
1

Errata of
Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C

Third Edition
2nd Printing (June 2018)

ISBN-10: 0982692668
Yifeng Zhu

Correction Date: February 2, 2022
Thank you all for providing me feedbacks and corrections!

Chapter 1. See a Program Running

 Page 22, bullet list #2, the binary code for memory address 0x08000162 is 0x680A, not 0x680.

 Page 22, “This instruction loads the value of variable a into register r1.” It should be r2.

Chapter 2. Data Representation

Chapter 3. ARM Instruction Set Architecture

Chapter 4. Arithmetic and Logic

 Page 82, “Subtract A from B” should be “Subtract B from A” in the program comment.

 Page 92, top of the page, “EOR Rn, Op2” should be “EORS Rn, Op2”

Chapter 5. Load and Store

 Page 99, Example 5-3
 LDR r1, =2 ; Translated to: MOV r1, #2

 LDR r2, =-2 ; Translated to: MVN r0 r2, #1

 LDR r3, =0x12345678 ; Translated to: LDR r2 r3, [pc, #offset1]

 LDR r4, =myAddress ; Translated to: LDR r2 r4, [pc, #offset2]
 ; LDR with a PC-relative address

Chapter 6. Branch and Conditional Execution
 Chapter 7. Structured Programming
 Pg. 145, first paragraph
 "Variables i, maxLocation, and maxValue are local variables and are stored in r2, r0, and r1, respectively." should be
 "Variables i, maxLocation, and maxValue are local variables and are stored in r2, r1, and r0, respectively."

Chapter 7. Structured Programming

Chapter 8. Subroutines

 Page 191,
LDR r5, [#sp, #20] ; r5 = mem[sp + 20] = 5
LDR r6, [#sp, #24] ; r6 = mem[sp + 24] = 6

 should be

LDR r5, [sp, #20] ; r5 = mem[sp + 20] = 5
LDR r6, [sp, #24] ; r6 = mem[sp + 24] = 6

2

 Page 198, Exercises 11
Memory Address Value

0x20008018 0x00000006
0x20008014 0x00000005
0x20008010 0x00000004

 Page 198, Exercises 11
Memory
Address

a b c d a b c d

0x20008018
0x20008014

0x20008010

Chapter 9. 64-bit Data Processing
Chapter 10. Mixing C and Assembly

 Page 219, Example 10-2, there are two “char x;”. The second one should be “char z;”

 Similarly, Figure 10-3, Figure 10-4, and Example 10-3, the second one should be “char z;”

Chapter 11. Interrupt

 Page 264, Example 11-13, EXTI->RTSR1 |= EXTI_RTSR1_RT3;

 Page 265, Example 11-13, EXTI->FTSR1 |= EXTI_FTSR1_FT3;

Chapter 12. Fixed-point and Floating-point Arithmetic

 Page 282, button line, There, S = 1 0 in this case

 Page 283,

1 × (
1

2
)

−1

+ 1 × (
1

2
)

−2

+ 0 × (
1

2
)

−3

+ 1 × (
1

2
)

−4

𝑠ℎ𝑜𝑢𝑙𝑑 𝑏𝑒

1 × (
1

2
)

1

+ 1 × (
1

2
)

2

+ 0 × (
1

2
)

3

+ 1 × (
1

2
)

4

Chapter 13. Instruction Encoding and Decoding

Chapter 14. Generic-purpose I/O

 On Page 355, the demo code given in the middle
ORR r1, r1, #(1<<6) ; Set bit 6

should be

ORR r1, r1, #(1<<2) ; Set bit 2

 On Page 363, Example 14-6,

Incorrect code Correct code

void TIM4_IRQHandler(void) {
 ...
 if((GPIOA->IDR & 0x1) == 0x1){ // check
input on pin PA.0

 counter++; // button is pressed
 if (counter >= 4) {

void TIM4_IRQHandler(void) {
 ...
 if((GPIOA->IDR & 0x1) == 0x1){ // check
input on pin PA.0

 counter++; // button is pressed
 if (counter >= 4) {

3

 pressed = 1; // set the flag
 counter = 0; // reset counter
 } else { // button is not pressed
 counter = 0; // reset counter
 }
 }
}

 pressed = 1; // set the flag
 counter = 0; // reset counter
 }
 } else { // button is not pressed
 counter = 0; // reset counter
 }
}

Chapter 15. General-purpose Timers

 Page 383, in the code given in Example 15-3, “// Enable TIM4 TIM1 interrupt in NVIC”

 Page 379, at the bottom, removing “driving the timer is 2.097 MHz.”

 Page 396, “The difference between two consecutive transitions measures an elapsed time span, as shown in
Figure 14-19 15-19.”

Chapter 16. Stepper Motor Control
Chapter 17. Liquid-crystal Display (LCD)

 Page 440, caption of Table 17-2, “encoding of five letters (A-Z)” should be “encoding of five letters (A-E)”.

 Page 442, Table 17-3 should be:

Segments 1G 1B 1M 1E

LCD_RAM[0] Bit 3 Bit 22 Bit 23 Bit 4 C[0]

Segments 1F 1A 1C 1D

LCD_RAM[2] Bit 3 Bit 22 Bit 23 Bit 4 C[1]

Segments 1Q 1K 1Colon 1P

LCD_RAM[4] Bit 3 Bit 22 Bit 23 Bit 4 C[2]

Segments 1H 1J 1DP 1N

LCD_RAM[6] Bit 3 Bit 22 Bit 23 Bit 4 C[3]

 Page 442, the code immediately after Table 17-3 is correct but its commends should follow the above
corrected Table 17-3.

Chapter 18. Real-time Clock (RTC)
Chapter 19. Direct Memory Access (DMA)
Chapter 20. Analog-to-Digital Converter
 Page 265, Example 11-13, “EXTI->FTSR &= ~EXTI_FTSR_RT3;” should be EXTI->FTSR &= ~EXTI_FTSR_FT3;

Chapter 21. Digital-to-Analog Converter

 Page 519, Example 11-7 Example 21-7 gives a simplified C implementation.

 Page 522, Example 21-9 Example 21-10 shows the amplitude-modulating signal based on the ADSR envelope. Figure
20-12 Example 21-11 presents the final modulated sinusoidal wave signal used to drive a speaker or headphones.

Chapter 22. Serial Communication Protocols

 Page 529, “0xE1, the bit stream 100010111 (read from left to right)”

 Page 531, “The hex equivalent of 1667 16667 is 0x411B.”
 Page 550, last sentence, “As shown in Table 24-4 Table 22-4 and Table 24-5 Table 22-5”

4

 Page 576, in Example 22-27, Send data to an SPI slave
1. SPIx->DR = txBuffer[i];

should be: *((volatile uint8_t*)&SPIx->DR) = txBuffer[i];

2. rxBuffer[i] = SPIx->DR;
should be: rxBuffer[i] = *((volatile uint8_t*)&SPIx->DR);

 Page 577, in Example 22-28, Receive data from an SPI slave
1. SPIx->DR = 0xFF; // A dummy byte

should be: should be: *((volatile uint8_t*)&SPIx->DR) = 0xFF

2. rxBuffer[i] = SPIx->DR;

should be: rxBuffer[i] = *((volatile uint8_t*)&SPIx->DR);

Chapter 23. Multitasking
 Page 405 and 406,

run the pseudo instruction “CPSID I”
the pseudo instruction “CPSIE I”

Chapter 24. Digital Signal Processing

