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Metrics

• Cache miss rate misses/total. For various levels,

including TLB

• IPC and CPU. IPC (higher better). CPI (lower better)

dependent on other parts of chip. Instruction-Level

Parallelism. Higher than 1 IPC.

• Branch miss rate
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Maximum – IPC

• In theory, on single-issue pipelined processor maximum

IPC is 1.0

• With multi-issue this can be increased.

• The Pandaboard can in theory issue 3 (maybe 4?)

instructions per cycle (although the decoder can only

decode 2?)

So maximum IPC might be 3.0?

• There are limits to which instructions can issue (ALU,
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FP, etc) and any branch or cache miss will hurt IPC, as

well as high-latency instructions

3



IPC for Cache Examples

Cache example from last time:

• First naive implementation 0.13 IPC

• Second, swapped, 0.34 IPC

• ATLAS: 0.87 IPC
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Branch Prediction – Background

• With a pipelined processor, you may have to stall waiting

until branch outcome known before you can correctly

fetch the next instruction

• Conditional branches are common. On average every

5th instruction?

• One solution is speculative execution.

Guess which way branch goes.

If wrong, in-flight thrown out, have to replay.
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• How can get around this?

Try to speculate multiple paths? (rapidly increases).

• Good branch predictors have a 95% or higher hit rate

• Speculation wastes power
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Static Prediction of Conditional Branches

• Backward taken

• Forward not taken

• Can be used as fallback when there’s not more info
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Common Access Patterns – For Loop

f o r ( i =0; i <100; i ++) SOMETHING ;

mov r1 ,#100

l a b e l :

SOMETHING

add r1 , r1 ,#−1

bne l a b e l
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Common Access Patterns – While Loop

Optimizing compiler may translate this to a for loop

(why?)

x =0; w h i l e ( x<100) { SOMETHING ; x++;}

mov r1 ,#0

l a b e l :

cmp r1 ,#100

bge done
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SOMETHING

bne l a b e l

add r1 , r1 ,#1

b l a b e l

done :
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Common Access Patterns – If/Then

ARM can use predication to avoid this.

i f ( x ) { f o o } e l s e { bar }

cmp r1 ,#0

bne e l s e

then :

f o o

b done

e l s e :
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bar

done :
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Branch Prediction Hints

• likely() (maps to builtin expect())

• unlikely()

• on some processors, (p4) hint for static

• others, just move unlikely blocks out of way for better

L1I$ performance
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Dynamic Branch Prediction
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Branch History Table

• table, likely indexed by lower bits of instruction

can have more advanced indexing to avoid aliasing

no-tag bits, unlike caches aliasing does not affect correct

program execution

• one-bit indicating what the branch did last time

• update when a branch miss happens

• two misses for each time through loop. Wrong at exit of

loop, then wrong again when restarts.
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Aliasing

• Is it bad? Good?

• Does the O/S need to save on context switch?

• Do you need to save if entering low-power state?
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0x1000 0003 : bne PC+45
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Two-bit saturating counter

• Use saturating 2-bit counter

• If 3/2, predict taken, if 1,0 not-taken. Takes two misses

or hits to switch from one extreme to the next, letting

loops take only one mispredict.

• Needs to be updated on every branch, not just for a

mispredict
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Local vs Global History

• Can use branch history as index into tables

• Use a shift register to hold history

• Global: history is all branches

• Local: store branch history on a branch by branch basis
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Global Predictor

Global History

N N T N
2−bit Counters

11

...

Taken
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Local Predictor

0x8000 0001 : bne PC+45

Not

Taken

... ...

N N T N

00

2−bit Counters
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Correlating / Two Level Predictors

• Take history into account.

Break branch prediction for a branch out into multiple

locations based on history.

Global History

T

0x1000 0002 : bge PC+45

1

... ... ... ...

N

1

Taken

2 bit saturating counters
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gshare

• Xors the global history with the address bits to get which

line to use.

• Benefits of 2-level without the extra circuitry

1111

T T TT

2−bit Counters

0x1000 000e : bgt PC+45

Not Taken
XOR

1110

N N

...

Global History
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Tournament Predictors

• Which to use? Local or global?

• Have both. How to know which one to use? Predict it!

• 2-bit counter remembers which was best.
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Perceptron

• There are actually Branch Prediction Competitions

• The winner the past few times has been a “Perceptron”

predictor

• Neural Networks
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Comparing Predictors

• Branch miss rate not enough

• Usually the total number of bits needed is factored in

• May also need to keep track of logic needed if it is

complex.
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Branch Target Buffer

• Predicts the actual destination of addresses.

• Indexed by whole PC. May be looking up before even

know it is a branch instruction.

• Only need to store predicted-taken branches. (Why?

Because not-taken fall through as per normal).
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Return Address Stack

• Function calls can confuse BTB. Multiple locations

branching to same spot. Which return address should

be predicted?

• Keep a stack of return addresses for function calls

• Playing games with size optimization and fallthrough/tail

optimization can confuse.
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Adjusting Predictor on the Fly

Some processors let you configure predictor at runtime.

MIPS R12000 let you

ARM possibly does.

Why is this useful?

In theory if you have a known workload you can pick the

one that works best.

Also if realtime you want something that is deterministic,

like static prediction.

Also Good for simulator validation
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Cortex A9 Branch Predictor

From the Manual:

• two-level prediction mechanism, comprising: a two-way

BTAC of 512 entries organized as two-way x 256 entries

• a Global History Buffer (GHB) with 4096 2-bit predictors

• a return stack with eight 32-bit entries.

• It is also capable of predicting state changes from ARM

to Thumb, and from Thumb to ARM.
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Example

Code in perf event validation tests for generic events.

http://web.eece.maine.edu/~vweaver/projects/perf_events/validation/
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Example Results
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Part 1

Testing a loop with 1500000 branches (100 times):

On a simple loop like this, miss rate should be very small.

Adjusting domain to 0,0,0 for ARM

Average number of branch misses: 685

Part 2

Adjusting domain to 0,0,0 for ARM

Testing a function that branches based on a random number

The loop has 7710798 branches.

500000 are random branches; 250699 of those were taken

Adjusting domain to 0,0,0 for ARM

Out of 7710798 branches, 291081 were mispredicted

Assuming a good random number generator and no freaky luck

The mispredicts should be roughly between 125000 and 375000

Testing ‘‘branch-misses’’ generalized event... PASSED
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Value Prediction

• Can we use this mechanism to help other performance

issues?

What about caches?

• Can we predict values loaded from memory?

• Load Value Prediction. You can, sometimes with

reasonable success, but apparently not worth trouble

as no vendors have ever implemented it.
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