
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 4

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

24 January 2013

Low-Level ARM Linux Assembly

1

System Calls (EABI)

• System call number in r7

• Arguments in r0 - r6

• Call swi 0x0

• System call numbers can be found in

/usr/include/arm-linux-gnueabihf/asm/unistd.h

They are similar to the 32-bit x86 ones.

2

System Calls (OABI)

The previous implementation had the same system call

numbers, but instead of r7 the number was the argument

to swi. This was very slow, as there is no way to

determine that value without having the kernel backtrace

the callstack and disassemble the instruction.

3

Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look

for system call documentation (which is type 2).

4

A first ARM assembly program: hello exit

.equ SYSCALL_EXIT , 1

.globl _start

_start:

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in eax

swi 0x0 @ and exit

5

hello exit example

Assembling/Linking using make, running, and checking the

output.

lecture4$ make hello_exit_arm

as -o hello_exit_arm.o hello_exit_arm.s

ld -o hello_exit_arm hello_exit_arm.o

lecture4$./hello_exit_arm

lecture4$ echo $?

5

6

Assembly

• @ is the comment character. # can be used on line

by itself but will confuse assembler if on line with code.

Can also use /* */

• Order is source, destination

• Constant value indicated by # or $

7

Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.

8

hello world example
.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

mov r0 ,# STDOUT /* stdout */

ldr r1 ,= hello

mov r2 ,#13 @ length

mov r7 ,# SYSCALL_WRITE

swi 0x0

Exit

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number in r7

swi 0x0 @ and exit

.data

hello: .ascii "Hello World !\n"

9

New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

10

Put string example

.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

ldr r1 ,= hello

bl print_string @ Print Hello World

ldr r1 ,= mystery

bl print_string @

ldr r1 ,= goodbye

bl print_string /* Print Goodbye */

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in eax

swi 0x0 @ and exit

11

#====================

print string

#====================

Null -terminated string to print pointed to by r1

r1 is trashed by this routine

print_string:

push {r0 ,r2 ,r7 ,r10} @ Save r0 ,r2 ,r7 ,r10 on stack

mov r2 ,#0 @ Clear Count

count_loop:

add r2 ,r2 ,#1 @ increment count

ldrb r10 ,[r1 ,r2] @ load byte from address r1+r2

cmp r10 ,#0 @ Compare against 0

bne count_loop @ if not 0, loop

mov r0 ,# STDOUT @ Print to stdout

mov r7 ,# SYSCALL_WRITE @ Load syscall number

swi 0x0 @ System call

pop {r0 ,r2 ,r7 ,r10} @ pop r0 ,r2 ,r7 ,r10 from stack

mov pc ,lr @ Return to address stored in

12

@ Link register

.data

hello: .string "Hello World !\n" @ includes null at end

mystery: .byte 63,0x3f ,63,10,0 @ mystery string

goodbye: .string "Goodbye !\n" @ includes null at end

13

Clarification of Assembler Syntax

• @ is the comment character. # can be used on line

by itself but will confuse assembler if on line with code.

Can also use /* */

• Constant value indicated by # or $

• Optionally put % in front of register name

14

Instruction Sets

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

• THUMB-EE – some extensions for running in JIT

runtime

• AARCH64 – 64 bit. Only currently exists in simulated

form

15

Code Density

• Overview from my ll ICCD’09 paper

• Show code density for variety of architectures, recently

added Thumb-2 support.

• Shows overall size, though not a fair comparison due to

operating system differences on non-Linux machines

16

Code Density – overall

ia
64

al
ph

a

R
iS

C

pa
ris

c

sp
ar

c

m
bl
az

e
m

ip
s

m
88

k
ar

m
pp

c

65
02

s3
90

x8
6_

64 va
x

sh
3

m
68

k
i3
86

th
um

b

th
um

b-
2

av
r3

2

cr
is
v3

2
z8

0

pd
p-

11
80

86
0

512

1024

1536

2048

2560

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

17

lzss compression

• Printing routine uses lzss compression

• Might be more representative of potential code density

18

Code Density – lzss

R
iS

C
ia
64

al
ph

a
m

ip
s

pa
ris

c

sp
ar

c

m
bl
az

e
65

02

m
88

k
s3

90 ar
m

pp
c

pd
p-

11 va
x

z8
0

m
68

k

av
r3

2

th
um

b

th
um

b-
2

sh
3

x8
6_

64

cr
is
v3

2
i3
86

80
86

0

64

128

192

256

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

19

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• No prefix/conditional execution

• Only two arguments to opcodes

20

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

• Limited addressing modes

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• BX/BLX instruction to switch mode.

21

If target is a label, always switch mode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can use .thumb directive, .arm for 32-bit.

22

THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

23

• Can use .thumb directive, .arm for 32-bit.

24

THUMB-2

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• 32-bit instructions not standard 32-bit ARM instructions.

It’s a new encoding that allows an instruction to be 32-

bit if needed.

• All 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

25

• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

26

THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

27

New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movh – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

28

Other THUMB-2 Changes

• Instructions have “wide” and “narrow” encoding.

Can force this (add.w vs add.n).

• rsc (reverse subtract with carry) removed

• Need to properly indicate “s” (set flags).

Regular THUMB this is assumed.

29

Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

0100 -- 1bcdedfh 00000000 00000000 00000000

...

1111 -- 00000000 00000000 00000001 bcdefgh0

30

Compiler

• gcc -S hello world.c

On pandarboard creates Thumb-2 by default. Why?

• gcc -S -march=armv5t -mthumb hello world.c

On my pandaboard, doesn’t work. This is because gcc’s

16-bit THUMB can’t handle the “hard floating point”

ABI that is installed on the system.

• gcc -S -marm hello world.c

On my pandaboard, creates 32-bit ARM code

31

