ECE 571 — Advanced

Microprocessor-Based Design
Lecture 1

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

15 January 2013



Introduction

e Distribute and go over syllabus

e [alk about the class



Advanced Topics in Embedded Systems



What is an embedded system?

e Embedded. Traditionally fixed-purpose controller.

e Resource constrained. Small CPU, Memory, Display,
Bandwidth

e Often real-time constraints.



What Size CPU/Memory?

e Anything from 8-bit/tiny RAM to 32-bit 1GHz 1GB

e Expanded widely over the years. ARM Cortex A9 in
an 1Pad2 scores same on Linpack as an early Cray
supercomputer



Pushing the Limits



What Processors Commonly Used?

As reported by IDC at the SMART Technology
conference in San Francisco for 2011

e ARM 71%
e MIPS 11%
e Other 9%

e x86 8% (at least Intel's desperately trying)

e Power 2%

-y 6



We'll Use ARM

e Commonly used
e You'll see if it you move to industry

e Other classes in ECE are moving to it (271,471)



We’'ll Use Linux

e Because | like 1t and understand it best
e Source code available
e Well-developed tools

e [he ARM machine | have runs it



Computer Architecture Review

e In-order Processors — Old 8-bits

e Super-scalar — multiple instructions “in-flight” at once.
Original Pentium

e Qut-of-order — Pentium Pro and Newer, Arm Cortex Al5



RISC / CISC / VLIW

e RISC: Reduced Instruction Set Computer
Small set of instructions to make processor design
simpler. Usually fixed-length instructions, load/store

o CISC: Complex Instruction Set Computer
Wide ranging complicated instructions; have complicated
CPU decode circuitry. Often variable length instructions.
Often allow operating on memory directly.

e VLIW: Very Long Instruction Word

-y 10



Instructions come in long “bundles”, often 3 at a time.
Cannot have dependencies; may have to fill with “nops”.
Allows compiler to exploit inherit parallelism in code
(most modern CPUs do this in hardware instead, VLIW
puts this complexity in software).

/Y 11



CISC/RISC/VLIW Examples

e MIPS is RISC: roughly only 40 integer instructions ,
(more if you include FP)

e x86 is CISC: hundreds of complicated instructions,
including ones that access memory, auto-increment
registers, have complex shift/add address modes

e Hybrid: ARM or Power started out RISC but have
accumulated more complicated instructions over time

-y 12



e x86, while CISC externally, internally decodes to a RISC-
like code before executing

/Y 13



How a Program is Loaded

e Kernel Boots

e init started

e init calls fork()

e child calls exec ()

e Kernel checks if valid ELF. Passes to loader

e Loader loads it. Clears out BSS. Sets up stack. Jumps

-y 14



to entry address (specified by executable)
e Program runs until complete.

e Parent process returned to if waiting. Otherwise, init.

15



