
Measuring Energy and Power with PAPI

Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph,

Piotr Luszczek, Dan Terpstra, and Shirley Moore

Innovative Computing Laboratory

University of Tennessee

{vweaver1,mrj,kirankk,ralph,luszczek,terpstra,shirley}@eecs.utk.edu

Abstract—Energy and power consumption are becoming criti-
cal metrics in the design and usage of high performance systems.
We have extended the Performance API (PAPI) analysis library
to measure and report energy and power values. These values are
reported using the existing PAPI API, allowing code previously
instrumented for performance counters to also measure power
and energy. Higher level tools that build on PAPI will automat-
ically gain support for power and energy readings when used
with the newest version of PAPI.

We describe in detail the types of energy and power readings
available through PAPI. We support external power meters,
as well as values provided internally by recent CPUs and
GPUs. Measurements are provided directly to the instrumented
process, allowing immediate code analysis in real time. We
provide examples showing results that can be obtained with our
infrastructure.

Index Terms—energy measurement; power measurement; per-
formance analysis

I. INTRODUCTION

The Performance API (PAPI) [1] framework has tradition-

ally provided low-level cross-platform access to the hardware

performance counters available on most modern CPUs. With

the advent of component PAPI (PAPI-C) [2], PAPI has been

extended to provide a wider variety of performance data from

various sources. Recently a number of new components have

been added that provide the ability to measure a system’s

energy and power usage.

Energy and power have become increasingly important

components of overall system behavior in high-performance

computing (HPC). Power and energy concerns were once

primarily of interest to embedded developers. Now that HPC

machines have hundreds of thousands of cores [3], the ability

to reduce consumption by just a few Watts per CPU quickly

adds up to major power, cooling, and monetary savings. There

has been a lot of HPC interest in this area recently, including

the Green 500 [4] list of energy-efficient supercomputers.

PAPI’s ability to be extended by components allows adding

support for energy and power measurements without any

changes needed to the core infrastructure. Existing code that is

already instrumented for measuring performance counters can

be re-used; the new power and energy events will show up in

event listings just like other performance events, and can be

measured with the same existing PAPI API. This will allow

current users of PAPI on HPC systems to analyze power and

energy with little additional effort.

There are many existing tools that provide access to power

and energy measurements (often these come with the power

measuring hardware). PAPI’s advantage is that it allows mea-

suring a diverse set of hardware with one common interface.

Users only instrument their code once, and then can use

it with minimal changes as their code is moved between

different machines with different hardware. Without PAPI the

instrumented code would have to be re-written depending on

what power measurement hardware it is running on.

Another benefit of PAPI is that in addition to measuring

energy and power, it also provides access to other values, such

as CPU performance counters, GPU counters, network, and

I/O. All of these can be measured at the same time, providing

for a richer analysis environment. Many of the other advanced

PAPI features, such as sampling and profiling, can potentially

be used in conjunction with these new power and energy

events. Higher-level tools that build on top of PAPI (such as

TAU [5], HPCToolkit [6], or Vampir [7]) automatically get

support for these new measurements as soon as they are paired

with an updated PAPI version.

We will describe in detail the various types of power and

energy measurements that will be available in the PAPI 5.0

release, as well as showing examples of the data that can be

gathered.

II. RELATED WORK

There are various existing tools that provide access to power

and energy values. In general these tools do not have a cross-

platform API like PAPI, nor are they deployed as widely. PAPI

has the benefit of allowing energy measurements at the same

time as CPU and other performance counter measurements,

allowing analysis of low-level energy behavior at the source

code level. PAPI can also act as an abstraction library, so

most of the tools listed below could be given PAPI component

interfaces.

The tool that provides the most similar functionality to PAPI

is the Intel Energy Checker SDK [8]. It provides an API for

instrumenting code and gathering energy information from

a variety of external power meters and system counters. It

provides support for various operating systems, but is limited

to Intel architectures.

PowerPack [9] provides an interface for measuring power

from a variety of external power sources. The API provides

routines for starting and stopping the gathering of data on

the remote machine. Unlike PAPI, the measurements are

gathered out-of-band (on a separate machine) and thus cannot

be directly provided to the running process in real time.

Appeared in the 2012 PASA Workshop

IBM Power Executive [10] allows monitoring power and

energy on IBM blade servers. As with PowerPack, the data is

gathered and analyzed by a tool (in this case IBM Director)

running on a separate machine.

Shin et al. [11] construct a power board for an ARM system

that estimates power and communicates with a front-end tool

via PCI. Various tools are described that use the gathered

information, but there is not a generic API for accessing it.

The Linux Energy Attribution and Accounting Platform

(LEA2P) [12] acquires data on a system with hardware

custom-modified to provide power readings via a data acqui-

sition board. These values are passed into the Linux kernel

and made available via the /proc filesystem and can be read

in-band.

PowerScope [13] uses a digital multimeter to perform off-

line analysis using statistical sampling. It provides a kernel-

level interface (via system calls) to start and stop measure-

ments; this requires modifying the operating system. The

benefit of this system is that power information is kept in the

process table, allowing one to map energy usage in a detailed

per-process way.

The Energy Endoscope [14] is an embedded wireless sensor

network that provides detailed real-time energy measurements

via a custom-designed helper chip. The Linux kernel is

modified to report energy in /proc/stat along with other

processor stats.

Isci and Martonosi [15] combine external power meter mea-

surements with performance counter results to generate power

readings with a modeled CPU. The readings are gathered on

an external machine.

Bellosa [16] proposes Joule Watcher, an infrastructure that

uses hardware performance counters to estimate power and

provide this information to the kernel for scheduling decisions.

He proposes a generic API to provide this information to users.

III. BACKGROUND

PAPI users have recently become more concerned with

energy and power measurements. Part of this is due to the

addition of embedded system support (including ARM and

MIPS processors) and part is from the current interest in

energy-efficiency in PAPI’s traditional HPC environment.

With PAPI-C (component PAPI) it is straightforward to

add extra PAPI “components” that report values outside of

the usual hardware performance counters that were long the

mainstay of PAPI. The PAPI API returns unsigned 64-bit

integers; as long as a power or energy value can fit that

constraint no changes at all need to be made to existing PAPI

code.

A. New PAPI Interfaces

The existing PAPI interface is sufficient for providing power

and energy values, but the recent PAPI 5.0 release adds many

features that improve the collection of this information.

The most important new feature is enhanced event infor-

mation support. The user can query an event and obtain far

richer details than were available previously. The new interface

allows specifying units for a returned value, allowing a user

to know if the values they are getting are in “Watts”, “Joules”

or perhaps even “nano-Joules” without having to look in the

system documentation. Another new feature is the ability to

return values other than unsigned integers, including floating

point. This allow returning power values in human-friendly

amounts such as 96.45 Watts rather than 96450 milliwatts.

Additional event information is provided that will help

external tools analyze the results, especially when trying to

correlate power results with other measurements. PAPI now

provides the frequency with which the value is updated and

whether the value returned is instantaneous (like an average

power reading) or cumulative (total Energy).

B. Limitations

There are some limitations when measuring power and

energy using PAPI. Typically these readings are system-wide:

it is not possible to exactly map the results exactly to the user’s

code, especially on multi-core systems. Often a user is inter-

ested in knowing where the power usage comes from: power

supply inefficiencies, the CPU, network card, memory, etc.

With external power meters it is not possible to break down the

full-system power measurements into per-component values.

Since power optimization for various hardware components

require different strategies, having only total system power

might not provide enough information to allow optimization.

Ideally one could correlate power and energy with CPU

and other PAPI measurements. This can be done; values can

be measured at the same time (although in separate event sets).

However due to the nature of the measurements it is hard to

get an exact correlation.

Another issue is that of measurement overhead. Since PAPI

has to run on the system gathering the results, it contributes

to the overall power budget of the system. Tools that measure

power externally do not have this problem.

IV. PAPI ENERGY AND POWER COMPONENTS

The new PAPI 5.0 release adds support for various power

and energy components.

PAPI components measure power and energy in-band: a

program is instrumented with PAPI calls and can read mea-

surement data into the running process. The data can be stored

to disk for later offline analysis, but by default it is available

for immediate action. This contrasts with other tools that only

support out-of-band measurements: they can only analyze code

at a later time, and the program being profiled is not aware of

its current power or energy status.

We use linear algebra routines that perform one-sided fac-

torization of dense matrices to compare various methods of

measuring energy. In particular, we test Cholesky factorization

from PLASMA [17] on the processor side and LU factor-

ization on the GPU using MAGMA [18]. Both of these are

computationally bound and thus show variable power draw by

the computing device: either CPU or GPU. Our tests also show

memory effects by including memory bound operations such

as filling the matrices with initial values.

2

Appeared in the 2012 PASA Workshop

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

CPU
Memory

Motherboad
Fan

Fig. 1. PLASMA Cholesky power usage gathered by PowerPack (not PAPI). Results were gathered out-of-band; PAPI can gather similar data in-band.

For comparison purposes, Figure 1 shows PLASMA

Cholesky results gathered with PowerPack [9] (not PAPI) on

a machine custom-wired for power measurement. Results are

gathered on an unrelated machine (which has the advantage of

not including the overhead of the measurement in the power

readings). We show that PAPI can generate similar results from

a variety of power measurement devices.

A. External Measurement

The most common type of power measurement infrastruc-

ture is one where an external power meter is used. For PAPI

to access the data, the values have to be passed back to the

machine being measured. This is usually done via a serial or

USB connection.

The easiest type of equipment to use in this case is one

where a power pass-through is used; this device looks like a

power strip, and allows measuring the power consumption of

anything plugged into the device.

More intrusive full-system instrumentation can be done,

where wires are hooked into power supplies, disks, processor

sockets, and DIMM sockets. This enables fine-grained power

measurement but usually requires extensive installation costs.

1) Watt’s Up Pro Power Meter: The Watt’s Up Pro power-

meter is an external measurement device that a system plugs

into instead of a wall outlet; it provides various measurements

via a USB serial connection. The metrics collected include

average power, voltage, current, and various others. Energy

can be derived based on the average power and time. The

results are system-wide and low resolution, with updates only

once a second.

Writing a PAPI driver for this device is nontrivial, as the

results become available every second whether requested or

not. Any data can potentially be lost if the on-board logging

memory is full and a read does not happen in the one-second

time window. Since PAPI users cannot be expected to have

their code interrupt itself once a second to measure data, the

PAPI component forks a helper thread that reads the data

on a regular basis, and then returns overall values when an

instrumented program requests it.

Some data gathered from a Watt’s Up Pro device are shown

in Figure 2. The results are coarse due to the one-second

sampling frequency of the device. This can be good enough

for doing validation and global investigations, but probably

not detailed enough when tuning code for energy efficiency.

However, the general trends in power consumption for the code

in question (Cholesky factorization from PLASMA [17]) are

similar to the much finer-grain graph in Figure 1.

In Figure 2 the initial spike in power consumption to about

50 W (two seconds into the run) represents data generation

(creation of a random matrix) and corresponds to a flat ledge

at about 130 W in Figure 1. Four seconds into the run, both

figures indicate a fluctuation around the maximum power level

for the whole run. The fluctuations are much more accurately

portrayed in Figure 1, indicating the need for granularity

substantially lower than 1 second available for the Watt’s Up

Pro device.

2) PowerMon 2: The powermon2 [19] card sits between a

system’s power supply and its various components. It measures

voltage and current on 8 different lines, monitoring most of

the power going into the computer. Measurements happen at

a frequency of up to 3kHz; this is multiplexed across a user-

selected subset of the 8 channels.

We are working on a PAPI component for this device, but

support is currently not available. We foresee using this device

to provide energy results at a detail not available with other

external power meters.

B. Internal Measurement

Recent computer hardware includes support for measuring

energy and power consumption internally. This allows fine-

grained power analysis without having to custom-instrument

the hardware.

3

Appeared in the 2012 PASA Workshop

0 10 20 30
Time (seconds)

0

20

40

60

A
v
e
ra

g
e
 P

o
w

e
r

(W
a
tt
s
)

PLASMA Cholesky Factorization N=10,000 threads=2

Fig. 2. PLASMA Cholesky power gathered with a Watt’s Up Pro device on an Intel Core2 laptop. Coarse results due to one-second sampling frequency.

Access to the measurements usually requires direct low-

level hardware reads, although sometimes the operating system

or a library will do this for you.

1) Intel RAPL: Recent Intel SandyBridge chips include

the “Running Average Power Limit” (RAPL) interface, which

is described in the Intel Software Developer’s Manual [20].

RAPL’s overall design goal is to provide an infrastructure

for keeping processors inside of a given user-specified power

envelope. The internal circuitry can estimate current energy

usage based on a model driven by hardware counters, tem-

perature, and leakage models. The results of this model are

available to the user via a model specific register (MSR), with

an update frequency on the order of milliseconds. The power

model has been validated by Intel [21] to closely follow actual

energy being used. PAPI provides access to the values returned

by the power model.

Accessing MSRs requires ring-0 access to the hardware;

typically only the operating system kernel can do this. This

means accessing the RAPL values requires a kernel driver.

Currently Linux does not provide such a driver; one has been

proposed [22] but it is unlikely it will be merged into the main

kernel tree any time soon. To get around this problem, we use

the Linux “MSR driver” that exports MSR access to userspace

via a special device driver. If the MSR driver is enabled and

given proper read-only permissions then PAPI can access these

registers directly without needing kernel support.

There are some limitations to accessing RAPL this way. The

results are system-wide values and cannot easily be attributed

to individual threads. This is not worse than measurements of

any shared resource; on modern Intel chips last level caches

and the uncore events share this limitation.

RAPL reports various energy readings. This includes the

energy usage for the total processor package and the total

combined energy used by all the cores (referred to as Power-

Plane 0 (PP0)). PP0 also includes all of the processor caches.

Some versions of SandyBridge chips also report power usage

by the on-board GPU (Power-Plane 1 (PP1)). Sandybridge EP

chips do not support the GPU measurement, but instead report

energy readings for the DRAM interface.

While the RAPL values can be measured in-band and

consumed by the program, since RAPL is system-wide a

separate process may be used to measure energy and power.

In this way the running code does not need to be instrumented

and some of the PAPI overhead can be avoided. We use this

method to gather the results presented.

We take measurements on a Sandybridge EP machine. It

has 2 CPU packages, each with 8 cores, and each core

with 2 threads. Figure 3 shows some average power mea-

surements gathered while doing Cholesky factorization using

the PLASMA library. Notice that the energy usage by each

package varies, despite all of the cores doing similar work.

Part of this is likely due to variations in the cores at the silicon

level, as noticed by Rountree et al. [23]. Figure 4 shows the

same measurements using the Intel MKL library [24].

Figure 5 shows some energy measurements comparing the

same Cholesky factorization using both PLASMA and Intel

MKL on the same hardware. The PAPI results show that for

this case, PLASMA uses energy more quickly, but finishes

faster and uses less total energy for the calculation.

2) AMD Application Power Management: Recent AMD

Family 15h processors can report “Current Power In Watts”.

[25] via the “Processor Power in TDP” MSR. We are investi-

gating PAPI support for this and hope to deploy a component

similar in nature and scope to the Intel RAPL component.

4

Appeared in the 2012 PASA Workshop

10 20 30 40
Time (seconds)

0

50

100

150

A
v
e

ra
g

e
 P

o
w

e
r

(W
a

tt
s
)

PLASMA Cholesky Factorization N=30,000 threads=16

DRAM Package 0
DRAM Package 1

PP0 Package 0
PP0 Package 1

Total Package 0
Total Package 1

Fig. 3. PLASMA Cholesky power usage measured with RAPL on Sandybridge EP. Power Plane 0 (PP0) is total usage for all 8 cores in a package.

10 20 30 40
Time (seconds)

0

50

100

150

A
v
e

ra
g

e
 P

o
w

e
r

(W
a

tt
s
)

MKL Cholesky Factorization N=30,000 threads=16

DRAM Package 0
DRAM Package 1

PP0 Package 0
PP0 Package 1

Total Package 0
Total Package 1

Fig. 4. Intel MKL Cholesky power usage measured with RAPL on Sandybridge. Power Plane 0 (PP0) is total usage for all 8 cores in a package.

10 20 30 40
Time (seconds)

0

1000

2000

3000

4000

T
o

ta
l
E

n
e

rg
y
 (

J
o

u
le

s
)

Cholesky Factorization N=30,000 threads=16

PLASMA Package 0
PLASMA Package 1
mkl Package 0
mkl Package 1

Fig. 5. Energy usage of two different implementations (PLASMA and MKL) of Cholesky on Sandybridge EP measured with RAPL.

5

Appeared in the 2012 PASA Workshop

0 1 2
Time (seconds)

0

50

100

150

A
v
e
ra

g
e
 P

o
w

e
r

(W
a
tt
s
)

Fig. 6. MAGMA LU with size 10,000 power measurement on an Nvidia Fermi C2075, gathered with NVML.

3) NVIDIA Management Library: Recent NVIDIA GPUs

can report power usage via the NVIDIA Management Li-

brary (NVML) [26]. The nvmlDeviceGetPowerUsage()

routine exports the current power; on Fermi C2075 GPUs

it has milliwatt resolution within ±5W and is updated at

roughly 60Hz. The power reported is that for the entire board,

including GPU and memory.

Gathering detailed performance information from a GPU is

difficult: once you dispatch code to a GPU the running CPU

has no control over it until the GPU returns upon comple-

tion. This means that it is not generally possible to attribute

what GPU code corresponds to what power readings. Nvidia

provides a high-level utility called nvidia-smi which can

be used to measure power, but its sample rate is too long to

obtain useful measurements.

In order to provide better power measurements we have

constructed an NVML component [27] for PAPI and have

validated the results using a “Kill-A-Watt” power meter.

Figure 6 shows data gathered on an Nvidia Fermi C2075

card running a MAGMA [28] kernel using the LU algo-

rithm [29] with a matrix size of 10k.

The MAGMA LU factorization is a compute bound algo-

rithm (expressed in terms of GEMMs); it uses a hybridization

methodology to split the computation between the CPU host

and GPU. The split aims to match LU’s algorithmic require-

ments to the architectural strengths of the GPU and the CPU.

In the case of LU, this translates into having all matrix-matrix

(GEMM) multiplication done on the Gmy PU, and the panel

factorizations on CPU. The design of the algorithm allows for

big enough matrices to totally overlap the CPU work with the

large matrix-matrix multiplications on the GPU. As a result,

the performance of the MAGMA LU algorithm runs at the

speed of performing GEMMs on the GPU.

Our experiments have shown that the use of MAGMA

GEMM operations on GPU completely utilize it, maximizing

the power consumption. This explains why the hybrid LU

factorization also maximizes the GPU power consumption,

which reduces time taken so the overall energy consumption

is minimized.

C. Estimated Power

Various researches have proposed using hardware perfor-

mance counters to model energy and power consumption [15],

[30], [31], [32], [33], [16], [34], [35], [36]. Goel et al. [36]

have shown that power can be modeled to within 10% using

just four hardware performance counters.

Using the PAPI user-defined events infrastructure [37] an

event can be created that derives an estimated power value

from the hardware counters. This can be used to measure

power on systems that do not have hardware power measure-

ment available.

V. CONCLUSION

The PAPI library can now provide transparent access to

power and energy measurements via existing interfaces. Exist-

ing programs that already have instrumentation for PAPI for

CPU performance measurements can quickly be adapted to

measure power, and existing tools will gain access to the new

power events with a simple PAPI upgrade.

With larger and larger clusters being built, energy consump-

tion has become one of the defining constraints. PAPI has been

continually extended to provide support for the most up-to-date

performance measurements on modern systems. The addition

of power and energy measurements allow PAPI users to stay

6

Appeared in the 2012 PASA Workshop

on top of this increasingly important area in the always rapidly

changing HPC environment.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 0910899 and the U.S.

Department of Energy Office of Science under contract DE-

FC02-06ER25761.

REFERENCES

[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-

tions, vol. 14, no. 3, pp. 189–204, 2000.
[2] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-

mance data with PAPI-C,” in 3rd Parallel Tools Workshop, 2009, pp.
157–173.

[3] “Top 500 supercomputing sites,” http://www.top500.org/.
[4] “Top green 500 list:: Environmentally responsible supercomputing,”

http://www.green500.org/.
[5] S. Shende and A. Malony, “The Tau parallel performance system,”

International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[6] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. Tallent, “HPCToolkit: Tools for performance analysis
of optimized parallel programs,” Concurrency and Computation: Prac-

tice and Experience, vol. 22, no. 6, pp. 685–701, 2010.
[7] W. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach,

“VAMPIR: Visualization and analysis of MPI resources,” Supercom-

puter, vol. 12, no. 1, pp. 69–80, 1996.
[8] Intel, Intel Energy Checker: Software Developer Kit User Guide, 2010.
[9] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. Cameron, “Pow-

erPack: Energy profiling and analysis of high-performance systems and
applications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 6, May 2010.

[10] P. Popa, “Managing server energy consumption using IBM PowerExec-
utive,” IBM Systems and Technology Group, Tech. Rep., 2006.

[11] D. Shin, H. Shim, Y. Joo, H.-S. Yun, J. Kim, and N. Chang, “Energy-
monitoring tool for low-power embedded programs,” IEEE Design &

Test of Computers, vol. 19, no. 4, pp. 7–17, July/August 2002.
[12] S. Ryffel, “LEA2P: The linux energy attribution and accounting plat-

form,” Master’s thesis, Swiss Federal Institute of Technology, Jan. 2009.
[13] J. Flinn and M. Satyanarayanan, “PowerScope: a tool for profiling the

energy usage of mobile applications,” in Proc. of the 2nd IEEE Workshop

on Mobile Computing Systems and Applications, Feb. 1999, pp. 2–10.
[14] T. Stathopoulos, D. McIntire, and W. Kaiser, “The energy endoscope:

Real-time detailed energy accounting for wireless sensor nodes,” in Proc.

of the International Conference on Information Processing in Sensor

Networks, Apr. 2008, pp. 383–394.
[15] C. Isci and M. Martonosi, “Runtime power monitoring in high-end

processors: Methodology and empirical data,” in Proc. IEEE/ACM 36th

Annual International Symposium on Microarchitecture, Dec. 2003.
[16] F. Bellosa, “The benefits of event: driven energy accounting in power-

sensitive systems,” in Proceedings of the 9th workshop on ACM SIGOPS

European workshop, 2000.
[17] PLASMA Users’ Guide, Parallel Linear Algebra Software for Multicore

Architectures, Version 2.3, University of Tennessee Knoxville, Nov.
2010.

[18] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra
solvers for multicore with GPU accelerators,” in Proc. 24th IEEE/ACM

International Parallel and Distributed Processing Symposium, Apr.
2010.

[19] D. Bedard, R. Fowler, M. Linn, and A. Porterfield, “PowerMon 2:
Fine-grained, integrated power measurement,” Renaissance Computing
Institute, Tech. Rep. TR-09-04, 2009.

[20] Intel, Intel Architecture Software Developer’s Manual, Volume 3: System

Programming Guide, 2009.
[21] E. Rotem, A. Naveh, D. Rajwan, A. Anathakrishnan, and E. Weissmann,

“Power-management architecture of the Intel microarchitecture code-
named Sandy Bridge,” IEEE Micro, vol. 32, no. 2, pp. 20–27, 2012.

[22] Z. Rui. (2011, May) [patch 2/3] introduce in-
tel rapl driver. linux-kernel mailing list. [Online]. Available:
http://thread.gmane.org/gmane.linux.kernel/1145973

[23] B. Rountree, D. Ahn, B. de Supinski, D. Lowenthal, and M. Schulz,
“Beyond DVFS: A first look at performance under a hardware-enforced
power bound,” in Proc. of 8th Workshop on High-Performance, Power-

Aware Computing, May 2012.
[24] Intel, Intel, Math Kernel Library (MKL),

http://www.intel.com/software/products/mkl/.
[25] AMD, AMD Family 15h Processor BIOS and Kernel Developer Guide,

2011.
[26] NVML Reference Manual, NVIDIA, 2012.
[27] K. Kasichayanula, “Power aware computing on GPUs,” Master’s thesis,

University of Tennessee, Knoxville, May 2012.
[28] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault,

and S. Tomov, “Faster, cheaper, better - a hybridization methodology to
develop linear algebra software for GPUs,” LAPACK Working Note 230.

[29] S. Yamazaki, S. Tomov, and J. Dongarra, “One-sided dense matrix
factorizations on a multicore with multiple GPU accelerators,” in Proc.

of the 2012 International Conference on Computational Science, Jun.
2012.

[30] K. Singh, M. Bhadauria, and S. McKee, “Real time power estimation
of multi-cores via performance counters,” Proc. Workshop on Design,

Architecture and Simulation of Chip Multi-Processors, Nov. 2008.
[31] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. Irwin, and

A. Sivasubramaniam, “vEC: virtual energy counters,” in Proc. of the

2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering, Jun. 2001.
[32] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded

software: a first step towards software power minimization,” IEEE

Transactions on VLSI, vol. 3, no. 4, pp. 437–445, 1994.
[33] J. Russell and M. Jacome, “Software power estimation and optimization

for high performance, 32-bit embedded processors,” in Proc. IEEE

International Conference on Computer Design, Oct. 1998, pp. 328–333.
[34] R. Joseph and M. Martonosi, “Run-time power estimation in high-

performance microprocessors,” in Proc. IEEE/ACM International Sym-

posium on Low Power Electronics and Design, Aug. 2001, pp. 135–140.
[35] J. Haid, G. Kaefer, C. Steger, and R. Weiss, “Run-time energy estimation

in system-on-a-chip designs,” in Proc. of the Asia and South Pacific

Design Automation Conference, Jan. 2003, pp. 595–599.
[36] B. Goel, S. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Cesati,

“Portable, scalable, per-core power estimation for intelligent resource
management.” in First International Green Computing Conference, Aug.
2010.

[37] S. Moore and J. Ralph, “User-defined events for hardware performance
monitoring,” in Proc. 11th Workshop on Tools for Program Development

and Analysis in Computational Science, Jun. 2011.

7

