Appendix D: DSP Instructions on CortexM4 and Cortex-M7

$\begin{aligned} \mathrm{T} & =\text { Top/high halfword, } \mathrm{B}=\text { Bottom/low halfword } \\ \mathrm{SQ} & =\text { Signed saturation, UQ }=\text { Unsigned saturation }\end{aligned}$

Instruction	Operands	Description and Action
PKHBT	\{Rd, \} Rn, Rm, Op2	Pack halfword. $\mathrm{Rd}=\mathrm{Rn}[\mathrm{B}]:(\mathrm{Rm}, \mathrm{Op2})[\mathrm{T}]$
PKHTB	\{Rd, \} Rn, Rm, Op2	Pack halfword. $\mathrm{Rd}=\mathrm{Rn}[\mathrm{T}]:(\mathrm{Rm}, \mathrm{Op2})[\mathrm{B}]$
QADD	\{Rd, \} Rn, Rm	Saturating add signed 32 -bit integers $R d=S Q 32(R n+R m)$
QADD16	\{Rd, \} Rn, Rm	Saturating add 2 pairs of 16 -bit signed integers $\operatorname{Rd}[\mathrm{T}]=\mathrm{SQ16}(\mathrm{Rn}[\mathrm{T}]+\mathrm{Rm}[\mathrm{T}])$ $\operatorname{Rd}[B]=S Q 16(R n[B]+\operatorname{Rm}[B])$
QADD8	\{Rd, \} Rn, Rm	Saturating add 4 pairs of 8-bit signed integers $\operatorname{Rd}[31: 24]=\operatorname{Rn}[31: 24]+\operatorname{Rm}[31: 24]$ $\operatorname{Rd}[25: 16]=\operatorname{Rn}[25: 16]+\operatorname{Rm}[25: 16]$ $\operatorname{Rd}[15: 8]=\operatorname{Rn}[15: 8]+\operatorname{Rm}[15: 8]$ $\operatorname{Rd}[7: 0]=\operatorname{Rn}[7: 0]+\operatorname{Rm}[7: 0]$
QASX	\{Rd, \} Rn, Rm	Saturating add and subtract with exchange $\operatorname{Rd}[\mathrm{T}]=\mathrm{SQ16}(\mathrm{Rn}[\mathrm{T}]+\mathrm{Rm}[\mathrm{B}])$ $\operatorname{Rd}[B]=S Q 16(R n[B]-\operatorname{Rm}[T])$
QDADD	\{Rd, \} Rn, Rm	Saturating double and add $R d=S Q 32(R n+S Q 32(R m * 2))$
QDSUB	\{Rd, \} Rn, Rm	Saturating double and subtract $R d=S Q 32(R n-S Q 32(2 * R m))$
QSAX	\{Rd, \} Rn, Rm	Saturating subtract and add with exchange $\operatorname{Rd}[T]=S Q 16(R n[T]-R m[B]), \operatorname{Rd}[B]=S Q 16(R n[B]+R m[T])$
QSUB	\{Rd, \} Rn, Rm	Signed saturating subtract two 32 -bit signed integers $\mathrm{Rd}=\mathrm{SQ} 32(\mathrm{Rn}-\mathrm{Rm})$
QSUB16	\{Rd, \} Rn, Rm	Signed saturating subtract 2 pairs of 16 -bit signed integers, $\operatorname{Rd}[T]=\mathrm{SQ} 16(R n[T]-\operatorname{Rm}[T]), \operatorname{Rd}[B]=S Q 16(R n[B]-R m[B])$
QSUB8	\{Rd, \} Rn, Rm	Signed saturating subtract 4 pairs of 8 -bit signed integers
SADD16	\{Rd, \} Rn, Rm	Signed add 2 pairs of 16 -bit integers $\operatorname{Rd}[\mathrm{T}]=\operatorname{truncate16}(\operatorname{Rn}[\mathrm{T}]+\operatorname{Rm}[\mathrm{T}])$ $\operatorname{Rd}[B]=\operatorname{truncate} 16(\operatorname{Rn}[B]+\operatorname{Rm}[B])$
SADD8	\{Rd, \} Rn, Rm	Signed add 4 pairs of 8 -bit signed integers
SASX	\{Rd, \} Rn, Rm	$\begin{aligned} & \text { Signed add and subtract with exchange } \\ & \operatorname{Rd}[\mathrm{T}]=\text { truncate16(Rn}[\mathrm{T}]+\operatorname{Rm}[\mathrm{B}]) \\ & \operatorname{Rd}[\mathrm{B}]=\text { truncate16(Rn}[\mathrm{B}]-\operatorname{Rm}[\mathrm{T}]) \\ & \hline \end{aligned}$
SEL	\{Rd, \} Rn, Rm	Select bytes based on GE bits of CPSR
SHADD16	\{Rd, \} Rn, Rm	Signed halving add 2 pairs of 16 -bit integers $\operatorname{Rd}[T]=(\operatorname{Rn}[T]+\operatorname{Rm}[T]) / 2, \operatorname{Rd}[B]=(R n[B]+\operatorname{Rm}[B]) / 2$
SHADD8	\{Rd, \} Rn, Rm	Signed halving add 4 pairs of 8 -bit integers
SHASX	\{Rd, \} Rn, Rm	Signed halving add and subtract with exchange $\operatorname{Rd}[T]=(\operatorname{Rn}[T]+\operatorname{Rm}[B]) / 2, \operatorname{Rd}[B]=(R n[B]-\operatorname{Rm}[T]) / 2$
SHSAX	\{Rd, \} Rn, Rm	Signed halving subtract and add with exchange $\operatorname{Rd}[\mathrm{T}]=(\operatorname{Rn}[\mathrm{T}]-\operatorname{Rm}[\mathrm{B}]) / 2, \operatorname{Rd}[B]=(\operatorname{Rn}[B]+\operatorname{Rm}[T]) / 2$
SHSUB16	\{Rd, \} Rn, Rm	Signed halving subtract 2 pairs of 16-bit integers $\operatorname{Rd}[\mathrm{T}]=(\mathrm{Rn}[\mathrm{T}]-\operatorname{Rm}[\mathrm{T}]) / 2, \operatorname{Rd}[\mathrm{~B}]=(\mathrm{Rn}[\mathrm{B}]-\mathrm{Rm}[\mathrm{B}]) / 2$
SHSUB8	\{Rd, \} Rn, Rm	Signed halving subtract 4 pairs of 8 -bit integers
SMLABB, SMLABT, SMLATB, SMLATT	Rd, Rn, Rm, Ra	$\begin{aligned} & \text { Signed multiply accumulate long (halfwords) } \\ & \mathrm{Rd}=\mathrm{Ra}+\mathrm{Rn}[\mathrm{~B} / \mathrm{T}] * \mathrm{Rm}[\mathrm{~B} / \mathrm{T}] \\ & \text { e.g. } \mathrm{BT}, \mathrm{Rd}=\mathrm{Ra}+\mathrm{Rn}[\mathrm{~B}] * \mathrm{Rm}[\mathrm{~T}] \end{aligned}$
SmLaLBB, SMLALBT, SMLATLB, SMLALTT	RdLo, RdHi, Rn, Rm	Signed multiply accumulate long (halfwords) RdHi:RdLo = RdHi:RdLo + Rn[B/T]*Rm[B/T] e.g. $\mathrm{BT}, \mathrm{RdHi}:$ RdLo $=$ RdHi:RdLo $+\mathrm{Rn}[B] * \mathrm{Rm}[\mathrm{T}]$

SMLAD	Rd, Rn, Rm, Ra	Signed multiply accumulate dual $\mathrm{Rd}=\mathrm{Ra}+\mathrm{Rn}[\mathrm{~T}] * \mathrm{Rm}[\mathrm{~T}]+\mathrm{Rn}[\mathrm{~B}] * \mathrm{Rm}[\mathrm{~B}]$
SMLADX	Rd, Rn, Rm, Ra	Signed multiply accumulate dual with exchange $\mathrm{Rd}=\mathrm{Ra}+\mathrm{Rn}[\mathrm{~T}] * \mathrm{Rm}[\mathrm{~B}]+\mathrm{Rn}[\mathrm{~B}] * \mathrm{Rm}[\mathrm{~T}]$
SMLALD	RdLo, RdHi, Rn, Rm	$\begin{aligned} & \text { Signed multiply accumulate long dual } \\ & \text { RdHi:RdLo }=\operatorname{RdHi}: \operatorname{RdLo~+~Rn}[\mathrm{T}] * \mathrm{Rm}[\mathrm{~T}]+\mathrm{Rn}[\mathrm{~B}] * \mathrm{Rm}[\mathrm{~B}] \end{aligned}$
SMLALDX	RdLo, RdHi, Rn, Rm	Signed multiply accumulate long dual with exchange RdHi:RdLo = RdHi:RdLo + Rn[T]*Rm[B] + Rn[B]*Rm[T]
SMLAWB	Rd, Rn, Rm, Ra	Signed multiply accumulate (word by bottom halfword), Rd $=R a+(R n * R m[B]) \gg 16$
SMLAWT	Rd, Rn, Rm, Ra	Signed multiply accumulate (word by top halfword), $\mathrm{Rd}=\mathrm{Ra}+(\operatorname{Rn} * \mathrm{Rm}[\mathrm{T}]) \gg 16$
SMLSD	Rd, Rn, Rm, Ra	$\begin{aligned} & \text { Signed multiply subtract dual } \\ & \mathrm{Rd}=\mathrm{Ra}+\mathrm{Rn}[\mathrm{~B}] * \mathrm{Rm}[\mathrm{~B}]-\mathrm{Rn}[\mathrm{~T}] * \mathrm{Rm}[\mathrm{~T}] \end{aligned}$
SMLSDX	Rd, Rn, Rm, Ra	Signed multiply subtract dual with exchange $\mathrm{Rd}=\mathrm{Ra}+\mathrm{Rn}[\mathrm{B}] * \mathrm{Rm}[\mathrm{T}]-\mathrm{Rn}[\mathrm{T}] * \mathrm{Rm}[\mathrm{B}]$
SMLSLD	RdLo, RdHi, Rn, Rm	$\begin{aligned} & \text { Signed multiply subtract long dual } \\ & \text { RdHi:RdLo = RdHi:RdLo + Rn[T]* Rm[T] - Rn[B]*Rm[B] } \end{aligned}$
SMLSLDX	RdLo, RdHi, Rn, Rm	Signed multiply subtract long dual with exchange RdHi:RdLo = RdHi:RdLo + Rn[B]* Rm[T] - Rn[T]*Rm[B]
SMMLA, SMMLAR	Rd, Rn, Rm, Ra	Signed most significant word multiply accumulate, Rd = Ra + (Rn*Rm)>>32. If R exists, round to nearest; otherwise, truncate.
SMMLS, SMMLSR	Rd, Rn, Rm, Ra	Signed most significant word multiply subtract, $R d=R a-(R n * R m) \gg 32$. See above for R.
SMMUL, SMMULR	\{Rd,\} Rn, Rm	Signed most significant word multiply $R d=(R n * R m) \gg 32$. See above for R.
SMULBB, SMULBT SMULTB, SMULTT	\{Rd, \} Rn, Rm	```Signed multiply (halfwords), Rd = Rn[B/T]*Rm[B/T] e.g. BT, Rd = Rn[B]*Rm[T]```
SMUAD	\{Rd, \} Rn, Rm	$\begin{aligned} & \text { Signed dual multiply then add } \\ & \mathrm{Rd}=\operatorname{Rn}[\mathrm{B}] * \operatorname{Rm}[\mathrm{~B}]+\operatorname{Rn}[\mathrm{T}] * \operatorname{Rm}[\mathrm{~T}] \end{aligned}$
SMUADX	\{Rd, \} Rn, Rm	Signed dual multiply add with exchange $\mathrm{Rd}=\mathrm{Rn}[\mathrm{~T}] * \mathrm{Rm}[\mathrm{~B}]+\operatorname{Rn}[\mathrm{B}] * \mathrm{Rm}[\mathrm{~T}]$
SMULWB	\{Rd, \} Rn, Rm	Signed multiply word by bottom halfword $\mathrm{Rd}=(\mathrm{Rn} * \mathrm{Rm}[\mathrm{~B}]) \gg 16$
SMULWT	\{Rd, \} Rn, Rm	Signed multiply word by top halfword $\mathrm{Rd}=(\mathrm{Rn} * \mathrm{Rm}[\mathrm{T}]) \gg 16$
SMUSD	\{Rd, \} Rn, Rm	Signed dual multiply then subtract $\mathrm{Rd}=\operatorname{Rn}[\mathrm{B}] * \operatorname{Rm}[\mathrm{~B}]-\operatorname{Rn}[\mathrm{T}] * \mathrm{Rm}[\mathrm{~T}]$
SMUSDX	\{Rd, \} Rn, Rm	Signed dual multiply (with exchange) subtract $\mathrm{Rd}=\operatorname{Rn}[\mathrm{B}] * \mathrm{Rm}[\mathrm{T}]-\mathrm{Rn}[\mathrm{T}] * \mathrm{Rm}[\mathrm{B}]$
SSAT16	Rd, \#imm4, Rm	Signed saturate two 16 -bit values \#imm4 = saturation bit position, $-2^{\text {imm4 - }} \leq \mathrm{x} \leq 2^{\mathrm{imm4}-1}-1$
SSAX	\{Rd, \} Rn, Rm	$\begin{aligned} & \text { Signed subtract and add with exchange } \\ & \operatorname{Rd}[\mathrm{T}]=\text { truncate16 }(\operatorname{Rn}[\mathrm{T}]-\operatorname{Rm}[\mathrm{B}]) \\ & \operatorname{Rd}[\mathrm{B}]=\text { truncate16 }(\operatorname{Rn}[\mathrm{B}]+\operatorname{Rm}[\mathrm{T}]) \\ & \hline \end{aligned}$
SSUB16	\{Rd, \} Rn, Rm	```Signed subtract 2 pairs of 16-bit integers Rd[T] = truncate16(Rn[T] - Rm[T]) Rd[B] = truncate16(Rn[B] - Rm[B])```
SSUB8	\{Rd, \} Rn, Rm	Signed subtract 4 pairs of 8-bit integers
SXTAB	\{Rd,\} Rn, Rm\{,ROR \#\}	Extend 8 bits to 32 bits and add $\mathrm{Rd}=\mathrm{Rn}+$ sign_extend ($\mathrm{Rm}, \operatorname{ROR} \#)[7: 0]$)
SXTAB16	\{Rd,\} Rn, Rm\{,ROR \#\}	Dual extend 8 bits to 16 bits and add $\operatorname{Rd}[\mathrm{T}]=\operatorname{Rn}[\mathrm{T}]+$ sign_extend ((Rm, ROR \#)[23:16]) $\operatorname{Rd}[B]=\operatorname{Rn}[B]+$ sign_extend ((Rm, ROR \#)[7:0])
SXTAH	\{Rd,\} Rn, Rm\{,ROR \#	Extend 16 bits to 32 and add Rd $=R n+$ sign_extend ($R m$, ROR \#)[15:0])
SXTB16	\{Rd,\} Rm \{,ROR \#n\}	$\begin{aligned} & \text { Signed extend byte to } 16 \text {-bit value } \\ & \operatorname{Rd}[T]=\text { sign_extend }((\operatorname{Rm}, \operatorname{ROR~\#)[23:16])} \\ & \operatorname{Rd}[B]=\text { sign_extend }((\operatorname{Rm}, \operatorname{ROR~\#)[7:0])} \end{aligned}$

UADD16	\{Rd, \} Rn, Rm	Unsigned add 2 pairs of 16-bit integers $\operatorname{Rd}[\mathrm{T}]=$ truncate16(Rn[T] + Rm[T]) $\operatorname{Rd}[B]=$ truncate16(Rn[B] + Rm[B])
UADD8	\{Rd, \} Rn, Rm	Unsigned add 4 pairs of 8-bit integers
UASX	\{Rd, \} Rn, Rm	Unsigned add and subtract with exchange $\operatorname{Rd}[\mathrm{T}]=$ truncate16(Rn[T] + Rm[B]) $\operatorname{Rd}[B]=$ truncate16(Rn[B] - Rm[T])
UHADD16	\{Rd, \} Rn, Rm	Unsigned halving add 2 pairs of 16-bit integers $\begin{aligned} & \operatorname{Rd}[\mathrm{T}]=(\operatorname{Rn}[\mathrm{T}]+\operatorname{Rm}[\mathrm{T}]) / 2, \\ & \operatorname{Rd}[\mathrm{~B}]=(\operatorname{Rn}[\mathrm{B}]+\operatorname{Rm}[\mathrm{B}]) / 2 \end{aligned}$
UHADD8	\{Rd, \} Rn, Rm	Unsigned halving add 4 pairs of 8-bit integers
UHASX	\{Rd, \} Rn, Rm	Unsigned halving add and subtract with exchange $\begin{aligned} \operatorname{Rd}[\mathrm{T}] & =(\mathrm{Rn}[\mathrm{~T}]+\operatorname{Rm}[\mathrm{B}]) / 2, \\ \operatorname{Rd}[\mathrm{~B}] & =(\operatorname{Rn}[\mathrm{B}]-\operatorname{Rm}[\mathrm{T}]) / 2 \end{aligned}$
UHSAX	\{Rd, \} Rn, Rm	Unsigned halving subtract and add with exchange $\begin{aligned} & \operatorname{Rd}[\mathrm{T}]=(\operatorname{Rn}[\mathrm{T}]-\operatorname{Rm}[\mathrm{B}]) / 2, \\ & \operatorname{Rd}[\mathrm{~B}]=(\operatorname{Rn}[\mathrm{B}]+\operatorname{Rm}[\mathrm{T}]) / 2 \end{aligned}$
UHSUB16	\{Rd, \} Rn, Rm	Unsigned halving subtract 2 pairs of 16 -bit integers $\begin{aligned} & \operatorname{Rd}[\mathrm{T}]=(\operatorname{Rn}[\mathrm{T}]-\operatorname{Rm}[\mathrm{T}]) / 2, \\ & \operatorname{Rd}[\mathrm{~B}]=(\operatorname{Rn}[\mathrm{B}]-\operatorname{Rm}[\mathrm{B}]) / 2 \end{aligned}$
UHSUB8	\{Rd, \} Rn, Rm	Unsigned halving subtract 4 pairs of 8-bit integers
UMAAL	RdLo, RdHi, Rn, Rm	Unsigned multiply accumulate long RdHi:RdLo = Rn*Rm + RdHi + RdLo
UQADD16	\{Rd, \} Rn, Rm	Unsigned saturating add 2 pairs of 16 -bit integers $\operatorname{Rd}[\mathrm{T}]=\mathrm{UQ}(\mathrm{Rn}[\mathrm{~T}]+\mathrm{Rm}[\mathrm{~T}]), \operatorname{Rd}[\mathrm{B}]=\mathrm{UQ}(\mathrm{Rn}[\mathrm{~B}]+\mathrm{Rm}[\mathrm{~B}])$
UQADD8	\{Rd, \} Rn, Rm	Unsigned saturating add 4 pairs of 8-bit integers
UQASX	\{Rd, \} Rn, Rm	Unsigned saturating add and subtract with exchange $\operatorname{Rd}[\mathrm{T}]=$ saturate16(Rn[T] + Rm[B]) $\operatorname{Rd}[B]=$ saturate16(Rn[B] - Rm[T])
UQSAX	\{Rd, \} Rn, Rm	Unsigned saturating subtract and add with exchange $\operatorname{Rd}[\mathrm{T}]=$ saturate16(Rn[T] - Rm[B]) $\operatorname{Rd}[B]=$ saturate16 $(\mathrm{Rn}[\mathrm{B}]+\mathrm{Rm}[\mathrm{T}])$
UQSUB16	\{Rd, \} Rn, Rm	Unsigned saturating subtract 2 pairs of 16 -bit integers $\operatorname{Rd}[T]=U Q(\operatorname{Rn}[T]-\operatorname{Rm}[T]), \operatorname{Rd}[B]=U Q(R n[B]-\operatorname{Rm}[B])$
UQSUB8	\{Rd, \} Rn, Rm	Unsigned saturating subtract 4 pairs of 8-bit integers
USAD8	\{Rd, \} Rn, Rm	Unsigned sum of absolute differences
USADA8	\{Rd,\} Rn, Rm, Ra	Unsigned sum of absolute differences and accumulate
USAT16	Rd, \#imm4, Rm	Unsigned saturate two 16-bit integers \#imm4 = saturation bit position, $0 \leq x \leq 2^{\text {imm4 }}-1$
USAX	\{Rd, \} Rn, Rm	Unsigned subtract and add with exchange $\operatorname{Rd}[\mathrm{T}]=$ truncate16(Rn[T] - Rm[B]) $\operatorname{Rd}[B]=$ truncate16 $(\operatorname{Rn}[B]+\operatorname{Rm}[T])$
USUB16	\{Rd, \} Rn, Rm	Unsigned subtract 2 pairs of 16 -bit integers $\operatorname{Rd}[\mathrm{T}]=$ truncate16(Rn[T] - Rm[T]) $\operatorname{Rd}[B]=$ truncate16(Rn[B] - Rm[B])
USUB8	\{Rd, \} Rn, Rm	Unsigned subtract 4 pairs of 8-bit integers
UXTAB	\{Rd,\} Rn, Rm\{, ROR \# \}	Rotate, extend 8 bits to 32 bits and Add Rd $=\mathrm{Rn}+$ zero_extend (Rm , ROR \#)[7:0])
UXTAB16	\{Rd,\} Rn, Rm\{, ROR \# \}	Rotate, dual extend 8 bits to 16 bits and add $\operatorname{Rd}[\mathrm{T}]=\operatorname{Rn}[\mathrm{T}]+$ zero_extend ((Rn, ROR \#)[23:16]) $\operatorname{Rd}[B]=\operatorname{Rn}[B]+$ zero_extend ((Rn, ROR \#)[7:0])
UXTAH	\{Rd,\} Rn, Rm\{, ROR \# \}	Rotate, unsigned extend and add halfword Rd = Rn + zero_extend ((Rm, ROR \#)[15:0])
UXTB16	\{Rd,\} Rm\{, ROR \#n\}	Unsigned extend byte to 16 -bit value $\operatorname{Rd}[\mathrm{T}]=$ zero_extend ((Rm, ROR \#)[23:16]) $\operatorname{Rd}[B]=$ zero_extend ((Rm, ROR \#)[7:0])

