
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 6

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

31 January 2013



Hardware Performance Counters: The
Operating System Interface

1



Operating Systems

• UNIX – long history of support

• Windows – no native support (can get Intel Vtune)

• OSX – no native support (can get shark)

• Linux – On 95% of Top 500 computers, many embedded

systems

2



Operating System Interface

A typical operating system performance counter interface

will provide the following:

• A way to select which events are being monitored

• A way to start and stop counting

• A method of reading counter results when finished, and

• If the CPU supports notification on counter overflow,

some mechanism for passing on overflow information

3



Operating System Interface

Some operating systems provide additional features:

• Event scheduling: often there are limitations on which

events can go into which counters,

• Multiplexing: the OS can hide the fact that only a

limited number of counters are available by swapping

events in and out and extrapolating counts using time

accounting,

• Per-thread counting: by loading and saving counter

4



values at context switch time a count specific to a

process can be achieved,

• Attaching to a process: counts can be taken from an

already running process, and

• Per-cpu counting: as with per-thread counting, counts

can be accumulated per-cpu.

5



Older Linux Interfaces

• Historical – typically just exported msrs

• Oprofile – only does profiling

• Perfctr – good but required kernel patch

• Perfmon2 – was making headway until perf event came

from nowhere and became official

6



perf event

• Developed from scratch in 2.6.31 by Molnar and Gleixner

• Everything in the kernel

• perf event open() syscall (manpage still under

development)

• perf event attr structure with 40 complex interdependent

parameters

• ioctl() system call to enable/disable

7



• read() system call to read values

• can gather sampled data in circular buffer

• can get signal on overflow or full buffer

8



perf event Generalized Events

• perf event provides support for “common” generalized

events

• makes things easier for user at expense of papering over

the differences between events

• events need to be validated to make sure they are

providing useful results

9



perf event Generalized Events Issues

• Which event to choose (Nehalem)

• From 2.6.31 to 2.6.35 AMD “branches” was taken not

total

• Nehalem L1 DCACHE reads.

PAPI uses L1D CACHE LD:MESI;

perf uses MEM INST RETIRED:LOADS

10



perf event Event Scheduling

• Some events have hardware constraints. Can only be in

one counter

• You can do this scheduling in userspace; lets the

algorithm be changed more easily

• Scheduling can be expensive; do so at event start can

slow things down.

11



perf event Multiplexing

• You may wish to measure more events simultaneously

than hardware can support (NMI watchdog may steal

one too)

• perf event supports this in-kernel (you can also do this

in userspace)

• there are various ways to try to ensure good statistical

results. in kernel you have to trust the kernel

programmers.

12



perf event Event Names

• Event names are provided in the hardware manuals, but

can be inconsistent

• Traditionally used libraries to provide names. libpfm4

• perf tool is starting to provide own list of events (they

refuse to link libpfm4) that are based on a hybrid of

libpfm4 and kernel names

• Also some event names are provided by the kernel under

/sys

13



perf event Software Events

• perf event provides internal kernel events through same

interface

• page-fault, task-clock, cpu-clock, etc.

14



perf event Perf Tool

• Included with kernel source code

• Tied to kernel, but backwards compatible

• Most kernel devs use this rather than outside tools

15



perf event Hardware Features

16



Offcore Response

• Allows measuring memory events that go “off” the core

• Requires access to two different MSRs.

• Shared resource, requires extra handling

• “raw” access to events delayed until “generic” support

available

17



Uncore/Northbridge

• On a chip there are shared areas not the “core”

• Memory controller, L2 / L3 cache, etc.

• Additional counters and events to measure these.

• Shared resource. Could leak information. Need extra

handling.

18



Last Branch Record

• Useful for backtraces and also debugging

19



Sampled Interfaces

• AMD IBS – Instruction based sampling

address, latency, cache miss, TLB miss obtained along

with minimal “skid” (results provided match exactly with

PC so can attribute the values to that which caused it)

• Intel PEBS – Precise Event-Based Scheduling

additional information can be configured to be collected

immediately after an event is triggered. Full register

state as well as latency

20



• current perf event support limited to reduced skid, work

underway for the rest

21



rdpmc instruction

• Allow users direct reads of performance counters w/o

system call

• In theory should be faster as less overhead

• on perfctr was faster; on perf event not so much for

unknown reasons. part of the issue is perf event can

only do delta, requiring two calls

22



AMD Lightweight Profiling

• Attempts to give full support of profiling to user. No

need for kernel. Mostly support need to enable the

feature and save extra state on context switch

• perf event refuse to merge support; insist kernel should

control all

23



Virtualized Counters

• How to handle when running inside Virtual machine?

• Can measure at different levels; outside total

performance, inside performance, hypervisor performance

• Recent Linux supports passing performance counter

values inside

• Various limitations. Compatibility of interface?

Save/restore when VM switched out?

24



• Does help with performance analysis; before in absence

of steal time data, time has “no meaning” inside of VM

25



non-CPU counters

• things like network cards, GPUs, etc.

26



perf event Context Switch Overhead

2.
6.

30

2.
6.

31

2.
6.

32

2.
6.

33

2.
6.

34

2.
6.

35

2.
6.

36

2.
6.

37

2.
6.

38

2.
6.

39 3.
0

3.
1

3.
2

3.
3

3.
4

Kernel Being Tested

0

5

10

15

20

T
im

e
 (

u
s
)

core2 Context Switch Time

perf_event - inactive
perf_event - active
perfctr - inactive
perfctr - active
perfmon2 - inactive
perfmon2 - active

27



perf event Start/Stop/Read Overhead

0 5000 10000 15000 20000
Overhead (cycles)

0

20

40

60

80

T
im

e
s
 O

b
s
e

rv
e

d
 (

o
u

t 
o

f 
1

0
0

0
 r

u
n

s
)

core2 Overall Overhead of Start/Stop/Read

2.6.32-perfctr
2.6.30-perfmon2
2.6.32
2.6.33

2.6.34
2.6.35
2.6.36
2.6.37

2.6.38
2.6.39
3.0
3.1

3.2
3.3
3.4
3.4-rdpmc

28


