A Cache Conflict Analysis Tool

Vincent Weaver, Cornell University
CASC, Martin Schulz

Lawrence Livermore National Laboratory
11 August 2005

The Cache Conflict Analysis Tool takes memory access traces from Below are some results from running different benchmarks through
the tool, with a simulated cache configuration similar to that of a
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tracking which data structures conflict with each other. We will use

the results of the tool to perform automatic cache conscious data

placement, resulting in increased program performance. equake from the spec?2k benchmarks
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e Implement automatic cache-conscious data placement:

+ by hand through code organization

+ automatically at runtime via customized memory management

+ using hardware remapping mechanisms (such as IMPULSE)

e Enable instrumentation by atom or valgrind in addition to FIT.

e Instrument more benchmarks.
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