
Energy Efficient Buffer Cache Replacement for Data Servers

Jianhui Yue, Yifeng Zhu, Zhao Cai, Lin Lin
Electrical and Computer Engineering,

University of Maine
{jyue, zhu, zcai, llin}@eece.maine.edu

Abstract—Power consumption is an increasingly impressing
concern for data servers as it directly affects running costs and
system reliability. Prior studies have shown that most memory
space on data servers is used for buffer caching and thus cache
replacement becomes critical. Two conflicting factors of buffer
caching impacts memory energy efficiency: (1) a higher hit rate
reduces memory traffic and thus saves energy; (2) temporally
concentrating memory accesses to a smaller set of memory chips
increases the chances of “free riding” through DMA overlapping
and also makes more memory chips have opportunities to power
down. This paper investigates the tradeoff between these two
interacting, sometimes conflicting factors and proposes three
energy-aware buffer cache replacement algorithms: On a cache
miss for a new block b in a file f , evict an victim block from (1)
the most recently accessed memory chip; (2) the memory chip
that is accessed most recently by file f ; or (3) the memory chip
that is accessed most recently by file f and whose last access
block belongs to the same hot or cold categories as block b.
Simulation results based on three real-world I/O traces, including
TPC-R, MSN-BEFS and Exchange, show that our algorithms
can save up to 24.9% energy with marginal degradation in
hit rates. Our algorithms show degradation in response time
in some experiments. We propose an off-line energy suboptimal
replacement algorithm that serves as a theortical reference .

I. INTRODUCTION

In order to bridge the ever-widening gap between disk and
processor speeds, high-end storage servers are often equipped
with large capacity memory. For example, the IBM Bluegene
at LLNL has 32 Tera-bytes [1] and up to 2 Tera-byte can be
installed on a single server [2]. Many previous studies [2], [3],
[4] have shown that memory energy is one of major component
of power consumption. For example, in a real system with
3.8TB memory and 115TB local disks [5], according to power
estimation given in Ref. [6], the disk power consumption is
6KW and the memory power consumption is 19KW. As the
memory capacity continues to increase rapidly to alleviate the
I/O bottleneck, memory energy efficiency becomes a pressing
concern.

Buffer cache replacement schemes play an important role
in conserving memory energy, since buffer cache is frequently
more than 77% of the total available memory on desktop
computers and even more on storage servers [7]. Specifically,
memory energy is impacted from two aspects: (1) Replacement
algorithms with high hit rates help reduce the overall running
time and thus save energy directly; (2) Replacement algorithms
determine the access sequence and utilization of memory
chips, and hence influence the opportunities of powering down
and DMA overlapping, as explained in detail later. Most

replacement algorithms aim only to maximize cache hit rates
and ignore the current power status of memory chips when
selecting a victim block upon a cache miss. As result, energy
saved due to higher hit rates and shorter running time may not
offset the extra energy cost when keeping more memory chips
simultaneously active. This observation motivates us to study
new cache replacement algorithms that optimize the tradeoff
between cache hit rates and energy-efficiency.

In this paper, we propose three energy-aware buffer cache
replacement algorithms that achieve energy saving but make
no or little sacrifice to performance. The key idea of our
algorithms is to cluster most I/O requests to a small set of
active memory chips and create a larger chance for other chips
to power down. Our new replacement algorithms consider the
current power status of memory chips and also the temporal or
spatial correlations between data blocks during a cache miss.
Instead of evicting out the block that is accessed probably in
the farthest future, we discard the one that is suboptimal in
terms of hit rates but potentially has a larger energy saving.
Through judiciously selecting victim blocks, all memory ac-
cesses are naturally clustered into a small set of memory chips.
Our algorithms differ from existing studies [2], [3], [7], [8],
[9], [10], [11] in that ours do not rely on data migration and
also have much less bookmarking overheads.

The rest of this paper is organized as follows. Section II
briefly describes the background of power-aware memory
chips and DMA overlapping. Section III and Section IV
present our off-line and on-line energy-efficient buffer cache
management algorithms respectively. Section V gives our
evaluation methodology and simulation results. The related
works are discussed in Section VI. Section VII concludes the
paper.

II. BACKGROUND

A. Rambus DRAM (RDRAM) Memory Chips
The RDRAM technology enables each memory chip to be

independently set to one of four states: active, nap, standby
and powerdown, in decreasing order of power consumption.
A chip must be in the active state to perform reading or
writing. In the other three states, the chip powers off different
circuit components to conserve energy and thus can not access
data before switching back to the active state. The transition
from a lower power state to a higher one requires some
synchronization time delay. Table I summarizes the power
consumption rate of each state and the time delay needed to
transition among these states [12].

2011 Sixth IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-4509-7/11 $26.00 © 2011 IEEE

DOI 10.1109/NAS.2011.49

329

TABLE I
POWER STATES AND TRANSITION DELAY OF A RDRAM CHIP

Power State/Transition Power (mW) Delay
Active 300 -
Standby 180 -
Nap 30 -
Powerdown 3 -
Active → Standby 240 1 memory cycle
Active → Nap 160 8 memory cycles
Active → Powerdown 15 8 memory cycles
Standby → Active 240 +6 ns
Nap → Active 160 +60 ns
Powerdown → Active 15 +6000 ns
Standby → Nap 160 +4 ns
Nap → Powerdown 15 ∼0 ns

There are two classes of techniques to control the power
state of a memory chip: static and dynamic. Static techniques
always set a chip to a fixed low-power state. The chip is
transitioned back to full-power state only when it needs to
service a request. After the request is serviced, the chip
immediately goes back to the original state, unless there
is another request waiting. In contrast, dynamic techniques
change current power state to the next lower power state
only after being idle for an amount of time larger than some
threshold. The thresholds are dynamically adjusted according
to the variation of memory I/O workload. In this paper, we
focus on dynamic techniques in our energy evaluation.

B. DMA Overlapping
Direct Memory Access (DMA) has been widely used to

transfer data blocks between main memory and I/O devices
including disks and network. Fig. 1 gives an example of disk-
network datapath on a storage server when cache misses occur
for two external I/O requests A and B received from the
network. The datapath consists of four steps numbred from 0
to 3. When a read request arrives through a network interface
(NIC), the server first performs data address translation and
then checks whether desired data blocks are stored in the main-
memory buffer cache. If they are, the host processor on the
storage server initiates a network DMA operation to transfer
the data out directly from the main memory through NIC. If
they are not, the processor first performs a disk DMA transfer
to copy the data from disks to the main-memory buffer cache,
and then the processor conducts a network DMA transfer to
send the data out to the client applications. For write requests,
the datapaths are similar but flow in the reverse direction.

On a storage server, recent DMA controllers, such as
Intel’s chipset E8870 and E7500 [13], allow multiple DMA
transfers on different buses to access the same memory module
simultaneously in a time multiplexing fashion. Typically, the
peak transfer rate of a memory chip can be a multiple of the
bandwidth of the PCI bus. For example, the transfer rate of
most recent RDRAM chips [12] and DDR SDRAM is up to
3.2GB/s and 2.1GB/s respectively, while a typical PCI-X bus
only gives a maximum rate of 1.064GB/s and the second-
generation SATA disk DMA throughput is only 300 MB/s.

Multiplexing various slow disk and network I/Os to the

���� ���
��	

���

����� �����

���� ���	�

������� ���
��	

���

�������
��� ��������

�������
��	�����

������� ���
���

���� ���
��� �� �� ��

��

��
��

�
�

Fig. 1. I/O datapaths when cache misses occur for two concurrent read
requests A and B on a storage server (following steps from A0 to A3,and
from B0 to B3)

same memory chip can reduce the waste of active memory
cycles and hence save memory energy. Most DMAs move
a large amount of data, usually containing multiple 512-
byte disk sectors or several KByte memory pages. Without
multiplexing, a memory chip is periodically accessed during
a DMA transfer and such access period is too short to justify
the transition to a low-power mode [2], [3], [14] As result, a
significant amount of active energy is wasted. However, when
DMAs on different I/O buses are coordinated to access the
same memory chip, such energy waste can be reduced. For
example, when the concurrent requests A and B in Fig. 1
are directed to the same memory chip, the DMA transfers A1
and B1 can overlap with each other in time and accordingly
one of them takes a “free ride” and consumes zero energy,
without causing any performance penalty. Similarly, A2 and
B2 can also overlap with each other if they use different DMA
channels.

III. ENERGY OPTIMAL CACHE REPLACEMENT
ALGORITHM

The most energy-efficient cache algorithm in theory is a
useful baseline that allows one to evaluate the effectiveness of
practical cache algorithms. While the Beladys OPT algorithm
is optimal in performance, our simulation results presented
later have proved that is not optimal in energy consumption.
This paper proposes a greedy approximation algorithm with
the same time complexity as the Belady algorithm.

The greedy algorithm aims to reduce the number of memory
chips that are concurrently active. Assuming the cache content
remains unchanged for a short amount of time interval, the
greedy algorithm examines the access frequency of each chip
by looking forward next N unique requests in the future and
counting the number of cache hits. When a cache miss occurs,
the chip that will be the most frequently accessed would be
chosen as the victim chip. One block from the victim chip will
be replaced. In this way, future cache misses are clustered to
the busiest chip and their future accesses are also clustered to
the same chip due to temporal locality. Choosing the fixed
victim chip skews buffer cache accesses to a fewer chips

330

Algorithm 1 Sub-Optimal Replacement Algorithm
cache replacement (block b)
if Ref > triggerRef then

/*update triggerRef and victimChip*/
triggerRef = the index of last request for next N unique
block cache hits
victimChip = the most frequently accessed chip for next
N unique block cache hits

end if
Ref + +
if b hit cache then

schedule to access b

return
else

/* get the block with the maximal next access distance
among victimChip chip */
victim block ⇐=chipQueue[victimChip].pop()
schedule to replace victim block and read b to
victim block

schedule to access b

return
end if

and creates more opportunities to power down other chips.
However, this simple approach sacrifices cache hit rates too
much for I/O clustering, resulting inferior energy-efficiency
than Belady algorithm. In our greedy algorithm, we use a
threshold k to optimize the tradeoff between cache hit rates
and I/O clustering. Assuming chip c will be most frequently
accessed in the near future and block b will be requested
in the farthest in future among all blocks in chip c. The
victim block is b if b is within the k blocks that will be
requested in the nearest in future among all blocks in chip c.
Otherwise, the victim block will be the one requested in the
farthest time in future among all cached blocks. The threshold
k allows us to flexibly control the tradeoff. When k is 1, our
greedy algorithm is the same as Belady. When k is equal
to the cache size, our greedy algorithm will choose as the
victim block the farthest accessed block of the most frequently
accessed chip. In the simulation experiments, for a given trace,
threshold k, which is obtained through try-and-error, is used
to obtain the approximation of theoretically minimal energy
consumption. This algorithm is interchangeably referred as
suboptimal algorithm in the rest of paper.

The detailed offline suboptimal algorithm is given in Alg. 1.
Ref is the index of current request and is increased by one
when the request is served. triggerRef is the request index
to trigger update of the victimChip and next triggerRef .
The chipQueue[chip] maintains the access distance of blocks
resided in the chip chip. Organized as priority queue the
chipQueue[].pop() removes the block with the maximal ac-
cess distance.

IV. ONLINE ENERGY EFFICIENT BUFFER CACHE
REPLACEMENT ALGORITHMS

Our previous study [15] shows that, among eight conven-
tional cache replacement algorithms studied, 2Q [16] has the
best memory energy efficiency in most cases. Our experiments
have shown that 2Q has a stronger capability of clustering
hot blocks into a small set of memory chips than the other
algorithms, which significantly increases the energy saving
opportunities through DMA overlapping and power state tran-
sition. However, all these algorithms are essentially not energy
aware since their goal is only to optimize cache hit rates and
they do not consider the power status of memory chips during
cache replacement.

In this paper, we take 2Q as an example algorithm to
investigate how to judiciously take advantage of the memory
technology to save energy. In the following, we will first
give a short introduction to 2Q algorithm and then present
three energy-aware algorithms named chip 2Q, inode 2Q, and
hotCold 2Q. While 2Q is used as our base algorithm, the
strategies developed in this paper, particularly in chip 2Q and
inode 2Q, are generic and are applicable to any existing cache
replacement algorithms.

A. Introduction to 2Q Algorithm
2Q [16] improves the cache performance by quickly evicting

sequentially-referenced blocks and looping-referenced blocks
with large loop periods. This is achieved by using three queues,
including a FIFO queue A1in, an LRU queue Am, and a
ghost LRU queue A1out. All missed blocks are initially stored
in A1in that is replaced in First-In First-Out order. When
a block is evicted out from A1in, this block’s identifier is
added into the “ghost” queue A1out. Whenever a block in
A1out is referenced again, this block is then promoted to
the conventional LRU queue Am. Note that A1out does not
contain actual data content and it is used to differentiate
“hot” blocks from “cold” ones. In this way, looping-referenced
blocks with short loop periods are quickly promoted to the
main buffer cache Am. The time complexity of 2Q is O(1).
A simplified 2Q algorithm is given in Alg. 2.

Algorithm 2 2Q access(block b)
if b ∈ Am then

move b to the head of Am

else if b ∈ A1out then
reclaim for(b)
add b to the head of Am

else if b �∈ A1in then
reclaim for(b)
add b to the head of A1in

end if

B. Chip MRU Algorithm (chip 2Q)
When a data miss occurs, this algorithm chooses a victim

block from the most recently used (MRU) chip. It trades cache
hit rates for potential energy saving. Specifically, instead of

331

replacing the block that is the least likely to be accessed in
the future, this algorithm replaces one that is not likely to be
accessed very soon and resides in a chip that is potentially
in an active state. This algorithm predicts the most recently
used memory chip is still in the active state and thus can
serve current request without powering up overhead. More
importantly, by concentrating memory accesses on the last
accessed chip, it provides more chances for other chips to
enter power saving states.

We name this algorithm as chip 2Q and its basic procedure
is given in Alg. 3. We search the victim block from A1in and
Am queues, until meet the block located the most recently
used chip denoted as lastAccessedChip. The variable type

indicates in which queue the data resides. ThresholdWindow

is a predefined constant that indicates the search windows size
from the bottom of A1in and Am. This algorithm requires
that OS to track the last accessed chip. Ref. [11] has provide
simple and efficient implementation in memory controllers.

Algorithm 3 chip 2Q reclaim for(block b)
/* During cache miss for b, find the victim queue */
if sizeof(A1in) > threshold then

type = A1in

else
type = Am

end if
queue ⇐ Queues[type]

/* search the victim queue upward from the bottom */
for i = 0 to ThresholdWindow do

current block ⇐queue[sizeof(queue)− i]
if current block ∈ lastAccessedChip then

victim block ⇐ current block

return victim block

end if
end for

/* Otherwise, return the bottom block */
victim block ⇐queue[sizeof(queue)]
return victim block

C. Inode MRU chip policy (inode 2Q)

It has been observed that a data block tend to have stronger
spatial locality with other blocks in the same file than any
block of a different file [7]. This motivates us to choose a
victim block from the chip that contains the most recently
accessed block in the file of the currently requested block. This
can be done by using a list lastAccessedChip[inode] to track
the most recently accessed chip for each file inode. The size of
the lastAccessedChip list is limited and is managed by using
the LRU replacement policy when it is full. We named this
algorithm as inode 2Q and its basic procedure is presented
in Alg. 4. During the case that lastAccessedChip fails to
provide the last access chip, i.e., the target file is accessed

for the first time or has not been accessed for a long period,
chip 2Q policy is then used.

Algorithm 4 inode 2Q reclaim for(block b)
/* inode is the file id of block b */
/* During cache miss for b, find the victim queue */
if sizeof(A1in) > threshold then

type = A1in

else
type = Am

end if
queue ⇐ Queues[type]

/* Search the victim queue upward from the bottom */
for i = 0 to ThresholdWindow do

current block ⇐queue[sizeof(queue)− i]
if current block ∈ lastAccessedChip[inode] then

victim block ⇐ current block

return victim block

end if
end for

/* Otherwise, return the bottom block */
victim block ⇐queue[sizeof(queue)]
lastAccessedChip[inode]⇐ chip id of victim block

return victim block

D. Inode hot and cold MRU policy (hotCold 2Q)

In inode 2Q, all data blocks of a file are treated uniformly
and they play an equal role in determining the victim chip.
However, the access patterns to each data block can be
significantly different and even in the same file some blocks
are often more frequently accessed than the others. Studies
on file system I/O traces have shown the workload skew
is particularly evident for large files [17]. In inode 2Q, hot
blocks and cold blocks of a given file are often placed
together in the same chips and thus accesses to a specific
large files are potentially distributed evenly across the chips
where this file is stored. In order break this even distribution
and concentrate more workloads onto a smaller set of memory
chips, we propose to cluster all blocks with similar access
frequencies into the same set of memory chips and name this
new algorithm as hotCold 2Q, as described in Alg. 5.

Recall that in 2Q the Am queue mostly holds frequently
accessed (“hot”) blocks while the A1in queue mostly holds
less frequently accessed (“cold”) blocks. In this policy, for
each file we record the most recently accessed chips accessed
by this file’s cold blocks and hot blocks, respectively. Specifi-
cally, for each file we track the most recently accessed memory
chip visited by this file’s blocks stored in Am and also the
one visited by this file’s blocks stored in A1in. Similar to
inode 2Q, the size of the lastAccessedChip list is also fixed
and is managed by using LRU.

332

Algorithm 5 hotCold 2Q reclaim for(block b)
/* inode is the file id of block b */
/* During cache miss for b, find the victim queue */
if sizeof(A1in) > threshold then

type = A1in

else
type = Am

end if
queue ⇐ Queues[type]

/* Search the victim queue upward from the bottom */
for i = 0 to ThresholdWindow do

current block ⇐queue[sizeof(queue)− i]
if current block ∈ lastAccessedChip[type, inode]
then

victim block ⇐ current block

return victim block

end if
end for

/* Otherwise, return the bottom block */
victim block ⇐queue[sizeof(queue)]
lastAccessedChip[inode, type] ⇐ chip id of
victim block

return victim block

V. PERFORMANCE AND ENERGY EVALUATION

This section presents the evaluation of our algorithms
through trace-driven simulations. These three algorithms are
compared against with 2Q that is the most energy-efficient
among eight non-energy-aware replacement algorithms studied
in our previous work [15].

The simulation framework is composed of three major com-
ponents: cache simulator, disk array simulator, and memory
energy simulator. Disksim [18], a well validated disk array
simulator, is incorporated to precisely emulate the timing of
disk I/O traffic. These three components interact with each
other through two event queues and two request queues.

Disksim APIs with callback functions are used to generate
disk I/O events and place these events into the disk event queue
waiting for DMA operations. The memory simulator and the
cache simulator coordinate with each other to determine the
chip address. Before the cache is full, the memory simulator
resolves the chip address of each missed block based on
populating schemes. When the buffer cache is full, the cache
simulator determines logically the victim block. For each
chip the memory simulator simulates the DMA overlapping
operations and maintains the power state transitions based on
a timeout mechanism used in Ref. [3].

This paper assumes that a separate set of memory chips are
dedicated for kernel codes, process pages, stacks and heaps.
The energy of these dedicated chips is not studied in this
paper. Our memory simulator only calculates the energy of
memory chips used as buffer cache, which typically takes a

large fraction of main memory on data servers. The approach
we used to measure memory energy is same as previous studies
[3], [7].

A. Simulation parameters
The data server simulated in this paper is configured with

6 network adaptors (NIC) and 12 disks. All disks and NICs
are attached to one 133 MHz PCI-X bus. A DMA request is
performed on the corresponding PCI-X bus that has the target
device. Due to the lack of client information in the I/O traces,
we assign each incoming I/O request to a NIC in a round-robin
fashion. The server responses a request through assigned NIC.

The simulator emulates RDRAM memory chips whose
parameters are given in Table I. Each chip has a capacity
of 32MB and a peak performance of 3.2GB/second. The
simulator precisely models multiple power states, including
active state, nap state, standby and powerdown state, and
corresponding power states transitions. While the simulation
results presented in this paper are based on RDRAM systems,
our simulator is also applicable to systems with DDR SDRAM
technologies where we can treat entire DDR modules as we
do on single RDRAM chip.

We simulate the traces by replaying all I/O events at pre-
determined time instants specified in the traces, independent
of the performance of the memory hierarchy. This approach
is used mainly because all traces that we have access to
do not record the dependence between request completion
and subsequent I/O arrivals. Three data server traces are
used, including TPC-R [19], MSN-BEFS [20] and Exchange
[20]. The TPC-R is transaction processing workload. The
MSN-BEFS provides several data services and responses file
requests from front data server. The Exchange is the workload
on a mail server for corporate users.

In the cache simulator, the size of the queue A1out and
A1in is limited to 50% and 30% of the total number of
available blocks, as suggested by the original 2Q paper [16].
The default search window size in all three energy-aware
replacement algorithms is 1024 and it is 16 in the offline sub-
optimal algorithm. We study the effects of the window size on
energy saving in Section V-G. The default data block size is
64KB, a typical value in NFS3 file systems on data servers.

B. Energy Consumption Evaluation
Figure 2 compares the total energy consumption of six

replacement algorithms, including 2Q, chip 2Q, inode 2Q,
hotCold 2Q, belady, and sub opt, under different cache sizes.
The total energy is broken into four components consumed
respectively in the active state, the powerdown state, the nap
state, and the power states transition.

Under the TPC-R workload, we conclude that all of the pro-
posed three algorithms can achieve significant energy saving.
Compared with 2Q, the average energy saving across different
cache sizes of chip 2Q, inode 2Q, and hotCold 2Q are 4.8%,
11.7% and 6.4%, respectively (see Fig. 2(a)). Their maximum
energy saving over 2Q can be as much as 14.28%, 24.92% and
22.12%, respectively. Compared with Belady, sub opt saves

333

Acitve
Powerdown
Nap
Trans

 0

 100

 200

 300

 400

 500

 600

 700

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

E
n

e
rg

y
 (

J)

Cach Size
64MB 160MB 256MB 352MB 448MB

(a) TPC-R Workload

Acitve
Powerdown
Nap
Trans

 0

 50

 100

 150

 200

 250

 300

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

E
n

e
rg

y
 (

J)

Cach Size
64MB 160MB 256MB 352MB 448MB

(b) MSN-BEFS Workload

Acitve
Powerdown
Nap
Trans

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

2
Q

C
h

ip
In

o
d

e
h

o
tC

o
ld

b
e
la

d
y

su
b

_
o

p
t

E
n

e
rg

y
 (

J)

Cach Size
64MB 160MB 256MB 352MB 448MB

(c) Exchange Workload

Fig. 2. Total Energy Consumption and its Breakdown

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Size MB

H
itR

at
e

2Q
chip
inode
hotCold
Belady
sub_opt

(a) TPC-R Workload

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Cache Size MB

H
itR

at
e

2Q
chip
inode
hotCold
Belady
sub_opt

(b) MSN-BEFS Workload

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Cache Size MB

H
itR

at
e

2Q
chip
inode
hotCold
Belady
sub_opt

(c) Exchange Workload

Fig. 3. Hit Rate of Buffer Cache

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0

20

40

60

80

100

120

140

160

180

Cache Size MB

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(M
ic

ro
 S

ec
.)

2Q
chip
inode
hotCold
Belady
sub_opt

(a) TPC-R Workload

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
300

350

400

450

500

550

600

650

700

Cache Size MB

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(M
ic

ro
 S

ec
.)

2Q
chip
inode
hotCold
Belady
sub_opt

(b) MSN-BEFS Workload

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
100

150

200

250

300

350

Cache Size MB

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(M
ic

ro
 S

ec
.)

2Q
chip
inode
hotCold
Belady
sub_opt

(c) Exchange Workload
Fig. 4. Average Request Response Time of I/O Requests.

334

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0

10

20

30

40

50

60

70

80

90

100

Cache Size MB

A
cc

ur
ac

y
of

 V
ic

tim
 C

hi
p

P
re

di
ct

io
n

(%
)

2Q
chip
inode
hotCold
Belady
sub_opt

(a) TPC-R Workload

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0

10

20

30

40

50

60

70

80

90

100

Cache Size MB

A
cc

ur
ac

y
of

 V
ic

tim
 C

hi
p

P
re

di
ct

io
n

(%
)

2Q
chip
inode
hotCold
Belady
sub_opt

(b) MSN-BEFS Workload

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
10

20

30

40

50

60

70

80

90

100

Cache Size MB

A
cc

ur
ac

y
of

 V
ic

tim
 C

hi
p

P
re

di
ct

io
n

(%
)

2Q
chip
inode
hotCold
Belady
sub_opt

(c) exchange Workload
Fig. 5. Accuracy of Victim Chip Prediction

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cache Size MB

C
lu

st
er

in
g

A
bi

lit
y

2Q
chip
inode
hotCold
Belady
sub_opt

(a) TPC-R Workload

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cache Size MB

C
lu

st
er

in
g

A
bi

lit
y

2Q
chip
inode
hotCold
Belady
sub_opt

(b) MSN-BEFS Workload

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cache Size MB

C
lu

st
er

in
g

A
bi

lit
y

2Q
chip
inode
hotCold
Belady
sub_opt

(c) Exchange Workload

Fig. 6. Comparison of Clustering Ability.

energy by an average of 22.12% and a maximal of 30.9%.
Note that inode 2Q is only 7% inferior to sub opt on average.

In addition, we have the following three important observa-
tions for TPC-R. First of all, inode 2Q is more energy-efficient
than chip 2Q in most experiments because more DMA over-
lapping operations occur in inode 2Q. This confirms that
clustering based on each individual file is more effective to
improve I/O burstiness at the chip level than simply clustering
to the most recent accessed chip. Secondly, hotCold 2Q is less
energy-efficient than inode 2Q and is slightly more energy
efficient than chip 2Q in most cases. It is assumed that in
hotCold 2Q the hot blocks and cold blocks of a given large
file are often placed together in the same set of chips and thus
accesses to this file are potentially distributed evenly across
the chips where this file is stored. However, such assumption
hardly holds in TPC-R and hence hotCold 2Q is less efficient.
Artificially choosing victim blocks from two different chips,
including hot chip and cold chip, the hotCold 2Q makes them
simultaneously active in most cases, resulting in more energy
consumption than inode 2Q which only chooses victim block
from only one chip. This is the major reason why hotCold 2Qs
is inferior to inode 2Q energy efficiency. Because of only
choosing victim block from up to two chips, hotCold 2Q most
likely access a fewer number of chips for serving one files
request than chip 2Q and correspondingly consumes less en-

ergy than chip 2Q. Lastly, sub opt is the most energy efficient
algorithm. Having future buffer cache accesses information,
sub opt knows exactly which chip will be mostly accessed in
future and chooses this chip as victim chip, thus achieving to
minimize the average number of concurrently active chips.

The energy consumptions of these algorithms under the
MSN-BEFS workload and the Exchange workload are shown
in Fig. 2(b) and Fig. 2(c) respectively. The results are similar
to the TPC-R workload.

The study of energy breakdown in these workloads shows
three important characteristics. Firstly, the active energy is the
dominant component in all experiments expect for sub opt
under MSN-BEFS. All three workloads are I/O intensive and
they tend to make each memory chip consistently active.
Thus these memory chips almost have limited chances to
enter the nap state or make a state transition. Secondly, as
the total number of chips increases, the powerdown energy
also increases. This is because when there are more memory
chips, each chip has a larger opportunity to powerdown under
the same workload. Thirdly, it is interesting that sub opts
powerdown energy is more than its active energy under the
MSN-BEFS workload when the cache size exceeds 256MB
(see Fig. 2(b)). This further approves the effectiveness of its
energy saving strategy.

335

C. Hit Rate
Fig. 3 compares the cache hit rates under three workloads.

Under TPC-R, when compared with the average hit rate of
2Q across all experiment cache sizes, the average hit rate
of chip 2Q, inode 2Q and hotCold 2Q is degraded only by
0.19%, 0.31% and 0.45%, respectively (see Fig. 3(a)). We
also notice that there is a positive correlation between the hit
rate degradation and the frequency how often these algorithms
select a different victim chip than 2Q does. For example,
the percentage of victim chips in chip 2Q, inode 2Q and
hotCold 2Q that differ from the ones selected in 2Q is 79%,
82% and 94%, in an increasing order and the hit rate degrades
also in the same order. The degradation in hit rates is expected
because all proposed algorithms deliberately trade partial hit
rates for more energy saving.

D. Performance Evaluation
Our proposed algorithms improve the memory energy effi-

ciency by evicting a data block that can potentially increase
the opportunity for DMA operations to overlap and also for
the other chips to power down. In addition, over-clustering
requests to one chip may result in an unnecessarily queuing
time. Thus these algorithms may compromise the performance.
In this section, we examine their average I/O response time
under three workloads studied (see Fig. 4).

In TPC-R, the average response time of chip 2Q and
hotCold 2Q is only up to 2% larger than that of 2Q when
the cache size is less than 320MB. Surprisingly, inode 2Q
achieves a little performance gain when the cache size is
smaller than 128MB. We are uncertain of the precise rea-
son for this. Compared with 2Q, the average response time
of inode 2Q is 33% larger in MSN-BEFS and only 1.9%
in Exchange. Both hotCold 2Q and inode 2Q make no or
little degradation to response time in MSN-BEFS. However,
hotCold 2Q, inode 2Q and chip 2Q sufficiently reduce the
average response time in Exchange.

In sum, inode 2Q exhibits noticeable performance degrada-
tion in some scenarios due to over-clustering requests or large
reduction in cache hit rates. Both hotCold 2Q and chip 2Q
have little compromise to the memory performance.

E. Victim Chip Prediction Accuracy
We evaluate the accuracy of victim chip prediction in this

subsection. Our proposed algorithms attempt to cluster I/O
requests to the most active chips by judiciously choosing vic-
tim chips. Actually, selected chips indeed sucessfully predicte
the near future distribution of hit requests over all memory
chips. In other words, a victim chip, which serves the largest
number of future cache-hit requests arrived before the next
future cache miss occurs, is more effective in clustering more
I/O requests to this victim chip. In this paper we adopt victim
chip prediction accuracy, defined as below, to evaluate how
effectively our algorithms select victim chips.

chip prediction accuracy =
success requests between miss

requests between misses
,

where requests between miss is the total number of cache-
hit requests between two neighboring cache misses and
success requests between miss is the total number of re-
quests between two neighboring cache misses that access the
selected victim chip. A higher victim chip prediction accuracy
means that more requests are clustered to the same chips. The
victim prediction accuracy is presented in Fig. 5.

The results show that sub opt can predicte the victim chip
most accurately among all algorithms, including Belady, under
three workloads studied. For example, in MSN-BEFS, the
accuracy exceeds 90% for all cache sizes. This is because
sub opt has the knowledge of future requests and chooses the
chip serving most unique cache-hit requests as the victim chip.

Secondly, the prediction accuracy rate is positively cor-
related with the energy efficiency in most experiments. For
example, sub opt achieves the best energy efficiency and
the highest victim chip prediction accuracy under all three
workloads. A higher victim prediction accuracy usually results
in more opportunities to overlap requests and thus larger
energy saving from such overlapping.

However, there are also a few exceptions. For example, in
MSN-BEFS, while the victim prediction accuracy of inode 2Q
is smaller than 2Q if the cache size is larger than 228MB
(see Fig. 5(b)), inode 2Q consumes less energy than 2Q (see
Fig. 2(b)). Similar observations can also be made in the other
workloads. These observations indicate that the victim chip
prediction accuracy cannot completely influence the energy
efficiency. A good victim chip selection helps to cluster cache-
miss requests to a small set of chips but ignores another
important factor: how cache-hit requests are distributed over
chips? In the following section, we use clustering ability to
evaluate both factors.

F. Clustering Ability
The percentage of energy saving via DMA overlapping is

mainly influenced by the effectiveness of clustering memory
I/Os to the same chip. In this section, we define the cluster
ability as the ratio between the actual overlap time that an
algorithm can obtain and the theoretical maximum overlap
time this algorithm can achieve. When there is only one
memory chip, all DMA operations are performed on this chip
and thus a DMA operation has the maximum likelihood to
overlap with other DMA operations. Theoretically, given a
specific cache with multiple memory chips and a total cache
size of n bytes, the maximum overlap time of a replacement
algorithm is the overlap time achieved in a system with only
one large memory chip of n bytes.

Figure 6 compares the cluster ability of these algorithms.
As discussed earlier, stronger cluster ability usually leads to
a better energy efficiency. The results show that the theoret-
ical sub opt algorithm has the best clustering ability. In all
workloads studied, hotCode 2Q, inode 2Q and chip 2Q all
present stronger cluster ability than 2Q. The Belady algorithm
is the worst one almost in all experiments. Another important
observation is that the cluster ability of all algorithms is less
than 50%. This indicates that there is still much room to further

336

improve these algorithms for better clustering and thus better
energy efficiency.

G. Sensitivity Study of Search Window Size

In all energy-aware cache replacement algorithms proposed
in this paper, a predefined threshold is used to control the
maximum number of data blocks that can be searched from
the bottom of the Am or A1in queue. This threshold is defined
as the search window size. This section conducts an energy
sensitivity study on the search window size. Intuitively a larger
search window size increases the opportunity to successfully
find a victim block that potentially benefits energy-efficiency.

However, a larger window size can also incur a larger
computation overhead and more importantly decrease cache
hit rates by evicting out a block that is accessed more recently.
As a result, the search window size allows a tradeoff between
these two conflicting aspects. Due to the space limitation, this
section only presents the energy sensitivity study under TPC-R
when the window size increases from 256 to 4096, as shown
in Fig. 7(a).

For chip 2Q, there is no consistent relationship between
the energy consumption and the search window size (see
Fig. 7(a)). For inode 2Q, the amount of energy saving in-
creases when the cache size is larger than 192MB. However,
the amount of energy saving is inversely proportional to the
search window size, especially when cache size is 64MB. The
main reason is when the search window size is large, there are
more chances to find desired victim chips; On the other hand, a
large search window tends to degrade hit rates significantly and
results in more memory traffic and more energy consumption,
particularly when the cache size is small. The observation of
hotCold 2Q is similar to inode 2Q.

VI. RELATED WORK

Power consumption has been an issue primarily in em-
bedded or portable computer systems. Until recently, energy
efficiency is becoming an increasingly important concern in
high-end servers. On individual servers, many studies have
been conducted to save memory energy. The most important
principle to conserve the memory energy is to minimize the
number of simultaneously active memory chips. In order to
achieve it, previous works [3], [7], [21], [22] propose to place
data blocks with temporal locality at the same memory chip
by exploiting data block semantics such as process, file and
database table. Ref. [2], [3], [7], [8] proposes to dynamically
migrate hot data blocks to a smaller set of memory chips.
Typically these approaches unavoidably pay fairly large per-
formance and energy overhead during both the bookmarking
process for identifying hot blocks and the migration course.

Ref. [11], [23] propose to adaptively control the memory
power states, instead of relying on reactive threshold mech-
anisms. Ref. [14], [24] aim to optimize the overall energy
efficiency of both memory chips and disk drives. While these
research work is designed for virtual memory, very little has
been done for buffer cache.

Ref. [25] evaluated eight buffer cache replacement algo-
rithms’ memory energy efficiency. Ref. [26] proposed buffer
cache replacement algorithms to reduce buffer cache memory
energy consumption. Ref. [27] differentiated the file system’s
metadata from file data and clustered the metadata to a smaller
number of memory chips to save buffer cache memory energy.

VII. CONCLUSION

As increasingly more memory is used on data servers
as buffer cache to bridge the processor/disk speed gap, the
memory energy consumption becomes a pressing concern.
This paper studies directly on power aware buffer caching
replacement algorithms without using data migration. While
data migration is one potential solution, this paper aims to
answer how to choose the victim data blocks during cache
misses in order to optimize the tradeoffs between cache hit
rates and memory energy efficiency.

This paper proposes three generic power aware strategies.
Upon a cache miss for a block b of a file f , choose an victim
block from (1) the most recently accessed memory chip; (2)
the memory chip that is accessed most recently by file f ; or
(3) the memory chip that is accessed most recently by file
f and whose the last access block belongs to the same hot
or cold categories as block b. These three algorithms strike
different tradeoffs between cache performance and memory
energy efficiency. While our strategies are generic and are
applicable to many conventional non-power aware replacement
algorithms, we integrate these strategies into 2Q, a cache
replacement algorithm that has been shown to be the most
energy efficient among eight non-power aware replacement
algorithms in our previous study.

We use three real-world I/O server traces, including TPC-
R, MSN-BEFS and Exchange to evaluate our strategies. Com-
pared with 2Q, experimental results show that our strategies
can save up to 24.9% energy and degrade the cache hit
rates up to 2.1%. The second strategy is the most memory
energy efficient. We also conduct sensitivity studies on one
important design parameter, i.e., search window size. When
the search window size increases, more energy saving can be
achieved when the cache size is not too small. Otherwise, a
larger window size results in more energy consumption. It
is important to emphasize that our strategies are generic and
they can provide useful heuristics and insights to improve the
energy efficiency of many other state-of-the-art replacement
algorithms.

Additionally, we propose an offline sub-optimal energy-
efficient replacement algorithm with same time complexity
of the Belady. This algorithm can not be pratically used in
real systems since it requires future knowledge.It provides a
yardstick to measure how much more energy saving can be
further achieved theoretically.

ACKNOWLEDGEMENTS

This work was supported by National Science Founda-
tion under grants EAR-1027809, IIS-0916663, CCF-0937988,
CCF-0621493 and EPS-0904155.

337

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Cache Size MB

256
512
1024
2048
4096

(a) chip 2Q

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0.7

0.75

0.8

0.85

0.9

0.95

1

Cache Size MB

256
512
1024
2048
4096

(b) inode 2Q

64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Cache Size MB

256
512
1024
2048
4096

(c) hotCold 2Q

Fig. 7. Rated energy consumptions under TPC-R when the search window size changes (Energy consumption are rated to 2Q).

REFERENCES

[1] M. E. Tolentino, J. Turner, and K. W. Cameron, “An implementation
of page allocation shaping for energy efficiency,” in Proceedings of 3rd
Workshop on High-Performance, Power-Aware Computing, April 2007.

[2] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini, “DMA-aware memory
energy management for data servers,” in The Proceedings of the 10th
International Symposium on High-Performance Computer Architecture
(HPCA’06), 2006.

[3] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page alloca-
tion,” in ASPLOS-IX: Proceedings of the ninth international conference
on Architectural support for programming languages and operating
systems. New York, NY, USA: ACM Press, 2000, pp. 105–116.

[4] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. W. Keller, “Energy management for commercial servers,” Computer,
vol. 36, no. 12, pp. 39–48, 2003.

[5] B. H. S. A. B. E. L. M. D. D. E. L. Feng Wang, Qin Xin, “File sys-
temworkload analysis for large scale scientific computing applications,”
in MSST ’04: Proceedings of the 21nd IEEE / 13th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST’04).
Washington, DC, USA: IEEE Computer Society, 2004.

[6] A. Leventhal, “Flash storage memory,” Communication of The ACM,
vol. 51, no. 7, 2008.

[7] M. Lee, E. Seo, J. Lee, , and J. Kim, “Pabc: Power-aware buffer
cache management for low power consumption,” IEEE Transactions on
Computers, vol. 56, no. 4, 2007.

[8] P. Ramamurthy and R. Palaniappan, “Performance-directed energy man-
agement using bos,” SIGOPS Oper. Syst. Rev., vol. 41, no. 1, pp. 66–77,
2007.

[9] V. D. L. Luz, M. Kandemir, and I. Kolcu, “Automatic data migration for
reducing energy consumption in multi-bank memory systems,” in DAC
’02: Proceedings of the 39th conference on Design automation. New
York, NY, USA: ACM Press, 2002, pp. 213–218.

[10] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load
balancing and unbalancing for power and performance in cluster-based
systems,” in Proceedings of the Workshop on Compilers and Operating
Systems for Low Power COLP’01, September 2001. [Online]. Available:
http://research.ac.upc.es/pact01/colp/paper04.pdf

[11] B. Diniz, D. Guedes, W. M. Jr., and R. Bianchini, “Limiting the power
consumption of main memory,” in Proceedings of the International
Symposium on Computer Architecture ISCA. ACM Press, June 2007,
pp. 290–301.

[12] R. Inc., “Rambus memory chips,” http://www.rambus.com.
[13] Intel, “Server and workstation chipsets,”

http://www.intel.com/products/server/chipsets/.
[14] X. Li, Z. Li, Y. Zhou, and S. Adve, “Performance directed energy

management for main memory and disks,” Trans. Storage, vol. 1, no. 3,
pp. 346–380, 2005.

[15] J. Yue, Y. Zhu, and Z. Cai, “Evaluating memory energy efficiency
in parallel i/o workloads,” in Proceedings of 2007 IEEE International
Conference on Cluster Computing (CLUSTER), Austin, TX, USA, Sept.
2007, pp. 21 – 30.

[16] T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” in Proceedings of the 20th
International Conference on Very Large Data Bases (VLDB). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 439–
450.

[17] C. Gniady, A. R. Butt, and Y. C. Hu, “Program-counter-based pattern
classification in buffer caching,” in OSDI’04: Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Implemen-
tation. Berkeley, CA, USA: USENIX Association, 2004, pp. 27–27.

[18] J. S. Bucy, G. R. Ganger, and et al., “The disksim simulation environ-
ment version 3.0 reference manual,” www.pdl.cmu.edu/DiskSim.

[19] A. R. Butt, C. Gniady, and Y. C. Hu., “The performance impact of kernel
prefetching on buffer cache replacement algorithms,” in Proceedings of
the ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Banff, Canada, June 2005.

[20] Q. Z. V. S. Swaroop Kavalanekar, Bruce L. Worthington, “Characteri-
zation of storage workload traces from production windows servers,” in
The 4th International Symposium on Workload Characterization, 2008.

[21] H. Huang, P. Pillai, and K. G. Shin, “Design and implementation of
power-aware virtual memory,” in USENIX Annual Technical Conference,
2003.

[22] A. C. Jayaprakash Pisharath and M. Kandemir, “Energy management
schemes for memory-resident database systems,” in ACM Thirteenth
Conference on Information and Knowledge Management (CIKM’05).
Washington, DC, USA: ACM Press, Nov 2004.

[23] M. E. Tolentino, J. Turner, and K. W. Cameron, “Memory-miser: a
performance-constrained runtime system for power-scalable clusters,” in
CF ’07: Proceedings of the 4th international conference on Computing
frontiers. New York, NY, USA: ACM Press, 2007, pp. 237–246.

[24] L. Cai and Y.-H. Lu, “Joint power management of memory and disk,”
in DATE ’05: Proceedings of the conference on Design, Automation and
Test in Europe. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 86–91.

[25] J. Yue, Y. Zhu, and Z. Cai, “An energy-oriented evaluation of buffer
cache algorithms using parallel i/o workloads,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, pp. 1565–1578, 2008.

[26] J. Yue, Y. Zhu, Z. Cai, and L. Lin, “Energy and thermal aware buffer
cache replacement algorithm,” in Proceedings of 26th IEEE Symposium
on Massive Storage Systems and Technologies, 2010.

[27] J. Yue, Y. Zhu, and C. Zhao, “Impacts of indirect blocks on buffer cache
energy efficiency,” in ICPP’08: Proceedings of the 2006 International
Conference on Parallel Processing. Portland, Oregon, USA: IEEE
Computer Society, 2008.

338

