(t) is a random
variable, with normal distribution and zero mean. In
particular, we always have A(0) = 0. Let A(t) be
defined for all t ∈ (−∞,∞) and denote the amount
of I/O requests offered in the time interval [s, t) by
A(s, t) = A(t)− A(s).

Norros’ resulting formula for effective bandwidth
can be used to estimate the bandwidth require-
ment for a self-similar traffic. The Norros effective
bandwidth formula is more promising than previous
effective bandwidth formulas because the degree of
self-similarity is a parameter in the formula. The
formula is briefly describe as (5):

C = λ + [−2αλ ln(ε)((1−H)1−HHH)2

·b2H−2]
1

2H , (3)

where λ is I/O mean arrival rate, H is the Hurst
parameter, α is the variance coefficient, C is the
I/O effective bandwidth, ε is the I/O miss probabil-
ity, and b is the maximum number of outstanding
streams served per device.

The I/O miss probability ε can be expressed as
following:

λ ∼ Cε

b(1− ε)
. (4)

The prediction algorithm can be obtained after
Equation (3) is substituted into Equation (4):

λ2H−1 ∼ −2α ln(ε)((1−H)1−HHH)2b2H−2

[b(1− ε)− ε]2H
. (5)

B. Experiments and Evaluations

Our prediction model can be briefly described as
below.

—————————————————————
ARRIVAL-RATE-PREDICTION
—————————————————————
INPUT: The I/O miss probability ε, the maxi-

mum number of outstanding streams
served at per node b, original trace d-
ata file f.

OUTPUT: arrival rate {λ(i); i = 1, 2, . . . , n}.
ALGORITHM:
for each f

Use maximum-likelihood estimate to estim-

ate the parameter value α for data sets in f ;
Use Pox plot to estimate the Hurst value H

if H /∈ (0, 1) or H = 1/α
then break;

else
Set the initial values of ε and b, and
obtain {λ(i); i = 1, 2, . . . , n} using Equa-
tion (5)

end for
—————————————————————

In this section, we compare the accuracy of our
prediction model against the realistic LLNL I/O
traces collected in many nodes. We find that the
analytical results based on the traces collected on
different nodes are very similar to one another
in each scientific application. Therefore, we only
present the comparison results of one randomly
selected stream in f1-restart.

Figure 2 compares the predicted arrival rates with
the rates measured in the real trace with a sampling
period of 0.01. The solid line represents the real
trace, whereas the dashed is the synthetic trace gen-
erated by our prediction model. As we expect, the
synthetic trace can accurately capture most bursti-
ness in the real trace. A useful statistic tool named
Fisher’s analysis of variance (ANOVA) [28] reports
the total variance is only 0.138, indicating our
predicted arrival sequence can accurately emulate
the actual arrival sequence. Furthermore, the one-
way ANOVA analysis shows that both sequences
have exactly the same mean arrival rate.
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Fig. 2. Comparisons between actual arrival rates with predict model
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Our prediction model is very useful practically.
One example is that our model can be used to
generate synthetic I/O traces for simulation-based
performance evaluation. Another example is that
our model can be potentially used in real storage
systems for resource allocation and load balanc-
ing. In data-intensive applications, the performance
bottleneck is most often caused by load unbalance
among all storage devices. If the future I/O arrival
rate of each I/O stream can be precisely forcasted,
then the aggregate I/O bandwidth of all available
storage devices can be dynamically allocated among
all streams to minimize the average response time.
This technique is particularly useful in distributed
parallel storage system where multiple data stores
concurrently serving large amount of I/O requests.

V. CONCLUSIONS

One fundamental step in find solutions to al-
leviating the I/O performance bottleneck in high
performance computing systems is to accurately
characterize the I/O demands of scientific applica-
tion workload. This paper analyzes a set of real
I/O traces of scientific applications running in large
supercomputers with object-based data storage sys-
tems. Our study has the following conclusions.

1) The self-similarity study is necessary for I/O-
intensive scientific applications due to the fact
there are evident correlations between inter-
arrival times in subtraces collected on most
computing nodes.

2) Similar to convention file system workloads,
scientific I/O workloads are also self-similar
for short-term scales. Thus traditional Poisson
or Markovian arrival processes are inappropri-
ate to model the I/O demands.

Additionally, we develop an accurate analytical
model to predict I/O mean arrival rate for I/O
workloads with self-similarity. We successfully val-
idate our model by comparing the prediction results
against the real traces. This model is useful to
generate synthetic I/O trace for performance eval-
uation and also to predict future workloads for load
balancing in real systems.

One limitation of this study is that all traces
studied last from tens of seconds to half an hour.
These short-period traces do not allow us to examine
the self-similarity for long-term time scales. Our
immediate future work is to collect parallel I/O

traces lasting weeks or months and further evaluate
longer-term self-similarity.
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