ECE 571 — Advanced

Microprocessor-Based Design
Lecture 6

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

31 January 2013

Hardware Performance Counters: The
Operating System Interface

Operating Systems

e UNIX — long history of support
e Windows — no native support (can get Intel Vtune)
e OSX — no native support (can get shark)

e Linux — On 95% of Top 500 computers, many embedded
systems

Operating System Interface

A typical operating system performance counter interface
will provide the following:

e A way to select which events are being monitored
e A way to start and stop counting
e A method of reading counter results when finished, and

o If the CPU supports notification on counter overflow,
some mechanism for passing on overflow information

-y 3

Operating System Interface

Some operating systems provide additional features:

e Event scheduling: often there are limitations on which
events can go into which counters,

e Multiplexing: the OS can hide the fact that only a
limited number of counters are available by swapping
events in and out and extrapolating counts using time
accounting,

e Per-thread counting: by loading and saving counter

-y 4

values at context switch time a count specific to a
process can be achieved,

e Attaching to a process: counts can be taken from an
already running process, and

e Per-cpu counting: as with per-thread counting, counts
can be accumulated per-cpu.

Older Linux Interfaces

e Historical — typically just exported msrs
e Oprofile — only does profiling
e Perfctr — good but required kernel patch

e Perfmon2 — was making headway until perf_event came
from nowhere and became official

perf_event

e Developed from scratch in 2.6.31 by Molnar and Gleixner
e Everything in the kernel

e perf_event_open() syscall (manpage still under
development)

e perf_event_attr structure with 40 complex interdependent
parameters

e ioctl() system call to enable/disable

-y ;

e read() system call to read values
e can gather sampled data in circular buffer

e can get signal on overtlow or full buffer

perf_event Generalized Events

e perf_event provides support for “common” generalized
events

e makes things easier for user at expense of papering over
the differences between events

e events need to be validated to make sure they are
providing useful results

perf_event Generalized Events Issues

e Which event to choose (Nehalem)

e From 2.6.31 to 2.6.35 AMD “branches” was taken not
total

e Nehalem L1 DCACHE reads.
PAPI| uses L1D_CACHE_LD:MESI:
perf uses MEM_INST_RETIRED:LOADS

-y 10

perf_event Event Scheduling

e Some events have hardware constraints. Can only be in
one counter

e You can do this scheduling in userspace; lets the
algorithm be changed more easily

e Scheduling can be expensive; do so at event start can
slow things down.

/Y 11

perf_event Multiplexing

e You may wish to measure more events simultaneously
than hardware can support (NMI watchdog may steal
one too)

e perf_event supports this in-kernel (you can also do this
in userspace)

e there are various ways to try to ensure good statistical
results. iIn kernel you have to trust the kernel
programmers.

/Y 12

perf_event Event Names

e Event names are provided in the hardware manuals, but
can be inconsistent

e Traditionally used libraries to provide names. libpfm4

e perf tool is starting to provide own list of events (they
refuse to link libpfm4) that are based on a hybrid of
libpfm4 and kernel names

e Also some event names are provided by the kernel under
/sys

-y 13

perf_event Software Events

e perf_event provides internal kernel events through same
iInterface

e page—fault, task-clock, cpu—-clock, etc.

-y 14

perf_event Perf Tool

e Included with kernel source code

e [ied to kernel, but backwards compatible

e Most kernel devs use this rather than outside tools

15

perf_event Hardware Features

16

Offcore Response

e Allows measuring memory events that go “off” the core
e Requires access to two different MSRs.
e Shared resource, requires extra handling

e “raw’ access to events delayed until “generic” support
available

-y 17

Uncore/Northbridge

e On a chip there are shared areas not the “core”
e Memory controller, L2 / L3 cache, etc.
e Additional counters and events to measure these.

e Shared resource. Could leak information. Need extra
handling.

-y 18

Last Branch Record

e Useful for backtraces and also debugging

19

Sampled Interfaces

e AMD IBS — Instruction based sampling
address, latency, cache miss, TLB miss obtained along
with minimal “skid” (results provided match exactly with
PC so can attribute the values to that which caused it)

e Intel PEBS — Precise Event-Based Scheduling
additional information can be configured to be collected
immediately after an event is triggered. Full register
state as well as latency

-y 20

e current perf_event support limited to reduced skid, work
underway for the rest

/Y 21

rdpmc instruction

e Allow users direct reads of performance counters w/o
system call

e In theory should be faster as less overhead

e on perfctr was faster; on perf_event not so much for
unknown reasons. part of the issue is perf_event can
only do delta, requiring two calls

/Y 22

AMD Lightweight Profiling

e Attempts to give full support of profiling to user. No
need for kernel. Mostly support need to enable the
feature and save extra state on context switch

e perf_event refuse to merge support; insist kernel should
control all

/Y 23

Virtualized Counters

e How to handle when running inside Virtual machine?

e Can measure at different levels; outside total
performance, inside performance, hypervisor performance

e Recent Linux supports passing performance counter
values inside

e Various limitations. Compatibility of interface?
Save/restore when VM switched out?

-y 24

e Does help with performance analysis; before in absence
of steal time data, time has “no meaning” inside of VM

-y 25

non-CPU counters

e things like network cards, GPUs, etc.

26

perf_event Context Switch Overhead

core2 Context Switch Time

20 ~
: perf_event - inactive
perf_event - active
—e— perfctr - inactive
: --x-- perfctr - active
15 —— perfmon2 - inactive
1 --x-- perfmon2 - active
)
3 i
o 104
£
|_ i
5_
T * |
0 - | | | | | | | | | | | | | | |
P i P AN LRI OIFN QRIS
A A A 2 A A A 2

Kernel Being Tested

27

perf_event Start/Stop/Read Overhead

core2 Overall Overhead of Start/Stop/Read

(@)
o
I

(o)}
o
1

N
o
|

N
o
1

Times Observed (out of 1000 runs)

0 5000 10000 15000 20000

Overhead (cycles)
2.6.32-perfctr 2.6.34 = 2.6.38 =3.2
2.6.30-perfmon2 = 2.6.35 = 2.6.39 3.3
2.6.32 2.6.36 = 3.0 3.4
2.6.33 2.6.37 = 3.1 3.4-rdomc

