
ECE 571 – Advanced
Microprocessor-Based Design

Lecture 11

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

19 February 2013

Metrics

• Cache miss rate misses/total. For various levels,

including TLB

• IPC and CPU. IPC (higher better). CPI (lower better)

dependent on other parts of chip. Instruction-Level

Parallelism. Higher than 1 IPC.

• Branch miss rate

1

Maximum – IPC

• In theory, on single-issue pipelined processor maximum

IPC is 1.0

• With multi-issue this can be increased.

• The Pandaboard can in theory issue 3 (maybe 4?)

instructions per cycle (although the decoder can only

decode 2?)

So maximum IPC might be 3.0?

• There are limits to which instructions can issue (ALU,

2

FP, etc) and any branch or cache miss will hurt IPC, as

well as high-latency instructions

3

IPC for Cache Examples

Cache example from last time:

• First naive implementation 0.13 IPC

• Second, swapped, 0.34 IPC

• ATLAS: 0.87 IPC

4

Branch Prediction – Background

• With a pipelined processor, you may have to stall waiting

until branch outcome known before you can correctly

fetch the next instruction

• Conditional branches are common. On average every

5th instruction?

• One solution is speculative execution.

Guess which way branch goes.

If wrong, in-flight thrown out, have to replay.

5

• How can get around this?

Try to speculate multiple paths? (rapidly increases).

• Good branch predictors have a 95% or higher hit rate

• Speculation wastes power

6

Static Prediction of Conditional Branches

• Backward taken

• Forward not taken

• Can be used as fallback when there’s not more info

7

Common Access Patterns – For Loop

f o r (i =0; i <100; i ++) SOMETHING ;

mov r1 ,#100

l a b e l :

SOMETHING

add r1 , r1 ,#−1

bne l a b e l

8

Common Access Patterns – While Loop

Optimizing compiler may translate this to a for loop

(why?)

x =0; w h i l e (x<100) { SOMETHING ; x++;}

mov r1 ,#0

l a b e l :

cmp r1 ,#100

bge done

9

SOMETHING

bne l a b e l

add r1 , r1 ,#1

b l a b e l

done :

10

Common Access Patterns – If/Then

ARM can use predication to avoid this.

i f (x) { f o o } e l s e { bar }

cmp r1 ,#0

bne e l s e

then :

f o o

b done

e l s e :

11

bar

done :

12

Branch Prediction Hints

• likely() (maps to builtin expect())

• unlikely()

• on some processors, (p4) hint for static

• others, just move unlikely blocks out of way for better

L1I$ performance

13

Dynamic Branch Prediction

14

Branch History Table

• table, likely indexed by lower bits of instruction

can have more advanced indexing to avoid aliasing

no-tag bits, unlike caches aliasing does not affect correct

program execution

• one-bit indicating what the branch did last time

• update when a branch miss happens

• two misses for each time through loop. Wrong at exit of

loop, then wrong again when restarts.

15

Aliasing

• Is it bad? Good?

• Does the O/S need to save on context switch?

• Do you need to save if entering low-power state?

16

f

3

2

1

0

taken

...

0x1000 0003 : bne PC+45

17

Two-bit saturating counter

• Use saturating 2-bit counter

• If 3/2, predict taken, if 1,0 not-taken. Takes two misses

or hits to switch from one extreme to the next, letting

loops take only one mispredict.

• Needs to be updated on every branch, not just for a

mispredict

18

 NT

01

 NT

Weak

10
Weak
Taken

11

Taken

00

Strong

Strong

NT

Taken

Taken

Taken

Taken

NT

NT

NT

19

Local vs Global History

• Can use branch history as index into tables

• Use a shift register to hold history

• Global: history is all branches

• Local: store branch history on a branch by branch basis

20

Global Predictor

Global History

N N T N
2−bit Counters

11

...

Taken

21

Local Predictor

0x8000 0001 : bne PC+45

Not

Taken

... ...

N N T N

00

2−bit Counters

22

Correlating / Two Level Predictors

• Take history into account.

Break branch prediction for a branch out into multiple

locations based on history.

Global History

T

0x1000 0002 : bge PC+45

1

...

N

1

Taken

2 bit saturating counters

23

gshare

• Xors the global history with the address bits to get which

line to use.

• Benefits of 2-level without the extra circuitry

1111

T T TT

2−bit Counters

0x1000 000e : bgt PC+45

Not Taken
XOR

1110

N N

...

Global History

24

Tournament Predictors

• Which to use? Local or global?

• Have both. How to know which one to use? Predict it!

• 2-bit counter remembers which was best.

25

Perceptron

• There are actually Branch Prediction Competitions

• The winner the past few times has been a “Perceptron”

predictor

• Neural Networks

26

Comparing Predictors

• Branch miss rate not enough

• Usually the total number of bits needed is factored in

• May also need to keep track of logic needed if it is

complex.

27

Branch Target Buffer

• Predicts the actual destination of addresses.

• Indexed by whole PC. May be looking up before even

know it is a branch instruction.

• Only need to store predicted-taken branches. (Why?

Because not-taken fall through as per normal).

28

Return Address Stack

• Function calls can confuse BTB. Multiple locations

branching to same spot. Which return address should

be predicted?

• Keep a stack of return addresses for function calls

• Playing games with size optimization and fallthrough/tail

optimization can confuse.

29

Adjusting Predictor on the Fly

Some processors let you configure predictor at runtime.

MIPS R12000 let you

ARM possibly does.

Why is this useful?

In theory if you have a known workload you can pick the

one that works best.

Also if realtime you want something that is deterministic,

like static prediction.

Also Good for simulator validation

30

Cortex A9 Branch Predictor

From the Manual:

• two-level prediction mechanism, comprising: a two-way

BTAC of 512 entries organized as two-way x 256 entries

• a Global History Buffer (GHB) with 4096 2-bit predictors

• a return stack with eight 32-bit entries.

• It is also capable of predicting state changes from ARM

to Thumb, and from Thumb to ARM.

31

Example

Code in perf event validation tests for generic events.

http://web.eece.maine.edu/~vweaver/projects/perf_events/validation/

32

Example Results

33

Part 1

Testing a loop with 1500000 branches (100 times):

On a simple loop like this, miss rate should be very small.

Adjusting domain to 0,0,0 for ARM

Average number of branch misses: 685

Part 2

Adjusting domain to 0,0,0 for ARM

Testing a function that branches based on a random number

The loop has 7710798 branches.

500000 are random branches; 250699 of those were taken

Adjusting domain to 0,0,0 for ARM

Out of 7710798 branches, 291081 were mispredicted

Assuming a good random number generator and no freaky luck

The mispredicts should be roughly between 125000 and 375000

Testing ‘‘branch-misses’’ generalized event... PASSED

34

Value Prediction

• Can we use this mechanism to help other performance

issues?

What about caches?

• Can we predict values loaded from memory?

• Load Value Prediction. You can, sometimes with

reasonable success, but apparently not worth trouble

as no vendors have ever implemented it.

35

