ECE 571 — Advanced

Microprocessor-Based Design
Lecture 7

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

5 February 2013

Hardware Performance Counters — Software
Tools

First Some Assembly Optimization Review

Just to follow up on Homework 1.

Print Number Explanations

e Code was optimized x86 code direct-ported to ARM.
This explains some of the design decisions.

e Why 11-byte buffer in BSS?
Max size of a 32-bit integer is roughly 4 billion, fills 10
digits. The NUL-termination is set to 0 by free by BSS
(11th byte)

e \Why go backward?
That's the easiest way to convert to decimal, when
dividing by 10. Also it makes leading zero removal

-y 3

easler.

e Leading zero removal but still print 0 if only 0. Go
through and print once, even if zero.

e Why use fancy addressing to subtracting always, but
then have to adjust by -1 at end?
This made more sense in the original x86 code where the
autodecrement instruction was more compact that way.

Other Common Optimization Tricks

e xor with self — at least on x86 fastest way to set to 0

e multiply by power of 2 — just shift left (though on some

HW implementations add with self faster than single left
shift)

e multiply by constant — just shifts and adds

e div/mod of power of 2 — divide just shift right. remainder
Is just and with mask.

-y 5

Ways to Divide by 10

e hardware div instruction

e BCD, shift by 8 (most machines don’t have BCD in
hardware)

e 32x32 with 64-bit result multiply reciprocal

e multiply by fraction

e lots of shifts (useful if no multiply instruction)

e iterative subtraction (useful if no mul either)

Simple Timing Analysis of Divide

e using time command.
Real time is wallclock,
User is how much actual code used (ignores other
processes on system),
Sys is how much kernel used

arm div by 10 analysis

e div — (not available on most ARM chips)

e high-mul — fastest, but umull instruction not available
on THUMB

e shifts — slower than high-mul, (needed on armv4 with no
umull instruction)

C Compiler — 7 million div/10

Simple C benchmark does 7 million divides with remainder.

Much of overhead comes from printing? Why must | print?
Simple way to keep the compiler from optimizing away the
divide (if | don't output the result, then it doesn't need to

be executed)

C Compiler — arm

gcc -O0 | umull Oxccccccced, >>3, again, shift | 10.02s
gcc -O2 | umull Oxccccccced, >>3, shift 9.90s
gcc -Os | __aeabi_uidivmod 11.40s

calls __aeabi_uidiv and subtracts, shift/subtract

15% speedup

10

Performance Analysis

11

Benchmarks

e \When measuring performance, need a reference workload
to compare

e |deally reproducible, portable, easy to compile, relevant

e Benchmarks can be gamed

-y 12

Selected Commonly Seen Benchmarks

e SPEC

— CPU 2000, CPU 2006 — Commercial, Single-threaded
CPU benchmarks (floating point and integer)
— OMP — Commercial, Parallel

— jbb — Java

e HPC Challenge — Free. HPL (Linpack). High-
performance / Linear Algebra

e PARSEC — Free, Multithreaded / CMP

-y 13

e MiBench — Free, Embedded (2000)
e BioBench, BioParallel — Free, Bio/Data-Mining

e Imbench — Free, Operating System

14

Higher Level Tools

15

perf

Based on a tutorial found here:
https://perf.wiki.kernel.org/index.php/Tutorial

16

perf list

Lists available events

List of pre-defined events (to be used in -e):

cpu-cycles OR cycles
instructions

cache-references

cache-misses
branch-instructions OR branches
branch-misses

bus-cycles

cpu-clock

task-clock

page—-faults OR faults
minor-faults
major-faults
context-switches OR cs

[Hardware
[Hardware
[Hardware
[Hardware
[Hardware
[Hardware
[Hardware

[Software
[Software
[Software
[Software
[Software
[Software

event]
event]
event]
event]
event]
event]
event]

event]
event]
event]
event]
event]
event]

17

perf stat — Aggregate results

vince@arm: ~“/class/eceb571$ perf stat ./matrix_multiply
Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

11585.144036 task-clock
19 context-switches
0 CPU-migrations
1,633 page-faults
10,343,746,076 cycles
5,031,717 stalled-cycles-frontend
9,5621,135,479 stalled-cycles-backend
1,176,286,814 instructions

.999 CPUs utilized

.000 M/sec

.000 M/sec

.000 M/sec

.893 GHz

.05% frontend cycles idle
.05% backend cycles idle
.11 insns per cycle

.09 stalled cycles per insn
.898 M/sec

.60% of all branches

137,835,961 branches
831,736 branch-misses

H HF H H HHHH HEH K

11.591796875 seconds time elapsed

/Y 18

perf stat — Specifying Events

vince@arm:~/class/eceb71$ perf stat -e instructions,cycles ./matrix_multi
Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1,174,788,622 instructions # 0.14 1insns per cycle
8,346,588,065 cycles # 0.000 GHz

12.394775391 seconds time elapsed

/Y 19

perf stat — Specifying Masks

‘u Is user, :k kernel
ARM Cortex A9 cannot specify this distinction (results
shown here are x86)

vince@arm:~/class/eceb71$ perf stat -e instructions,instructions:u ./matri
Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

950,526,051 instructions # 0.00 1insns per cycle
945,661,967 instructions:u # 0.00 1insns per cycle

1.052072277 seconds time elapsed

/Y 20

libpfm4 — Finding All Event Names

./showevtinfo
Supported PMU models:
[61, perf, "perf_events generic PMU"]
[65, arm_ac8, "ARM Cortex A8"]
[66, arm_ac9, "ARM Cortex A9"]
[75, arm_acl15, "ARM Cortex A15"]
Detected PMU models:
[61, perf, "perf_events generic PMU", 80 events, 1 max encoding, O counters, 0S
[66, arm_ac9, "ARM Cortex A9", 57 events, 1 max encoding, 2 counters, core PMU]

Total events: 254 available, 137 supported

: 138412068

: arm_ac9 (ARM Cortex A9)

: NEON_EXECUTED_INST

: None

: None

: NEON instructions going through register renaming stage (approximate)

libpfm4 — Finding Raw Event Values

./check_events NEON_EXECUTED_INST
Supported PMU models:

[61, perf, "perf_events generic PMU"]

[65, arm_ac8, "ARM Cortex A8"]

[66, arm_ac9, "ARM Cortex A9"]

[75, arm_aclb5, "ARM Cortex A15"]

Detected PMU models:

[61, perf, "perf_events generic PMU"]

[66, arm_ac9, "ARM Cortex A9"]

Total events: 254 available, 137 supported
Requested Event: NEON_EXECUTED_INST

Actual Event: arm_ac9::NEON_EXECUTED_INST
PMU : ARM Cortex A9

IDX : 138412068

Codes : 0x74

perf — Using Raw Event Values

vince@arm:~/class/eceb71$ perf stat -e r74 ./matrix_multiply
Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1 r74

11.303955078 seconds time elapsed

/Y 23

perf stat — multiplexing

perf stat -e instructions,instructions,branches,cycles,cycles ./matrix_multiply
Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

1,178,121,057 instructions # 0.12 insns per cycle [40.23%]

1,180,460,368 instructions # 0.12 insns per cycle [60.25%]

138,550,072 branches [80.09%]
9,999,614,616 cycles # 0.000 GHz [79.85%]
9,926,949,659 cycles # 0.000 GHz [20.17%]

11.214630127 seconds time elapsed

Note same event not same results, approximate because
an estimate. Percentage shown Is percentage event was
active during run.

-y 24

perf stat — all cores

vince@arm:~/class/eceb571$ sudo perf stat -a ./matrix_multiply
Matrix multiply sum: s=27665734022509.746094

Performance counter stats for ’./matrix_multiply’:

24089.660644 task-clock
105 context-switches
1,641 page-faults
9,218,451,619 cycles
9,707,195 stalled-cycles-frontend
8,393,095,067 stalled-cycles-backend
1,193,164,945 instructions

.001 CPUs utilized
.000 M/sec
.000 M/sec
.383 GHz
.11% frontend cycles idle
.05% backend cycles idle
.13 insns per cycle
.03 stalled cycles per insn
M/sec
of all branches

139,913,572 branches
1,221,237 branch-misses

#
#
#
#
#
#
#
#
#
#

12.040527344 seconds time elapsed

Run on all cores of system even if your process not running
there. —a option. Need root permissions

-y 25

perf record — sampling

vince@arm:~/class/eceb71$ time ./matrix_multiply
Matrix multiply sum: s=27665734022509.746094

realOm10.747s

userOm10.688s

sysOmO.055s

vince@arm:~/class/eceb71$ time perf record ./matrix_multiply

Matrix multiply sum: s=27665734022509.746094
[perf record: Woken up 2 times to write data]

[perf record: Captured and wrote 0.454 MB perf.data (719853 samples)]

realOml12.009s
userOmi1.797s
sysOmO.203s

perf record creates perf.data, use —o to specify output

/Y 26

perf report — summary of recorded data

matrix_multiply matrix_multiply .] naive_matrix_multiply
matrix_multiply [kernel.kallsyms].head.text 0xc0046a54

matrix_multiply 1d-2.13.so _dl_relocate_object

matrix_multiply [kernel.kallsyms] __do_softirq

Our benchmark is simple (only one function) so the profiled
results are not that exciting.

The [k] indicates that profile happened while the kernel
was running.

perf annotate — show hotspots in assembly

vldr [pc, #124] ; 84d8 <naive_matrix_m
adds rl, r4, r3

add.w r3, r3, #4096 ; 0x1000

adds r2, #8

cmp.w r3, #2097152 05921 01010]0]0

vldr d5, [r2]

vldr de, [ri]

mov r9, r2

vmla.f64 d7, d5, d6

bne.n 845e <naive_matrix_multiply+0x72>
adds r5, #1

The annotated results show a branch and an add instruction accounting for 83%
of profiles. Likely this is due to skid and the key instruction is the previous vmla.f64
floating point multiply instruction. The processor just isn't able to stop at the exact

instruction when the interrupt comes in.

-y 28

Homework Will Be Posted This Afternoon

-y 29

