Comparisons of Three Kalman Filter Tracking Algorithms in Sensor Network
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Abstract

This paper compares extended Kalman filters with the P,
PV and PVA dynamics models for object tracking in wire-
less network. Experiments shows that PVA achieves the
best and P performs the worst in most cases. In addition,
increasing the number of pivots can slightly improve the
tracking accuracy.

1 Introduction

Tracking is a fundamental system-level issue in wireless
sensor networks since it can provide a crucial context for
measurements taken in an environment [1]. In many appli-
cations, such as environmental monitoring or intrusion de-
tection, tracking the location of an event or object is almost
as important as the detection of the event or the measure-
ment of the object. Tracking is also of great importance
in applications where measurements are collected through
the cooperation of many fixed cheap wireless communica-
tion sensors and multiple expensive mobile sensors. A lot
of research has been conducted to tackle this problem of
tracking [2].
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Figure 1. The Tracking Curve of PV model.
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2 2D Tracking Algorithms

The problem of tracking a moving device in sensor net-
work is summarized as follows: Given N fixed pivots at
known positions and distance measurements to these piv-
ots, find the position where the target object is located. As
shown in Fig. 1, the challenge lies in that distance measure-
ments are inaccurate and also the speed and acceleration
cannot be directly measured. We use Extended Kalman Fil-
ter (EKF) [3] to solve the tracking problem in this paper.
Based on the amount of internal states that the target esti-
mates, there are three dynamical EKF models in tracking.

1. Position Model(P Model): The state vector includes its
position only.

2. Position-Velocity Model(PV Model): The state vector
includes its position and velocity.

3. Position-Velocity-Acceleration Model(PVA Model):
The state vector includes its position, velocity, and ac-
celeration.

The following takes the PV model with 3 pivots as
an example to illustrates our tracking algorithms. Let
X = [z,9,4,9]T and D = [dy,d;,d3]T where d; =
V(@ — ;)2 + (y — y;)? and (2, y;) is the location of Pivot
1. The State equations is given as follows.
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(uz,uy) are control forces in the = and y axis, and X, is
system process white noise.
The Output equations can be written as

Dy = Dy + Dy, )



where Dy, is measurement white noises. The output equa-
tions can be linearized at position & as follows.
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The following steps describe equations that need to be
evaluated on-line for an EKF.

Algorithm 1 EKF Tracking

1: Project the state ahead: X; = AXk,l + BUj and calculate D,

based on X;
2: Project the error covariance ahead:

Py = AP, 1 AT + WQp W7
3: Compute the Kalman gain:
Ky =P, HI (H P HT + VR, VI~
4: Update estimation with measurements:
Xk = XI: + Kk(]D)k — DI;)’
5: Update the error covariance:
Py =( - KgHg)P, s
6: Repeat and go to Step 1.

where W and V' are the Jacobian matrix of partial deriva-
tives of state and output functions with respect to the pro-
cess noise and measurement noise, respectively. P, R and
@ are the covariance matrix of the error in the state estimate,
measurement noise, and process noise, respectively.

3 Performance Comparison

We have implemented EKF P, PV, and PVA tracking al-
gorithms and performed experiments extensively. Due to
space limitation, we only present one group of experiments.
The parameters of different algorithms are kept the same
as much as possible in order to provide a fair comparison.
Fig. 2 shows estimated moving curves when three pivots are
deployed and Fig. 3 compares the accuracy of these three al-
gorithms in this case. In Fig. 2, the output of PVA almost
overlaps with the moving trajectory of the target object. As
shown in Fig. 3, PVA is the best tracking model while P
is the worst one in these experiments. In fact, in other ex-
periments, PVA is almost consistently better than PV and P,
while in a very few cases PV achieves the best.

Figure 2. Output of
tracking algorithms
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Figure 4. Impact of the pivot number.

We also evaluate the impact of the number of pivots on
tracking accuracy. Fig. 4 shows that the performance when
five pivots are deployed is better than the experiments with
only three pivots. But the performance with only four piv-
ots, not shown in the paper, is almost the same as that of five
pivots.

4 Conclusions and Future Work

This paper compares extended Kalman filters with the P,
PV and PVA dynamics models for object tracking in sensor
network. We are porting our implementation into wireless
Sensors.
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