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Abstract—The explosive growth in data volume and complexity imposes great challenges for file systems. To address these

challenges, an innovative namespace management scheme is in desperate need to provide both the ease and efficiency of data

access. In almost all today’s file systems, the namespace management is based on hierarchical directory trees. This tree-based

namespace scheme is prone to severe performance bottlenecks and often fails to provide real-time response to complex data lookups.

This paper proposes a Semantic-Aware Namespace scheme, called SANE, which provides dynamic and adaptive namespace

management for ultra-large storage systems with billions of files. SANE introduces a new naming methodology based on the notion of

semantic-aware per-file namespace, which exploits semantic correlations among files, to dynamically aggregate correlated files into

small, flat but readily manageable groups to achieve fast and accurate lookups. SANE is implemented as a middleware in conventional

file systems and works orthogonally with hierarchical directory trees. The semantic correlations and file groups identified in SANE can

also be used to facilitate file prefetching and data de-duplication, among other system-level optimizations. Extensive trace-driven

experiments on our prototype implementation validate the efficacy and efficiency of SANE.

Index Terms—File systems, storage systems, semantic awareness, namespace management
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1 INTRODUCTION

PETABYTE-, or Exabyte-scale data sets and Gigabit data
streams are the frontiers of today’s file systems [1]. Stor-

age systems are facing great challenges in handling the
deluge of data stemming from many data-intensive applica-
tions such as business transactions, scientific computing,
social network webs, mobile applications, information visu-
alization, and cloud computing. Approximately 800 Exa-
bytes of data were created in 2009 alone [2]. According to a
recent survey of 1,780 data center managers in 26 countries
[3], over 36 percent of respondents faced two critical chal-
lenges: efficiently supporting a flood of emerging applica-
tions and handling the sharply increased data management
complexity. This reflects a reality in which we are generat-
ing and storing much more data than ever and this trend
continues at an accelerated pace. This data volume explo-
sion has imposed great challenges to storage systems, par-
ticularly to the metadata management of file systems. For
example, many systems are required to perform hundreds
of thousands of metadata operations per second and the
performance is severely restricted by the hierarchical

directory-tree based metadata management scheme used in
almost all file systems today [4].

The most important functions of namespace manage-
ment are file identification and lookup. File system name-
space as an information-organizing infrastructure is
fundamental to system’s quality of service such as perfor-
mance, scalability, and ease of use. Almost all current file
systems, unfortunately, are based on hierarchical directory
trees. This namespace design has not been changed since it
was invented more than 40 years ago [5]. As the data vol-
ume and complexity keep increasing rapidly, conventional
namespace schemes based on hierarchical directory trees
have exposed the following weaknesses.

Weakness 1: Limited system scalability. The directory-based
management is effective only when similar documents or
files have been stored in the same directory [4]. Although
the directory size distribution has not significantly changed
[6], the file system capacity has increased dramatically. This
not only causes great inconvenience for file systems users,
but also slows down data-intensive applications by generat-
ing more random accesses to underlying disks. In addition,
since lookups are performed recursively starting from root
directories, disks or servers serving requests to higher levels
of the trees have a highly unbalanced share of the work-
loads, leading to a higher probability of becoming perfor-
mance bottlenecks.

Weakness 2: Reliance on end-users to organize and lookup
data. Locating a target file by manually navigating the direc-
tories through directory trees in a large system amounts to
searching a needle in a haystack. As the directory tree
becomes increasingly “fatter”, it is equally difficult for users
to instruct the file systems where a file should be stored and
to find them quickly. When one does not know the full path-
name of a file, slow exhaustive search over all directories is
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often resorted to. Such exhaustive search on a large system
with billions of files takes a prohibitive amount of time. It is
even more difficult to locate correlated files since users often
cannot explicitly define mandatory search criteria in most
file systems.

Weakness 3: Lack of metadata-semantics exploration. While it
is difficult to manage massive data through a centralized
hierarchical structure, research in both industry and acade-
mia has shown that, in most file systems, a small subset of
file system’s data serves a majority of data access requests
[6], [7], [8], [9], [10]. Being able to identify this subset of fre-
quently accessed data by semantic exploration is hence ben-
eficial to system designers in their pursuit of system
optimizations such as file prefetching and data deduplica-
tion. Conventional file systems have by and large ignored
the semantic context in which a file is created and accessed
during its lifetime.

While a rich body of research in the recent literature has
attempted to overcome these weaknesses, such as Spyglass
[7], Ceph [11], Glance [12], quFiles [13], DiFFS [14], Smart-
Store [15], Haystack [16] and Ursa Minor [17], these solu-
tions are not comprehensive and still limited by the
inherent weaknesses of the directory-tree naming scheme.
Our design shares with them the similar goals of improving
file organization and simplifying data management.

We propose a new namespace management scheme,
called SANE, which provides a flat but small, manageable
and efficient namespace for each file. In SANE, the notion of
semantic-aware per-file namespace is proposed in which a
file is represented by its semantic correlations to other files,
instead of conventional static file names. Our goal is not to
replace conventional directory-tree management that
already has a large user base. Instead, we aim to provide
another metadata overlay that is orthogonal to directory
trees. SANE runs concurrently with the conventional file
system that integrates it and takes over the responsibilities
of file search and semantic file grouping from the file system
when necessary. Moreover, SANE, while providing the
same functionalities, makes use of a new naming scheme
that only requires constant-scale complexity to identify and
aggregate semantically correlated files. SANE extracts the
semantic correlation information from a hierarchical tree.
Fig. 1 illustrates the relationship and difference between
SANE and the existing hierarchical directory tree. For
instance, in order to serve a complex query, SANE only
needs to check the small and flat namespace one time, thus

avoiding a time-consuming search of brute-forced traversal
over the entire hierarchical tree.

SANE is intended for an integration into modern file sys-
tems such as pNFS [18], PVFS [19], GFS [20], and HDFS [21].
Our goal in this research is to complement existing file sys-
tems and improve system performance. Our major contri-
butions are summarized below.

First, addressing Weaknesses 1 and 2, SANE is designed
to leverage semantic correlations residing in multi-dimen-
sional attributes, rather than one-dimensional attributes
such as pathnames, to represent a file. The metadata of files
that are strongly correlated are automatically aggregated
and then stored together in SANE. When a user performs a
file lookup, SANE will also present the user files that are
strongly correlated to this searched file, which constitute
the semantic-aware per-file namespace of this file. This
allows the user to access the correlated files easily without
having to perform additional searches or directory tree nav-
igations. In a distributed environment, this also improves
the system performance since it improves the affinity: files
that tend to be accessed together are placed on the adjacent
servers. As a result, the operations on similar (i.e., semanti-
cally correlated) data take place in limited subsets of data
without incurring extra overheads on the whole system,
thus significantly improving the system scalability.

Second, addressing Weakness 3, SANE leverages locality
sensitive hashing (LSH) [22] to automatically organize
semantically correlated files without the involvement of
end-users or applications. Our algorithm has very little per-
formance overhead since LSH has a low complexity of prob-
ing constant-scale buckets. SANE represents each file based
on its semantic correlations to other files. As the file system
evolves, SANE can efficiently identify their changes to
update the namespace by exploiting the file semantics. The
semantics residing in files’ correlation are obtained from
multiple dimensions, rather than a single one, thus also
allowing us to optimize the overall system design.

Third, SANE is implemented as a transparent middle-
ware that can be deployed/embedded in most existing file
systems without modifying the kernels or applications.
SANE provides users with two auxiliary namespace views,
i.e., default (conventional hierarchy) and customized
(semantic-aware per-file representation). Both views hide
the complex details of the physical representation of indi-
vidual files, and export only a context-specific logical out-
look of the data. Experimental results demonstrate that
SANE efficiently supports query services for users, while
facilitating system performance improvements, such as file
prefetching and data de-duplication.

The rest of this paper is organized as follows. Section 2
presents the backgrounds and problem statement. Section 3
discusses the design and implementation details. Section 4
evaluates the performance. Section 5 presents the related
work. We conclude our paper in Section 6.

2 BACKGROUNDS AND PROBLEM STATEMENT

2.1 Multi-Dimensional Attributes

Real-world applications demonstrate the wide existence of
access locality that is helpful to identify semantic correlation.
For instance, Filecules [8] examines a large set of real traces

Fig. 1. SANE and hierarchical directory tree.
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and concludes that files can be classified into correlated
groups since 6.5 percent of files account for 45 percent of I/O
requests. Spyglass [7] reports that the locality ratios are
below 1 percent in many traces, meaning that correlated files
are contained in less than 1 percent of the directory space. A
workload study on a large-scale file system [9] demonstrates
that fewer than 1 percent clients issue 50 percent file requests
and over 60 percent re-open operations occur within one
minute. A recent study [6] shows that local write operations
concentrate on 22 percent files in a five-year period. The exis-
tence of access locality facilitates the performance optimiza-
tion in many computer system designs.

Selecting appropriate attributes is non-trivial due to
two challenging constraints, i.e., the curse of dimensional-
ity and dimensionality heterogeneity. First, when the
dimensionality exceeds about 10, traversing the existing
data structures based on space partitioning becomes
slower than the brute-force linear-scan approach. This
slowdown phenomenon is often called the “curse of
dimensionality” [22]. We hence need to reduce the
dimensionality in order to decrease operational complex-
ity. Second, dimensionality heterogeneity, which means
that two items that are close-by in one space might be far
away in another space with a different dimensionality, is
another great challenge. The data correlation is sensitive
to the observation space selected. Two items that are cor-
related when observed in one attribute subset might be
totally uncorrelated in another attribute subset.

Locality versus affinity. Extensive previous studies have
proven that file system workloads have strong access local-
ity, i.e., requested data are often temporally or spatially
clustered together, as described briefly above. In this paper,
we focus on the affinity of access and files. In fact, locality is
a special affinity that describes temporal and spatial correla-
tions among files. In this paper, we consider more generic
affinity. Affinity in the context of this research refers to the
semantic correlation derived from multi-dimensional file
attributes, which include but are not limited to the temporal
or spatial locality. For example, the typical attributes
include path name, file name, file size, created time and
modification time. In practice, simply exploring locality is
insufficient in capturing affinity due to two reasons. First,
physically closely located data can be semantically unre-
lated. For instance, the directories c : nwindows and
c : nusers are functionally unrelated most of time. Accessing
them through a shared ancestor directory will be neither
helpful to users nor beneficial to the system performance.
Second, affinity can in fact be implied by or embedded in
the attributes that are not necessarily time or space oriented
and are far from the temporal and spatial dimensions.
Therefore, while in some cases locality may be part of the
affinity and simple exploitation of locality may help scale
up the performance to some extent, locality alone often falls
short of overcoming the weaknesses.

Semantic correlations. Semantic correlations measure the
affinity among files and we use correlations to estimate the
likelihood that all files in a group are of great interest to a
user or to be accessed together within a short period of
time. We derive this measure from multiple attributes of
files. To put things in perspective, linear brute-force search
approaches use no correlation at all, which we call zero-

dimensional correlation. Spatial-/temporal-locality based
approaches, such as Spyglass [7] and SmartStore [15], use
limited-dimensional correlations either in access time or ref-
erence space, which can be considered a special case of our
proposed approach. The main benefit of measuring seman-
tic correlations in multi-dimensional attribute space is that
the affinity among files can be more accurately identified.

Semantic correlation can be exploited to optimize system
performance. Metadata prefetching algorithms, Nexus [23]
and FARMER [24], are proposed, in which both file access
sequences and semantic attributes are considered in the
evaluation of the correlation among files to improve file
metadata prefetching performance. The probability of inter-
file access is found to be up to 80 percent when considering
four typical file system traces. Our preliminary results
based on these and the HP [25], MSN [26], EECS [27] and
Google [28] traces further show that exploiting semantic
correlation of multi-dimensional attributes can help prune
up to 99.9 percent search space [15].

Semantic correlation extends conventional temporal and
spatial locality and can be quantitatively defined as follow.
Assuming that there are t � 1 groups fGij1 � i � tg, where
the size of group Gi is denoted as jGij and Gi contains files
fj; ð1 � j � jGijÞ. Hence, the semantic correlation among the
files of these groups can be measured by the minimum ofPt

i¼1

P
fj2Giðfj � CiÞ

2 where Ci is the centroid of group Gi,
i.e., the average values of multi-dimensional attributes. The
value of ðfj � CiÞ2 represents the euclidean distance in the
multi-dimensional attribute space. Since the computational
costs for all attributes are unacceptably high in practice, we
use a simple but fast tool, i.e., locality-sensitive hashing [22]
to efficiently cluster semantically correlated files into
groups, as detailed in Section 3.

2.2 Problem Statement

The problem we aim to solve in this paper concentrates on
how to efficiently identify the t nearest neighbors of a given
individual file. The answer to this question allows us to
quickly represent the namespace of each file. Here t is an
adjustable parameter that controls the size of the group that
represents the access affinity and namespace of a file, and
the correlation can be measured by the distance in a multi-
dimensional space, such as euclidean distance.

For a given file, its per-file namespace can be formally
defined by using semantic correlations as follows.

Definition 1. The semantic-aware per-file namespace of file f
consists of t files ðf1; f2; . . . ; ftÞ that are the most strongly cor-
related with f based on p predefined semantics attributes, i.e.,
ða1; a2; . . . ; apÞ. The correlation degrees, as a quantitative
representation of semantic correlation, are ðd1; d2; . . . ; dtÞ,
respectively. The semantic-aware namespace of f is denoted by
a t-tuple

NamespacetðfÞ ¼ fðf1; d1Þ; ðf2; d2Þ; . . . ; ðft; dtÞg;

where f 62 NamespacetðfÞ, di ¼ 1� Ei
D ; ð1 � i � tÞ, D is a

large constant, and Ei is euclidean distance between file f and
file fi in the p-dimensional attribute space.
The semantic-aware namespace on a per-file basis in

SANE is a flat representation of a manageable size of t file
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members. The namespace construction entails identifying t
nearest neighbors of a file in the multi-dimensional attribute
space. The rationales behind this are two-fold. First of all,
close neighbors, i.e., strongly semantically correlated files,
should be arranged in the same or adjacent storage server
nodes in a distributed file system or can be stored contigu-
ously on disks in a centralized file system. Hence, perform-
ing a top-t query will quickly find correlated files belonging
to the namespace of this file with a smaller amount of mes-
sage exchanges in a distributed file system or fewer small
random disk accesses in a centralized file system. We will
discuss how to set an appropriate value for t, i.e., name-
space size, in the following section. Second, the per-file
namespace scheme in file systems can effectively provide a
unique namespace for each file. Our design can avoid name-
space collisions and the details are presented in Section 3.4.

3 DESIGN AND IMPLEMENTATION

We aim to exploit semantic correlations among files to
define one flat, small, but accurate namespace for each file.
The namespace of a file, which we call semantic-aware perfile-
namespace and namespace for short in the rest of this paper,
can be simply viewed as a single-level dynamic virtual
directory that evolves with the changes in files attributes
and consists of a set of files that are most semantically corre-
lated to this file. However, different from directory trees,
per-file namespace is not hierarchical at all, i.e., one per-file
namespace cannot be a child of another per-file namespace.
A per-file namespace of a file also differs from a directory in
that this per-file namespace does not include this file itself,
as we will discuss later in details.

3.1 An Architectural Overview

To illustrate how SANE works, we briefly describe its over-
all architecture. SANE explores semantic correlations resid-
ing in files to build the namespace representation that can
accurately identify a file and track the evolution of file
attributes. SANE includes three key function modules,
semantic correlation identification (SCI), namespace con-
struction (NC) and dynamic evolution (DE), as shown in
Fig. 2. To quickly identify correlated files, the SCI module

performs the locality-sensitive-hashing computation based
on multiple file attributes. Different compositions of attrib-
utes will produce semantic groups with different accuracies.
However, it is non-trivial to select the optimal set of attrib-
utes that can most accurately define file correlations and
best match access patterns. After the semantic correlations
are identified, the NC module aggregates semantically cor-
related files into groups by performing nearest-neighbor
searches for each file. This process determines which files
belong to the namespace of a given file. The namespace of
each file is represented as a t-tuple vector, consisting of the t
most correlated files and their correlation degrees to this
file. Finally, since the attributes’ values of files and their cor-
relations may change over time, DE helps it accurately
adapt to such changes and makes speedy namespace
updates. SANE exploits dynamically evolving correlations
to create an accurate semantic-aware namespace in a very
large-scale file system with a small performance overhead.

From the viewpoints of both end-users and file systems,
SANE offers a transparent and context-aware abstraction to
serve user requests and improve system performance. Spe-
cifically, for end-users, a customized flat and small name-
space allows them to quickly navigate and identify target
data files. A renaming operation is interpreted as a member-
ship change to the t-tuple file set that constitutes a file’s
namespace. SANE can support three types of queries,
namely, point, range and top-k queries. These small file sets
that represent the namespaces of individual files differ from
directories in conventional file systems in that, for the same
file, a semantic-aware per-file namespace is a dynamic logic
view to a set of files and it changes over time based on
semantic contexts, while a directory always returns the
same logic view to a fixed set of files. Furthermore, in sys-
tems with hierarchical directories, users and applications
need to be aware of directory path to locate data. In contrast,
SANE is transparent to users and applications and exposes
a semantic-aware per-file namespace for a given file. On the
other hand, for file systems, the semantic-aware namespace
in SANE contains correlated files to facilitate efficient file
caching and prefetching and data dedulplication, which is
conducive to the overall performance improvement.

3.2 Semantic Correlation Identification

SANE uses locality sensitive hashing [22] to identify seman-
tic correlations. LSH has the advantages of both locality
preservation and fast identification.

LSH. We briefly introduce LSH and explain how it is
used in fast semantic identification. LSH is an efficient tool
that maps similar items into the same hash buckets.

Definition 2. Given a distance R, approximation ratio c > 1, and
two probability values P1 and P2 such that 1 > P1 > P2 >
0, a function hð:Þ is said to be ðR; cR; P1; P2Þ locality sensitive
for distance function k; k if for points u1 and u2, it satisfies
both conditions below:

� If ku1; u2k � R, then Pr½hðu1Þ ¼ hðu2Þ� � P1,

� If ku1; u2k > cR, then Pr½hðu1Þ ¼ hðu2Þ� � P2.

In LSH, items close to each other will have a higher
probability of colliding than items that are far apart [29].
Specifically, the closeness depends on the R value that
can be obtained empirically by sampling real-world data

Fig. 2. SANE as a middleware in file systems.
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sets [30]. The first condition above shows that, for a given
R, two close-by files that have a distance smaller than R
will be hashed into the same bucket of a hash table with
a high probability greater than or equal to P1. The second
condition states that two irrelevant files can always be
hashed into the same bucket with a low probability equal
to or smaller than P2.

3.3 Data Storage Structure

LSH works well in identifying correlated data but suffers
from the space-overhead problem as the amount of data
increases. Since LSH requires many hash tables to main-
tain correlated data, the space overhead becomes a poten-
tial performance bottleneck. When dealing with massive
amounts of data, data structure can easily overflow the
main memory, leading to slow hard disk accesses and
severe performance degradations. Furthermore, while the
form of hash tables works for point-based queries (e.g.,
point and top-k queries), it may not efficiently support
range queries that must obtain queried results within
given intervals when the hash table fails to maintain the
interval information.

We make use of the R-tree [31] structure to replace the
original hash tables, store the correlated data, and represent
their multi-dimensional attributes in the R-tree nodes. The
root node (e.g., R1) represents domain ranges of all possible
attributes. Let N be the maximum number of children of a
node. Each internal node can contain r (N2 � r � N) child
nodes. We set a lower bound on r to prevent tree degenera-
tion and to ensure an efficient storage utilization. Whenever
the number of children drops below r, the node will be
deleted and its children will be re-distributed among sibling
nodes. The upper bound N can guarantee that each tree
node in fact can be stored exactly on one disk page. Each
internal node contains entries in the form of ðI; PointerÞ
where I ¼ ðI0; I1; . . . ; Ip�1Þ is a p-dimensional bounding
box, representing a minimumbounding rectangle (MBR). Ii
is a bounded interval, which can cover items in the ith
dimensional space. Pointer is the address of a child node.

The flat namespace as a proper middleware will not
become the performance bottleneck. After identifying corre-
lated files by using LSH, we then organize all groups of
closely correlated files into R-trees that are deployed in mul-
tiple distributed metadata servers. An R-tree is a data struc-
ture organized in aheight-balanced tree that is often used to
represent and indexspatial data. An R-tree can split data
space into hierarchicallynested bounding boxes that may
contain several data entitieswithin the bounding box. It can
efficiently support point, rangeand top-k queries by main-
taining index records in its leaf nodes. An index record is a
reference pointer to data. R-treesuse solid minimum bound-
ing rectangles, i.e., bounding boxes, to indicate the queried
regions. An MBR ineach dimension denotes an interval of
all enclosed data witha lower and an upper bound. In our
design, we exploit its special capability for supporting
query services by modifying its structure to store the
semantically aggregated files. R-tree isa completely
dynamic index structure that is able to efficiently support
data updates and provide efficient query services by visit-
ing only a small number of nodes in a spatial search. Thusin
our design, we use R-tree to construct the namespace.

As shown in Fig. 3, we first identify the correlated items
via LSH based hashing computation. The correlated items
are represented in the geometric space as shown in Fig. 3a.
Fig. 3b further exhibits the R-tree based data structure to
store the correlated items. LSH identifies correlated data
items that are further represented in geometric space via
minimum bounded rectangles that correspond to the
groups. MBRs can be further aggregated iteratively until
the R-tree root node. Each non-leaf node in an R-tree con-
tains the ranges of multi-dimensional attributes of stored
files as well as the pointers to their child nodes. The leaf
nodes maintain the pointers to the actual files. Moreover,
the namespace of each file can be built by selecting the
members from the groups that this file belongs to. For a
range query, it contains the query requests that are also rep-
resented as rectangles in the geometric space. The covered
data can be fast identified and considered as query results.

3.4 Namespace Construction

SANE offers a scalable way to construct semantic-aware
per-file namespaces for the file system. SANE can provide
the constructed namespaces of files in any storage area,
such as portions of the main memory, and/or portions of
the secondary storage of SSD or HDD. Here, take the main
memory for an example, SANE is initialized by first carry-
ing out LSH-based hash computation to cluster into groups
files. These files are semantically correlated with the files
already in the main memory of the file system, in which
SANE is installed. SANE then organizes these groups into
an R-tree structure. A nearest-neighbor query over the R-
tree can identify the member files of the namespace of an
individual file. This process repeats when a new file is
accessed and loaded into the main memory. When the main
memory is full, the namespace of a file will be replaced and
flushed to the secondary memory based on a proper
replacement policy, say, LRU. In other words, the main
memory stores the per-file namespaces of the “hot” or
“popular” files at any given time while “cold” files’ name-
spaces are stored in the secondary memory.

We use the LSH-based R-trees described above to build
the semantic aware per-file namespace. Specifically, for
each file, its namespace is derived from the results of a top-t
query that identifies the t nearest neighbors in the attribute
space. These most closely correlated neighbors constitute
the namespace of this file.

The size of the per-file namespace depends on the
parameter t. If t is too small, i.e., having a very small num-
ber of members, it is difficult to differentiate files. But a very
large t often involves some files that might not be strongly

Fig. 3. R-tree based representation.
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correlated, resulting in a decrease in the semantic correla-
tion in a namespace and a potentially higher cost for name-
space update. Therefore, we need to strike a good balance
between the differentiated representation and the semantic
correlation guarantee. In SANE, we determine
an appropriate value for t by maximizing the mean and
standard deviation (MSD), defined as MSDðfÞ ¼

dþ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt

i¼1
ðdi�dÞ2

t

r

, where d ¼
Pt

i¼1
di

t and a is the correlation

factor. The correlation factor is obtained from history sam-
ple records and can be adjusted according to specific
requirements in real-world applications (e.g., the traces
used in Section 4 for performance evaluation). Our rationale
behind using MSD is that the mean of all correlated degrees
faithfully describes the correlation between a given file and
all files in its namespace. The standard deviation allows the
namespace to select differentiated member files to guaran-
tee the unique representation. We further make a suitable
assumption that the namespace of each file does not contain
the file itself.

MSD quantitatively controls the construction of a seman-
tic-aware per-file namespace in an iterative manner. Ini-
tially, we start with one file (t ¼ 1), i.e., the nearest
neighbor, and calculate the initial MSDðfÞ. If the addition
of the next most closely correlated file to the namespace can
increase the value of MSDðfÞ, this file is then considered a
member of file f’s namespace and t is increased by 1 and
MSDðfÞ is updated accordingly. This process repeats until
the addition of the next most closely correlated file results
in a decrease in MSDðfÞ .

We use the correlation degree di as a metric to evaluate
the correlation between two files. The metric di is the dis-
tance between two files in the attribute space. This metric
can also help differentiate the file names and guarantee the
uniqueness of file representation. For instance, assuming
that both files A and B are correlated with file C, SANE
thus considers file C as a member of namespaces
NamespacetðAÞ and NamespacetðBÞ, which may potentially
produce the same naming representation. When using the
correlation degree, e.g., ðC; 0:7Þ and ðC; 0:5Þ respectively in
NamespacetðAÞ and NamespacetðBÞ, we can easily differen-
tiate their namespaces due to different correlation degrees.
In the worst case, it might happen that the representations
of two files are exactly the same, i.e., they have the same file
members and correlation degrees. Although it occurs rarely,
we solve this representation collision by increasing the
namespace size until we obtain a unique representation.

3.5 Dynamic Evolution

SANE leverages a two-set representation of namespace for
speedy update. The semantic naming scheme adapts to the
dynamic evolution of file attributes and correlations, which
is one of the most salient features distinguishing SANE
from most existing tree-based schemes.

In SANE, we use a two-set design to achieve fast
update on staleness and reduce the overhead of main-
taining information consistency. For each file f , we main-
tain two membership sets, i.e., the set NamespacetðfÞ
that contains the t files most semantically correlated to
file f , and the set MemberðfÞ whose elements represent

all files whose namespaces contain file f . For example,
set Namespace3ðAÞ ¼ fðB; dABÞ; ðC; dACÞ; ðD; dADÞg keeps
the namespace member files B, C and D of file A. On
the other hand, file B is also a member of other files’
namespaces (say, E and F ), thus, MemberðBÞ ¼ fA;E;
Fg. When the attributes’ values of f change, we first exe-
cute a new top-t query to re-build its namespace by find-
ing the t nearest neighbors. These new neighbors form
the updated NamespacetðfÞ set. File f further conveys its
new attribute values to the members of set MemberðfÞ to
update their namespaces.

One benefit of using the two-set representation is to
significantly reduce the complexity of the “rename” opera-
tion. A rename operation will likely change the name-
space representation of a file to a new one, in which the
key issue is how to guarantee the uniqueness of a new
representation without a brute-force checking over the
entire file system. With the aid of the two-set representa-
tion, a rename operation can be performed with a small
performance overhead.

Specifically, we allow the verification for uniqueness to
occur in the files shared by all “Member” sets of the
renamed file. For instance, as shown in Fig. 4, when file A is
renamed, we execute a simple intersection operation upon
the three “Member” sets, i.e., MemberðBÞ;MemberðCÞ;
MemberðDÞ. If the intersection results in only file A, the
uniqueness is guaranteed since no other file’s namespace
simultaneously contains files B;C;D. Otherwise, we must
check whether the namespaces of files other than A in the
intersection of the three “Member” sets contain the same
member files and correlation degrees as the namespace of
file A. If another file in the intersection has an identical
namespace as the renamed file A, then we re-compute
semantic correlations for A to generate another representa-
tion of A by increasing the namespace size. In the unlikely
case that the newly computed namespace ofA collides with
another file, this process repeats until a unique namespace
for the renamed file A is obtained as guaranteed (see
Lemma 1). The simple intersection operation reduces the
number of files to be checked. In addition, since two files
being the same is defined as their respective namespaces
having identical member files and correlation degrees, the
probability of such a collision and re-computation to gener-
ate a new filename is extremely small.

Fig. 4. Two-set representation for speedy update.
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A renamed file is likely a member of other files namespa-
ces. After a file is renamed, it may potentially introduce fur-
ther updates on its correlated files represented in its
“Member” set. Specifically, we examine whether the new
correlation degrees between the renamed file and its corre-
lated files become larger than some pre-defined threshold.
The threshold range is between 0 and 1. If it is 0, all files must
be updated no matter what the correlation degree is. On the
other hand, if it is 1, only the renamed file itself needs to be
updated due to the guarantee of uniqueness in SANE. In
practice, by leveraging an accurate pre-defined quantitative
threshold of semantic correlation (e.g., through empirical
analysis), the renaming of a file typically only leads to the
updates of a limited number of correlated files. The update
overhead due to the rename operations is shown indeed to
be very small by our experimental evaluation.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

Platform. We have implemented a prototype of SANE in
Linux kernel 2.6.28 and performed experiments on a cluster
of 80 server nodes, each with Intel Core 2 Duo CPU and
2 GB memory. An RPC-based interface to WAFL (Write
Anywhere File Layout) [32], [33] gathers the dynamic
changes of file attributes, driven by our snapshot-based
traces in the performance evaluation. SANE use three met-
rics, namely, cost-effectiveness, searchability and scalability. All
experiments have taken into account the dynamic evolution
of file systems, such as file creations and deletions. In addi-
tion, the user interfaces of SANE for namespace representa-
tion, renaming and query service are also implemented in
our prototype. We design and implement most modules at
the user space level so that our prototype can run on many
existing systems. The prototype has implemented the three
basic function components of SANE discussed in the previ-
ous section, namely, LSH-based semantic correlation identi-
fication, namespace construction, and dynamic evolution of
attributes and correlations.

Intensified Traces. We use four representative traces, of
which three collected from the industry and one from the
academia. These traces include HP file system trace [25],
MSN trace [26], EECS NFS server (EECS) trace at Harvard
[27] and Google clusters trace [28], which drive the SANE
performance evaluation. Moreover, for the sizes of these
traces, Google cluster contains 75 five-minute reporting
intervals. There are a total of 3,535,029 observations,
9,218 unique jobs and 176,580 unique tasks. HP contains 94.7
million requests for a total of 4 million files from 32 users.
MSN has 1.25 million files and records 4.47 million opera-
tions, in which there are 3.3 million read and 1.17 million
write operations. EECS contains 4.44 million operations. The
number and size of read operations are respectively 0.46 mil-
lion and 5.1 GB. Those of write operations are respectively
0.667 million and 9.1 GB. Due to their relatively small sizes,
we use a scaled-up method to intensify them.

In order to emulate the I/O behaviors of large-scale file
systems for which no realistic traces are publicly available,
we scaled up the existing I/O traces of current storage sys-
tems both spatially and temporally. This method has been
successfully used in Glance [12] and SmartStore [15].

Specifically, a trace is first decomposed into sub-traces. We
then add a unique sub-trace ID to all files to intentionally
increase the working set. The start times of all sub-traces
are set to zero so that they are replayed concurrently. The
chronological order among all requests within a sub-trace
is faithfully preserved. The combined trace contains the
same histogram of file system calls as the original one but
represents a heavier workload (higher intensity). The num-
ber of sub-traces replayed concurrently is denoted as Trace
Intensifying Factor (TIF) and in our experiments the default
TIF value is 400. Moreover, the multi-dimensional attrib-
utes chosen for this evaluation are faithfully extracted from
the original traces. In addition, in order to obtain reason-
able R values for the LSH computation (Section 3.2) in our
experiments, we use the sampling method, which has been
verified through practical applications [29], [34]. We deter-
mine the R values to be 1,200, 800, 1,000 and 950, respec-
tively for the intensified HP, MSN, EECS and Google
traces. In fact, the SANE system can be dynamically config-
ured according to the requirements of users or systems,
such as query accuracy and latency, available space, band-
width and computing resources.

All I/O requests in the intensified file system traces are
issued from client machines to server machines. Both cli-
ents and servers use multiple threads to exchange mes-
sages and data via TCP/IP. IP encapsulation technique
facilitates fast addressing in the networks by encapsulat-
ing an IP header with an outer IP header for tunneling. It
helps forward the query requests among multiple servers.
We repeat each experiments 30 runs to validate the
results according to the evaluation guidelines of file and
storage systems [35].

In our performance evaluation, we intentionally choose
specific comparison schemes in order to make the compari-
son relevant and fair. We compare SANE with the target
schemes only in the relevant aspects such as namespace
construction, query performance for users, and file prefetch-
ing and data deduplication for systems. To evaluate cost-
effectiveness, we choose to compare SANE with the Ext4 file
system (Linux kernel 2.6.28) that serves as a classic repre-
sentative of the conventional namespace schemes based on
hierarchical directory trees. In order to support directory
indexing, Ext4 examines a hashed B-tree that uses a hash
table of the filenames. For Searchability, we select some
state-of-the-art comparable systems, including Spyglass [7]
and SmartStore [15]. Both systems support various types of
queries in file systems with competitive performance. Note
that since there is no open source code available for Spy-
glass, we implemented its main components, such as the
crawler, multiple partitions and versions, and K-D tree,
according to the descriptions presented in [7].

In the experiments, for a given file f , SANE first chooses
its nearest neighbor file (t ¼ 1) as the member of its name-
space. We then obtain the value of MSDðfÞ. If the value of
MSDðfÞ increases after adding its next most closely corre-
lated file to the namespace, the file is considered a member
of file f’s namespace and t is increased by 1, while MSDðfÞ
is updated accordingly. Otherwise, the namespace construc-
tion finishes. The bounds (minimum and maximum) and
average values of t in four traces are respectively (min-max:
22-121; average: 31.6) in MSN, (min-max: 11-31; average:
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15.2) in EECS, (min-max: 17-53; average: 23.8) in Google and
(min-max: 27-172; average: 38.4) in HP.

In general, filename-based point query is very popular in
most file system workloads. There are no file system I/O
traces for both point and complex queries (range and top-k)
requests. In order to address this issue, we leverage a syn-
thetic approach to generating not only point query, but also
complex queries within the multi-dimensional attribute
space. The basic idea is to statistically generate random
queries in a multi-dimensional space. We study the file
static attributes and behavioral attributes from the available
I/O traces. For example, a point query in the form of (17:50,
85.2, 36.5) represents a search for the files that are closest to
the description of a file that is last revised at time 17:50,
with the amounts of “read” and “write” data being approxi-
mately 85.2 and 36.5 MB. Moreover, a range query aiming
to find all the files that were revised between time 8:20 to
10:50, with the amount of “read” data ranging from 22 to
40 MB, and the amount of “write” data ranging from 7 to
12 MB, can be represented by two points in a three-dimen-
sional attribute space, i.e., (8:20, 22, 7) and (10:50, 40, 12).
Similarly, a top-k query in the form of (9:30, 17.2, 75.8, 5)
represents a search for the top-five files that are closest to
the description of a file that is last revised at time 9:30, with
the amounts of “read” and “write” data being approxi-
mately 17.2 and 75.8 MB, respectively.

In addition, the semantic correlations identified in
SANE create new opportunities for system designers to
implement system optimizations from a totally new per-
spective. In this paper, we take data deduplication to illus-
trate potential benefits of SANE from a system perspective.
We have leveraged semantic correlations identified by
SANE to optimize system function of deduplication.

4.2 Results and Discussions

4.2.1 Searchability

We compare SANE with Spyglass [7] and SmartStore [15] in
terms of accuracy and latency of point and complex queries.
Note that both Spyglass and SmartStore can obtain exact-
matching results by using brute-force-like approaches and
increasing the amount of data that must be read from the
disk. Here, hit rates in Spyglass and SmartStore represent
cache hits of the accessed partitions in Spyglass and seman-
tic groups in SmartStore respectively.

Query Accuracy. Fig. 5 shows the hit rates for the 2,000 and
4,000 point query requests. The hit rate of SANE is 93.7, 95.2,
94.6, and 94.8 percent, respectively for the HP, MSN, EECS
and Google traces, visibly outperforming Spyglass (90.5,
92.3, 91.9 and 90.2 percent) and SmartStore (89.6, 91.1, 90.2
and 89.3 percent). The main reasons behind SANE’s superior-
ity to SmartStore and Spyglass are twofold. First, the former
leverages the LSH functions that can significantly mitigate
the adverse impact of stale information. Second, SANE’s
two-set design behind its semantic-aware namespace makes
it possible to accurately and timely search updated results.

We adopt the “recall” metric from the field of informa-
tion retrieval to measure the quality of complex-queries. For
a given query q, we denote T ðqÞ the ideal set of k nearest
objects and AðqÞ the actual neighbors reported by SANE.
We define recall ¼ jT ðqÞ\AðqÞjT ðqÞ . Table 1 presents the recall meas-
ures of range and top-k queries in SANE. The experimental
results show that the query results returned by SANE are
reasonably accurate.

Query Latency. Fig. 6 compares the latencies of point-
queries among SmartStore, Spyglass and SANE. The experi-
mental results show that SANE outperforms SmartStore, by
up to 58.2, 52.5, 54.7 and 49.6 percent, and Spyglass, by up to
32.8, 26.7, 28.2 and 24.6 percent, under the HP, MSN, EECS
and Google traces respectively. This again is attributed to the
fact that SANE uses the fast LSH-based hash computation
while SmartStore uses the slow matrix-based LSI tool and
Spyglass depends on subtree partitions in a hierarchical tree
structure. Table 2 compares the latency measures of range
and top-k queries of these three schemes. For complex
queries, SANE consistently and significantly outperforms
SmartStore and Spyglass by at least one order of magnitude.

4.2.2 Scalability

We examine the system scalability by measuring the aver-
age latencies of query and update requests as well as the
number of required network messages as a function of the
system size. The results are shown in Fig. 7.

We observe from Fig. 7a that the latency measure scales
steadily and smoothly as the number of server nodes

TABLE 1
Accuracy of 4,000 Range and 4,000 Top-k (k ¼ 7) Queries

Fig. 5. Average hit rate for point query.

Fig. 6. Point query latency.
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increases from 10 to 80. SANE only needs to carry out sim-
ple hashing computation to accurately find the queried
results that are placed together in a small and flat search
space. Therefore, the upward scaling of system size has
very limited impact on the organization of correlated files,
thus resulting in strong system scalability.

Fig. 7b shows the latency of the update operation intro-
duced in Section 3.5, indicating a near linear scaling. We
issue a total of 1 million update requests and measure the
average latency of each request under different system
scales. Fig. 7c shows that the number of messages required
for query services also scales reasonably with the number of
server nodes. Since query operations run within one or a
very small number of correlated file tuples, SANE avoids
probing any irrelevant nodes and hence reduces the net-
work overhead.

Projecting the scalability trends in an ultra-large scale
system is difficult, if not impossible, to implement. In
this study, we conduct simulations by exponentially scal-
ing the number of server nodes from 100 up to 1,000.
The simulation results in terms of latencies of query and
update requests show that SANE can maintain near-lin-
ear scalability as the system scales up exponentially. We
recognize that these simulations running under ideal
conditions may overestimate the scalability of SANE
since in the simulations we might have underestimated
or ignored some potential bottlenecks, such as network
bandwidth. However, the experimental results do at
least show potentials of the proposed schemes in the
future exascale systems.

5 RELATED WORK

It is worth noting that the essential difference in SANE
from existing work is its flat, rather than hierarchical,
namespace for data-intensive file systems. Semantic file
system (SFS) [36] is one of the first file systems that extend
the traditional file system hierarchies by allowing users to
search customized file attributes. SFS creates virtual direc-
tories based on demand. quFiles [13] provides a simple
and unified view of different copies of files that are opti-
mized for different access contexts, such as network band-
width. SANE uses a new approach that exploits semantic
correlations among files to create a dynamic per-file
namespace to speed up file lookups when full pathnames
are not available. Our approach differs from SFS and
quFiles in that we take into consideration the semantic
context implicitly and explicitly represented in file meta-
data when serving complex queries. Our approach is par-
ticularly helpful in avoiding brute-force search, which is
time-prohibitive in large file systems.

Hadoop [21] has emerged to be a popular platform for
large-scale data analysis but its namespace management
suffers from the single-name-node limitation. The name-
node stores the entire file system namespace in the main
memory and can become a performance bottleneck, thus
limiting the system scalability. In order to overcome the lim-
itation of Hadoop Distributed File System (HDFS), Ceph
[11] and its demonstration system [37] use dynamic subtree
partition to avoid metadata-access hot spots and support fil-
ename-based query. Google file system (GFS) [20] logically
represents its namespace as a lookup table mapping full
pathnames to metadata. Although using a single master
makes the overall metadata design simple and easily imple-
mentable, the single master can become a potential perfor-
mance bottleneck and single point of failure. Haystack [16],
used in Facebook, tries to avoid disk operations when
accessing metadata by leveraging network attached storage
appliances over NFS, and thus performs all metadata look-
ups in the main memory. Unlike SANE, these systems still
inherit many of the innate features of the conventional hier-
archical directory-tree methodology, thus limiting the scal-
ability and functionality for large-scale file systems.

In order to handle the scalability problem of file system
directories, GIGA+ [38] proposed a POSIX-compliant scal-
able directory design to efficiently support hundreds of
thousands of concurrent mutations per second, in particular
in terms of file creations. An extendible hashing-based

Fig. 7. Study of system scalability based on prototype implementation.

TABLE 2
Range & Top-k (k ¼ 7) Latency (Seconds)
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method [39] is used to dynamically partition each directory
to support metadata management for a trillion files. More-
over, with a goal to scale metadata throughput with the
addition of metadata servers, the Ursa Minor distributed
storage system [17] handles metadata operations on items
stored in different metadata servers by consistently and
atomically updating these items. Dynamic subtree partition
[40] offers adaptive management for hierarchical metadata
workloads that evolve over time. In SANE, our focus is not
on how to store a large number of files within a directory.
Instead, we aim to design a new approach that helps
quickly locate target files in a file system with potentially
billions or trillions of files.

Among searchable file systems, Spyglass [7] exploits the
locality of file namespace and skewed distribution of meta-
data to map the namespace hierarchy into a multi-dimen-
sional K-D tree and uses multilevel versioning and
partitioning to maintain consistency. Glance [12], a just-in-
time sampling-based system, can provide accurate answers
for aggregate and top-k queries without prior knowledge.
SmartStore [15] uses the latent semantic indexing (LSI) tool
[41], [42] to aggregate semantically correlated files into
groups and support complex queries. SANE improves the
performance of the query functionalities significantly and
provides real-time responses to metadata queries in seman-
tic-aware namespaces.

6 CONCLUSION AND FUTURE WORK

This paper proposes a new namespace management
scheme, called SANE, that exploits semantic correlations
among files to create a flat, small, and accurate semantic-
aware namespace for each file. The per-file namespace is a
flat structure without an internal hierarchy. For a given file,
its namespace consists of a certain number of the most
closely correlated files. We design an efficient method to
identify semantic correlations among files by using a simple
and fast LSH-based lookup. For each lookup operation,
SANE cost-effectively presents users’ files that might be of
interests. We have implemented SANE as a middleware
that can run on top of most existing file systems, orthogo-
nally to directory trees, to facilitate file lookups. In addition,
the semantic correlation accurately identified in SANE can
be used to improve some system functions, such as data
deduplication and file prefetching. SANE is a valuable tool
for both system developers and users. We intend to release
it for public use in the near future.

ACKNOWLEDGMENTS

This work was supported in part by National Natural Sci-
ence Foundation of China (NSFC) under Grant 61173043;
National Basic Research 973 Program of China under Grant
2011CB302301; NSFC under Grant 61025008, 61232004; Fun-
damental Research Funds for the central universities, HUST,
under grant 2012QN098; US National Science Foundation
(NSF) under Grants NSF-IIS-0916859, NSF-CCF-0937993,
NSF-CNS-1016609, NSF-CNS-1116606, NSF IIS 091663, CNS
1117032, EAR 1027809, CCF 0937988, CCF 0621493, and
EPS 0904155. Part of the work was done while Yu Hua was at
University of Nebraska-Lincoln. The authors greatly appre-
ciate anonymous reviewers for constructive comments.

REFERENCES

[1] I. Gorton, P. Greenfield, A. Szalay, and R. Williams, “Data-
Intensive Computing in the 21st Century,” Computer, vol. 41,
no. 4, pp. 30-32, 2008.

[2] I.D.C. (IDC),“2010 Digital Universe Study: A Digital Universe
Decade - Are You Ready?” http://gigaom.files.wordpress.com/
2010/05/2010-digital-universe-iview., 2013.

[3] “Symantec. 2010 State of the Data Center Global Data.,” http://
www.symantec.com/content/en/us/about/media/pdfs/
Symantec_DataCenter10_Report _Global.pdf, Jan. 2010., 2013.

[4] M. Seltzer and N. Murphy, “Hierarchical File Systems are
Dead,” Proc. 12th Conf. Hot Topics in Operating Systems (HotOS
’09), 2009.

[5] R. Daley and P. Neumann, “A General-Purpose File System for
Secondary Storage,” Proc. Fall Joint Computer Conf., Part I, pp. 213-
229, 1965.

[6] N. Agrawal, W. Bolosky, J. Douceur, and J. Lorch, “A Five-Year
Study of File-System Metadata,” Proc. USENIX Conf. File and Stor-
age Technologies (FAST), 2007.

[7] A.W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E.L. Miller,
“Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage
Systems,” Proc. Seventh USENIX Conf. File and Storage Technologies
(FAST), 2009.

[8] S. Doraimani and A. Iamnitchi, “File Grouping for Scientific Data
Management: Lessons from Experimenting with Real Traces,”
Proc. 17th Int’l Symp. High Performance Distributed Computing
(HPDC ’08), 2008.

[9] A. Leung, S. Pasupathy, G. Goodson, and E. Miller,
“Measurement and Analysis of Large-Scale Network File System
Workloads,” Proc. USENIX Ann. Technical Conf. (ATC ’08), 2008.

[10] A. Ames, C. Maltzahn, N. Bobb, E. Miller, S. Brandt, A. Neeman,
A. Hiatt, and D. Tuteja, “Richer File System Metadata Using Links
and Attributes,” Proc. Mass Storage Systems and Technologies
(MSST), 2005.

[11] S. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,”
Proc. Seventh Symp. Operating Systems Design and Implementation
(OSDI), 2006.

[12] H. Huang, N. Zhang, W. Wang, G. Das, and A. Szalay, “Just-In-
Time Analytics on Large File Systems,” Proc. Ninth USENIX Conf.
File and Storage Technologies (FAST), 2011.

[13] K. Veeraraghavan, J. Flinn, E.B. Nightingale, and B. Noble,
“quFiles: The Right File at the Right Time,” Proc. USENIX Conf.
File and Storage Technologies (FAST), 2010.

[14] Z. Zhang and C. Karamanolis, “Designing a Robust Namespace
for Distributed File Services,” Proc. IEEE 20th Symp. Reliable Dis-
tributed Systems (SRDS), pp. 162-173, 2001.

[15] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “SmartStore: A
New Metadata Organization Paradigm with Semantic-Awareness
for Next-Generation File Systems,” Proc. ACM/IEEE Supercomput-
ing Conf. (SC), 2009.

[16] D. Beaver, S. Kumar, H. Li, J. Sobel, and P. Vajgel, “Finding a
Needle in Haystack: Facebooks Photo Storage,” Proc. Ninth
USENIX Conf. Operating Systems Design and Implementation
(OSDI), 2010.

[17] S. Sinnamohideen, R. Sambasivan, J. Hendricks, L. Liu, and G.
Ganger, “A Transparently-Scalable Metadata Service for the
Ursa Minor Storage System,” Proc. USENIX Ann. Technical
Conf., 2010.

[18] D. Hildebrand and P. Honeyman, “Exporting Storage Systems
in a Scalable Manner with pNFS,” Proc. 22nd IEEE / 13th
NASA Goddard Conf. Mass Storage Systems and Technologies
(MSST), 2005.

[19] PVFS2. Parallel Virtual File System, Version 2, http://
www.pvfs2.org, 2013.

[20] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File Sys-
tem,” Proc. 19th ACM Symp. Operating Systems Principles (SOSP),
2003.

[21] Hadoop Project, http://hadoop.apache.org, 2013.
[22] P. Indyk and R. Motwani, “Approximate Nearest Neighbors:

Towards Removing the Curse of Dimensionality,” Proc. 30th Ann.
ACM Symp. Theory of Computing (STOC), 1998.

[23] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: A Novel Weighted-
Graph-Based Prefetching Algorithm for Metadata Servers in Peta-
byte-Scale Storage Systems,” Proc. IEEE Sixth Int’l Symp. Cluster
Computing and the Grid (CCGrid), 2006.

HUA ET AL.: SANE: SEMANTIC-AWARE NAMESPACE IN ULTRA-LARGE-SCALE FILE SYSTEMS 1337



[24] P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang, “FARMER: A
Novel Approach to File Access Correlation Mining and Evalua-
tion Reference Model for Optimizing Peta-Scale File Systems Per-
formance,” Proc. 17th Int’l Symp. High Performance Distributed
Computing (HPDC), 2008.

[25] E. Riedel, M. Kallahalla, and R. Swaminathan, “A Framework for
Evaluating Storage System Security,” Proc. USENIX Conf. File and
Storage Technologies (FAST), pp. 15-30, 2002.

[26] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda,
“Characterization of Storage Workload Traces from Production
Windows Servers,” Proc. IEEE Int’l Symp. Workload Characterization
(IISWC), 2008.

[27] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, “Passive NFS Trac-
ing of Email and Research Workloads,” Proc. USENIX Conf. File
and Storage Technologies (FAST), pp. 203-216, 2003.

[28] J. L. Hellerstein, “Google Cluster Data,” http://googleresearch.
blogspot.com/2010/01/google-cluster-data.html, Jan. 2010.

[29] A. Andoni and P. Indyk, “Near-Optimal Hashing Algorithms for
Approximate Nearest Neighbor in High Dimensions,” Comm. the
ACM, vol. 51, pp. 117-122, 2008.

[30] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-
Sensitive Hashing Scheme Based on p-Stable Distributions,”
Proc. Ann. Symp. Computational Geometry, pp. 253-262, 2004.

[31] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” ACM SIGMOD Record, vol. 1, pp. 47-57, 1984.

[32] D. Hitz, J. Lau, and M. Malcolm, “File System Design for an NFS
File Server Appliance,” Proc. USENIX Winter Technical Conf.,
pp. 235-246, 1994.

[33] N.C. Hutchinson, S. Manley, M. Federwisch, G. Harris, D. Hitz, S.
Kleiman, and S. O’Malley, “Logical vs. Physical File System Back-
up,” Operating Systems Rev., vol. 33, pp. 239-250, 1998.

[34] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity
Search,” Proc. VLDB, pp. 950-961, 2007.

[35] A. Traeger, E. Zadok, N. Joukov, and C. Wright, “A Nine Year
Study of File System and Storage Benchmarking,” ACM Trans.
Storage, vol. 4, pp. 1-56, 2008.

[36] D.K. Gifford, P. Jouvelot, M.A. Sheldon, and J.W.O. Jr, “Semantic
File Systems,” Proc. Symp. Operating Systems Principle (SOSP), 1991.

[37] C. Maltzahn, E. Molina Estolano, A. Khurana, A. J. Nelson, S. A.
Brandt, and S. Weil, “Ceph as a Scalable Alternative to the
Hadoop Distributed File System,” login: The USENIX Magazine,
vol. 35, pp. 38-49, Aug. 2010.

[38] S. Patil and G. Gibson, “Scale and Concurrency of GIGA+: File
System Directories with Millions of Files,” Proc. Ninth USENIX
Conf. File and Storage Technologies (FAST), 2011.

[39] J. Xing, J. Xiong, N. Sun, and J. Ma, “Adaptive and Scalable Meta-
data Management to Support a Trillion Files,” Proc. ACM/IEEE
Supercomputing Conf. (SC), 2009.

[40] S. Weil, K. Pollack, S. Brandt, and E. Miller, “Dynamic Metadata
Management for Petabyte-scale File Systems,” Proc. ACM/IEEE
Supercomputing, 2004.

[41] S. Deerwester, S. Dumas, G. Furnas, T. Landauer, and R. Hars-
man, “Indexing by Latent Semantic Analysis,” J. Am. Soc. for
Information Science, pp. 391-407, 1990.

[42] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala,
“Latent Semantic Indexing: A Probabilistic Analysis,” J. Computer
and System Sciences, vol. 61, no. 2, pp. 217-235, 2000.

Yu Hua received the BE and PhD degrees in
computer science from Wuhan University,
China, in 2001 and 2005, respectively. He is
currently an associate professor at the Huaz-
hong University of Science and Technology,
China. His research interests include computer
architecture, cloud computing, network storage
and cyber-physical systems. He has more than
50 papers to his credit in major journals and
international conferences including IEEE-TC,
IEEE-TPDS, USENIX ATC, INFOCOM, SC,

ICDCS, ICPP and MASCOTS. He has been on the organizing and
program committees of multiple international conferences, including
INFOCOM, ICPP and IWQoS. He is a senior member of the IEEE,
and a member of ACM and USENIX.

Hong Jiang received the BSc degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 1982, the MASc degree from
the University of Toronto, Canada, in 1987, and
the PhD degree from the Texas A&M University,
College Station, in 1991. He is Willa Cather Pro-
fessor at the University of Nebraska-Lincoln. His
research interests include computer architecture,
computer storage systems and parallel/distrib-
uted computing. He serves as an associate editor
of the IEEE Transactions on Parallel and Distrib-

uted Systems. He has more than 200 publications in major journals and
international conferences, including IEEE-TPDS, IEEE-TC, USENIX-
ATC, ISCA, MICRO, FAST, SC, ICS, HPDC, etc. He is a senior member
of the IEEE and a member of the ACM and ACM SIGARCH.

Yifeng Zhu received the BSc degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 1998, and the MS and PhD
degrees from the University of Nebraska, Lin-
coln, in 2002 and 2005, respectively. He is an
associate professor at the University of Maine.
His research interests include parallel I/O storage
systems, and energy-aware memory systems.
He served as the program committee of interna-
tional conferences, including ICDCS and ICPP.
He received the Best Paper Award at IEEE

CLUSTER 07. He is a member of the ACM, the IEEE, and the Francis
Crowe Society.

Dan Feng received the BE, ME, and the PhD
degrees in computer science and technology
from the Huazhong University of Science and
Technology (HUST), China, in 1991, 1994, and
1997, respectively. She is a professor and vice
dean of the School of Computer Science and
Technology, HUST. Her research interests
include computer architecture, massive storage
systems, and parallel file systems. She has more
than 80 publications to her credit in journals and
international conferences, including IEEE Trans-

actions on Parallel and Distributed Systems, JCST, USENIX ATC,
FAST, ICDCS, HPDC, SC, ICS and ICPP. She is a member of the IEEE.

Lei Xu received the BS degree in electronic sci-
ence and technology from Wuhan University,
China in 2005. He is working toward the PhD
degree in the Department of Computer Science
at the University of Nebraska Lincoln. His
research interests include file system, manycore
architecture, operating systems, distributed stor-
age systems and storage class memories.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 5, MAY 2014



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


