A Cache Conflict Analysis Tool

Vincent Weaver, Cornell University
CASC, Martin Schulz

Lawrence Livermore National Laboratory
11 August 2005

The Cache Conflict Analysis Tool takes memory access traces from Below are some results from running different benchmarks through
the tool, with a simulated cache configuration similar to that of a

i hem through he simul
an instrumented program and runs them through a cache simulator, Pentium 4 (8K 4-way 64byte L1, 512K 8-way 64byte L2)

tracking which data structures conflict with each other. We will use

the results of the tool to perform automatic cache conscious data

placement, resulting in increased program performance. equake from the spec?2k benchmarks

Conflict by Size L1

Conflict Caused by Size 32

4e+08 Iaccessés I:II
26+06 3.5e+06 ¢ 2 2:2222 BT
BaCkg rOU nd _ SE %gé%gé 3e+06 |
1 g% é§§(8)§8 * 2.5e+06
400000 &
§ gg (2)00000 § 2e+06
. . . < 1.5e+06
e [he cache location of a data structure is dependent on its loca- B aotoe o
. . . nxno 20 Size going out
tion In main memory. size comin 500000
. . . . 0 5 10 15 20 25 30
e The layout of data (both static and dynamic) in main memory ofise
can dramatically affect cache performance due to conflicts, and
can adversely affect performance of an application. FIGURE 1: Conflicts by size in the L1 FIGURE 2 Accesses. both total and
: : : : : Cache. The biggest peak is that of 24- those causing misses, for offsets in the 24-
e Compilers typically do not take cache conflict behavior into ac- byte allocations (corresponding to an ar-

byte allocations (plus 8 bytes of padding

ray of 3 doubles) kicking each other out added by the system’s malloc() routine).

count when creating an executable, nor does the memory subsys- S
0] € Cache.

Impl tati
r Cache Simulation Results for :.ﬂf.__-"muiL'%.'in-:e_{_.-_llul-'.-.-crlIt:-'tra-:e__g_glmki-_-'eqlmks - EEN
Program Of Interest File Edit WView Go Bookmarks Tools Help
QJ -t | - %1 (2.4 T/~7l\[[L file:,-',-f,-’humeﬂﬂ:eav @ Go @,
: Instrumented with FIT '
InStrumented to send. Flexible | . Toolki #* Getting Started |3} Latest Headlines
e Load and Store Addresses (Flexible Instrumentation Toolkit) =
PY ma//OC,Ca//OC,realloc which is an atom-like tool Allocated Memory Area Conflicis by Skze for Li
and free information 15 distinet sizes, 10426152 fotal conflicts o S |
® 1 : : [Unknown | Static [Stack |16/ 20 || 24 || 32 [s2 {1808 [200184 2908858360 | 140108 208872 | 208876
address and size of Runs natively on x86/Linux e o | sl o o o o | o oo
[tnknown [227 |fo7is1 [ooce (1 [127308 [1224es [| ([issoelion (4337 (15943 [[a7as |[sason
data sent via unix fifo (pipe) | statie [3576 |EH00ES 15505 0 ([1essn [for (5w b (o s 2 s [ssi [[ise (mae |
[Stade [0 |fomass 16798 [0 [posar [fos [fisssm o (o (st o o |[13is |[12749 [24s05 |
C C - ; w b b b b b b bkl b e b b B
aChe OnﬂICt AnalySIS TOOl 20 [raas Jooor ([0 [[ar712 |10 (posem (o o [[ise4 310 [[lose [joon [fesss [0
u sior feas s [zl | . o [[z e | [Py [pacs |
fffffffffffffffffffff S i 2 (s (eeas [mooor o | ST NENEEE N 0 © oo [fow [oes s ([asen (45 ios |
ache Simulator - - 2 s e im0 | RN NN 0 | |761950% [958 e |SASR0) 5108
'+ L1 ICache simulated using = b o plo s b O O O O
| basic block si dd L AL L ey . =y — L ; L L.
| L1 | asic block size / address [o . b oo Jaor T bl Jio oo o o o
| ICache -+ L1 DCache simulated using [20180 [[las |Boms (pest |1 (1212 [asees [fmame |1 B2 [pismijpor [[os [[os [psso [ser |
‘ load / store addresses. | 20188 |[207 iz o o feso Jfizses (e Jfo o s [[imes [o [l iz
.+ A list of memory areas [sa0 1o oo o o]0 s psos (o o e Jaos e o por (s |
L2 - is generated from Lvow [e Jimn b e Jis e Jol Jom lo o o Juse om |
Cache | malloc and symbol info. [20m72 m: !!w;x i-‘-”-“"_i_” ir:“.s,m i|::-ﬂ;.-|_f.|.wm ;|.1 o [[pous [[128_[[373 mqn ium pis7 |
|] "+ Memory is divided into [208876 (1503 |[nionn |[154m0]fo (27350 [[iosss |[193878 [0 o [f7es 1o (3o |[1257 |[oooma [[5a0e |
" DCache | 1k chunks and entered
| | into a hash table.
| .+ There is a separate hash
| | . . .
for finding size

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

specific stats.

tem or operating system at time of execution.

2k from the ASCI Purple Benchmark
e By analyzing cache behavior with this tool, hopefully better data SMg<K Trom the urple Bencnmarks

. Conflict Caused by Size 272
placements can be achieved. P 120000 S —
11 mi
Below is an example of how in a direct mapped 4k cache with a 32 byte blocksize, every 4096th byte in main memory 100000 | 12 misses wi
will map to the same area of cache. So if you have two data structures in use at the same time that are 4096 bytes gg:gg 20000 |
apart, both will not fit in the cache at the same time and performance will be adversely affected. 4e+06 0
=4 I
1e+06 <
. . Diagram of a Conflict Miss 0 40000 |
Pseudo-code of a Conflict Miss
Allocate A[512] (allocated at offset 0) Main Memory 20000
Allocate B[512] (allocated at offset 4096) 0 olifial . . BEEELEETE
1 Cache 0 50 100 150 200 250
2 0 Offset
Loop i=0..N 3 1
Loop j=0..511 %
Alil=AL]+BL] 4096 : . L FIGURE 4: Accesses, both total and
4097 ! FIGURE 3: Conflicts by size in the L1) . . o off th
Without conflicts, A and B should be in the 2883 Cache. The biggest peaks here are from ' OSE causling rplsseslrhorl orisets mft ©
cache after the first access. Due to conflicts, 5 large allocations (bigger than the cache 272(; yte a ?Caﬂons.'ddle a_rgﬁ gap of un-
cach access causes a miss. i SiZE) Causing Capacity misses. used space in the mi € mig t open op-

portunities for better cache placement.

This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

hmaesri?ory memory area iizfs?h sizes N
name jSize . S
address Jaddress et s
segment s
freed el
accesses B2
misses -
size A
£ _ [EIEl
Find: | Find Next (2 Find Previous Highlight [] Match ci
+ Conflict and access info is [Dine : e : -
[C)?teﬁor'lzed by callsites L1, L2 conflictsL1, L2 misses :
OCK Slze.
Memory access info is collected from the pro-
gram on the fly, run through a cache simu-
lator, and various statistics are recorded. Results are presented as HTML with graph-
ICS.

e Implement automatic cache-conscious data placement:

+ by hand through code organization

+ automatically at runtime via customized memory management

+ using hardware remapping mechanisms (such as IMPULSE)

e Enable instrumentation by atom or valgrind in addition to FIT.

e Instrument more benchmarks.

UCRL-POST-214300

