
Education of Embedded Systems
Programming in C and Assembly
Based on ARM’s Cortex-M
Microprocessors

Yifeng Zhu, Libby Professor

Webinar Series

University of Maine

October 2018

Role of Embedded Systems: Lays foundation

ISA

DMA

FPU

Memory-mapped I/O

Interrupts

Arithmetic

Software

Design

Embedded

Systems

Computer

Organization

decoding

numbers

debugging

communication

debugging

data structure

concurrency

▪ Laying foundation in curriculum:

▪ Computer organization & architecture

▪ Operating systems

▪ Software design & algorithms

▪ Senior project design

▪ Body of Knowledge (IEEE/ACM Computer Engineering Curricula

2016)

▪ Number systems and data encoding

▪ Instruction set architecture

▪ Relevant tools, standards and/or engineering constraints

▪ Input/output interfacing and communication

▪ Interrupts, timers, waveform generation

▪ Implementation strategies for complex embedded systems

▪ Computing platforms for embedded systems

Textbook

1. See a program running
2. Data representation
3. ARM instruction set architecture
4. Arithmetic and logic
5. Load and store
6. Branch and conditional execution
7. Structured programming
8. Subroutines
9. 64-bit data processing
10. Mixing C and assembly
11. Interrupt
12. Fixed-point & floating-point arithmetic
13. Instruction encoding and decoding
14. General-purpose I/O
15. General-purpose timers
16. Stepper motor control
17. Liquid-crystal display (LCD)
18. Real-time clock (RTC)
19. Direct memory access (DMA)
20. Analog-to-digital converter (ADC)
21. Digital-to-analog converter (DAC)
22. Serial communication protocols
23. Multitasking
24. Digital signal processing

738 pages, $69.50

▪ Complete instructor's resource:

▪ Lecture slides, quizzes and exams, tutorials,

lab handouts and solutions (pre-lab, in-lab,

and post-lab), solutions to end-of-chapter

exercises

▪ Bare-metal programming at the register

level without using any API libraries

▪ Line-by-line translation from C to ARM

assembly

▪ Strike the balance between theoretical

foundations and technical practices

▪ Using flowcharts as a reading guide for

processor datasheets

▪ Online YouTube tutorials (received over

866,000 minutes of watch time)

▪ Adopted by over 80 universities

Adopted by universities in US & Canada

My approach of teaching

1. Using modern platforms and tools

2. Bare-metal programming

3. Structured programming in Assembly

4. Lab-centered learning

5. Online tutorials

My approach of teaching

1. Using modern platforms and tools

2. Bare-metal programming

3. Structured programming in Assembly

4. Lab-centered learning

5. Online tutorials

Cheap and engaging platform and tools

Reference manual & datasheet

Lab in a box, $25

free

free

Friendly & robust IDE

Selecting a Platform: Hardware Component

▪ Low cost

▪ ~$25 each

▪ Hands-on experiences

▪ develop and test real systems

▪ Rewarding and engaging

▪ immediately enjoy the fruit of labor

▪ Convenient

▪ mobile lab without time and location constrains

▪ Versatile

▪ pins are extended for easy access

STM32L476G

ARM Cortex-M4F

STM32L4 Discovery Kit @STMicroelectronics

Selecting a Platform: Hardware Component

STM32L4 Discovery Kit @STMicroelectronics

Integrated ST-Link/V2

programming and

debugging tool

Mini B
Type A

▪ Low cost

▪ ~$25 each

▪ Hands-on experiences

▪ develop and test real systems

▪ Rewarding and engaging

▪ immediately enjoy the fruit of labor

▪ Convenient

▪ mobile lab without time and location constrains

▪ Versatile

▪ pins are extended for easy access

▪ Low cost

▪ ~$25 each

▪ Hands-on experiences

▪ develop and test real systems

▪ Rewarding and engaging

▪ immediately enjoy the fruit of labor

▪ Convenient

▪ mobile lab without time and location constrains

▪ Versatile

▪ pins are extended for easy access

Selecting a Platform: Hardware Component

STM32L4 Discovery Kit @STMicroelectronics

JoystickReset
LEDs

9-axis motion sensor

(underneath LCD)

10

Audio Connector Microphone

Audio Codec

Flash

USB OTG

Image from mbed.com

Selecting a Platform: Software Component

▪ Keil uVision Development Tools

But this has not been a problem.

Build

Debug

Breakpoints

Selecting a Platform: Software Component

▪ Keil uVision Development Tools

Monitor or modify

peripheral registers

Students found this very helpful!

Free version limited the

code size to 32 KB. But this

has not been a problem.

STM32Cube

Nice clock tree

visualization

My approach of teaching

1. Using modern platforms and tools

2. Bare-metal programming

3. Structured programming in Assembly

4. Lab-centered learning

5. Online tutorials

Teach at which level?

▪ Visual wizard tools (such as STMCubeMX)

▪ HAL (Hardware Abstraction Layer) libraries

▪ Bare-metal

Hardware

CMSIS-Core

HAL

CubeMX

Applications

Bare-metal: Bypass HAL

and possibly CMSIS-Core

HAL Level
; Initialize the Red LED pin (PB.2)

static GPIO_InitTypeDef GPIO_InitStruct;

GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

GPIO_InitStruct.Pull = GPIO_PULLUP;

GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;

GPIO_InitStruct.Pin = GPIO_PIN_2;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

HAL_GPIO_TogglePin(LED4_GPIO_PORT, LED4_PIN);

void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init){

uint32_t position = 0x00;

uint32_t iocurrent = 0x00;

uint32_t temp = 0x00;

...

}

130

lines

▪ Pros

▪ Simplify implementation

▪ Better portability

▪ Many examples

▪ Cons

▪ Very complex to understand

▪ Cannot meet students’ curiosity

Bare-Metal Level in C
#define LED_PIN 2

// GPIO Mode: Input(00), Output(01), AlterFunc(10), Analog(11, reset)

GPIOB->MODER &= ~(3<<(2*LED_PIN)); // Clear by using mask

GPIOB->MODER |= 1<<(2*LED_PIN); // Set as Output

// GPIO Speed: Low speed (00), Medium speed (01), Fast speed (10), High speed (11)

GPIOB->OSPEEDR &= ~(3<<(2*LED_PIN)); // Clear by using mask

GPIOB->OSPEEDR |= 2<<(2*LED_PIN); // Fast speed

// GPIO Output Type: Output push-pull (0, reset), Output open drain (1)

GPIOB->OTYPER &= ~(1<<LED_PIN); // Push-pull

// GPIO Push-Pull: No pull-up pull-down (00), Pull-up (01), Pull-down (10),

Reserved (11)

GPIOB->PUPDR &= ~(3<<(2*LED_PIN)); // No pull-up, no pull-down

// Toggle up the LED

GPIOB->ODR ^= 1 << LED_PIN;
• Only 6 lines of code

• Focus on directly interfacing with hardware.

• Do not use any libraries!

Bare-Metal Level in Assembly

#define LED_PIN 2

// GPIO Mode: Input(00), Output(01), AlterFunc(10), Analog(11, reset)

GPIOB->MODER &= ~(3<<(2*LED_PIN));

GPIOB->MODER |= 1<<(2*LED_PIN); // Output(01)

LED_PIN EQU 2

LDR r0, =GPIOB_BASE

LDR r1, [r0, #GPIO_MODER]

EOR r1, r1, #(0x03<<(2*LED_PIN))

ORR r1, r1, #(1<<LED_PIN)

STR r1, [r0, #GPIO_MODER]

Set Pin B.2 as GPIO output

C implementation

Assembly implementation

Bare-metal level programming helps learning assembly programming

Translate naturally

My approach of teaching

1. Using modern platforms and tools

2. Bare-metal programming

3. Structured programming in Assembly

4. Lab-centered learning

5. Online tutorials

A Structured Approach in Assembly Programming

▪ Assembly is not a structured programming language

▪ No high-level control constructs to avoid GOTOs (unconditional branches)

▪ Difficulty to learn and program

▪ Prone to create spaghetti codes

▪ My approaches

▪ Using flowcharts

▪ Leveraging C programs

A Structured Approach in Assembly Programming

Methods of teaching structured programming in

assembly

▪ Using flowcharts

▪ Separate program structuring from code writing
a == 1

b = 4

NOYES

ENDIF

b = 3

THEN ELSE

A Structured Approach in Assembly Programming

Initialization:

left = 0

right = size - 1

START

left ≤ right
No

Yes

array[middle] == target

Yes

No

STOP

Target not found

middle = (left + right)/2

array[middle] < target

Yes

right = middle - 1left = middle + 1

No

Target found

Flowchart of Binary Search

Methods of teaching structured programming in

assembly

▪ Using flowcharts

▪ Separate program structuring from code writing

A Structured Approach in Assembly Programming

Configure GPIO Pins (PB.6 for blue LED and PB.7 for green LED)

 1. Configure the pin as alternative function mode (GPIO_MODER)

 2. Set the alternative function as timer (GPIO_AFRL/GPIO_AFRH)

 3. Set the pin as push-pull mode with no pull-up pull-down (GPIO_PUPDR)

Enable Peripheral Clocks via RCC Registers

 1. Enable the clock of GPIO port B

 2. Enable the clock of timer 4

 (PB.6 blue LED = TIM4 CH1, PB.7 green LED = TIM4 CH2)

Configure Timer 4 Channel 1 as PWM Output for dimming blue LED

 1. Set the prescaler value (TIM4_PSC)

 2. Set the auto-reload value (TIM4_ARR) to 200

 3. Set PWM mode 1 or mode 2 on channel 1 for blue LED (TIM4_CCMR1)

 4. Enable output preload for channel 1 (TIM4_CCMR1)

 5. Enable auto-reload preload for channel 1 (TIM4_CR1)

 6. Enable output for channel 1 (TIM4_CCER)

 7. Set output compare register for channel 1 (TIM4_CCR1) to 1

 8. Enable the counter of channel 1 (TIM4_CR1)

YES

Brightness = Brightness + Direction

START

NO

Brightness = 1;

Direction = 1;

Brightness < 200

Brightness > 0

Direction = 0 – Direction

NO

YES

TIM4_CCR1 = Brightness

Time Delay

Diming LED by using timer PWM output

Methods of teaching structured programming in

assembly

▪ Using flowcharts

▪ Separate program structuring from code writing

Using flowcharts in all labs

Configure LCD GPIO Pin as Alternative Functions

1. Enable the clock of GPIO port A, B, and C

2. Configure Port A Pin 1, 2, 3, 8, 9, 10, and 15 as AF 11 (0x0B)

3. Configure Port B Pin 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, and 15 as AF 11 (0x0B)

4. Configure Port C Pin 0, 1, 2, 3, 6, 7, 8, 9, 10, and 11 as AF 11 (0x0B)

LCD Clock Initialization

1. Disable RTC clock protection (RTC and LCD share the same clock). Write

 0xCA and 0x53 to RTC_WRP register to unlock the write protection

2. Enable LSI clock (RCC_CSR)

3. Select LSI as LCD clock source (RCC_CSR RTCSEL field)

4. Enable LCD/RTC clock (RCC_CSR RTCEN field)

LCD Configuration

1. Configure BIAS[1:0] bits of LCD_CR and set the bias to 1/3

2. Configure DUTY[2:0] bits of LCD_CR and set the duty to 1/4

3. Configure CC[2:0] bits of LCD_FCR and set the contrast to max value 111

4. Configure PON[2:0] bits of LCD_FCR and set the pulse on period

 to 111, i.e., 7/ck_ps. A short pulse consumes less power but might not

 provide satisfactory contrast.

5. Enable the mux segment of the LCD_CR

6. Select internal voltage as LCD voltage source

7. Wait until FCRSF flag of LCD_SR is set

8. Enable the LCD by setting LCDEN bit of LCD_CR

9. Wait until the LCD is enabled by checking the ENS bit of LCD_SR

10. Wait until the LCD booster is ready by checking the RDY bit of LCD_SR

Is the LCD_RAM protected?

(If the UDR bit LCD_SR is set,

then RAM is protected.)

YES

Set up the value of LCD_RAM[0], LCD_RAM[2], LCD_RAM[4], LCD_RAM[6]

Set the UDR flag of LCD_SR register to request update display

Is the update done?

(If the UDD bit LCD_SR is set,

then update is done.)

START

NO

NO

YES

STOP

A Structured Approach in Assembly Programming

Methods of teaching structured programming in

assembly

▪ Using flowcharts

▪ Separate program structuring from code writing

▪ Leveraging C programs

▪ Relate an unstructured to a structured

▪ C vs. Assembly line-by-line comparison
C Program Assembly Program

if (a == 1)

b = 3

else

b = 4;

; r1 = a, r2 = b

CMP r1, #1

BNE else

then MOV r2, #3

B endif

else MOV r2, #4

endif

a == 1

b = 4

NOYES

ENDIF

b = 3

THEN ELSE

A Structured Approach in Assembly Programming

Methods of teaching structured programming in

assembly

▪ Using flowcharts

▪ Separate program structuring from code writing

▪ Leveraging C programs

▪ Relate an unstructured to a structured

▪ C vs. Assembly line-by-line comparison

▪ Mixing C and assembly

int main(void) {
...
s = sum(1,2,3,4);
...

}

sum PROC
ADDS r0,r0,r1
...
BX LR
ENDP

C calling assembly functions

int sum(...) {
return a+b+c+d;

}

main PROC
...
BL sum
...
ENDP

Assembly calling C functions

Inline assembly

int sum(...) {

...
}

__asm {
ADD t, a, b;
...

}

Extra benefits: Assembly helps to some difficult C concepts

▪ Structure padding

struct Position {
char x;
char y;
char x;
int time;
short scale;

} array[10]; 0x00

0x00

8 bits

address + 23

address + 22

address + 21

address + 20

address + 19

address + 18

address + 17

address + 16

address + 15

address + 14

address + 13

address + 12

address + 11

address + 10

address + 9

 array[1]

x

y

x

padding

 array[0]

0x00

time

scale

padding

address + 8

address + 7

address + 6

address + 5

address + 4

address + 3

address + 2

address + 1

address

0x00

0x00

x

y

x

padding0x00

time

scale

padding

When assembly access a variable in a C structure, the

address offset has to take padding into consideration

address of array[0].time = array + offset

Extra benefits: Assembly helps to some difficult C concepts

▪ static variables
C Program Assembly Program

int foo(); AREA myData, DATA
ALIGN
// Reserve space for x

x DCD 5

AREA static_demo, CODE
EXPORT __main
ALIGN
ENTRY

int main(void) {
int y;
y = foo(); // y = 6
y = foo(); // y = 7
y = foo(); // y = 8
while(1);

}

__main PROC
BL foo ; r0 = 6
BL foo ; r0 = 7
BL foo ; r0 = 8

stop B stop
ENDP

int foo() {

// local static variable
// x is initialized only

once
static int x = 5;

x = x + 1;
return(x)

}

foo PROC
; load address of x
LDR r1, =x
; load value of x
LDR r0, [r1]
ADD r0, r0, #1
; save value of x
STR r0, [r1]

BX lr
ENDP
END

Extra benefits: Assembly helps to some difficult C concepts

▪ volatile variables

Main Program (main.c) Interrupt Service Routine (isr.s)

volatile unsigned int counter;
extern void task();
extern void SysTick_Init();

int main(void) {
counter = 10;
SysTick_Init();
while(counter != 0); // Delay
// continue the task
...
while(1);

}

AREA ISR, CODE, READONLY
IMPORT counter
ENTRY

SysTick_Handler PROC
EXPORT SysTick_Handler
LDR r1, =counter
LDR r0, [r1] ; load counter
SUB r0, r0, #1 ; counter--
STR r0, [r1] ; save counter
BX LR ; exit
ENDP
END

My approach of teaching

1. Using modern platforms and tools

2. Bare-metal programming

3. Structured programming in Assembly

4. Lab-centered learning

5. Online tutorials

Lab modules

▪ Lower level courses

1. Push button and light up LEDs

2. LCD display driver

3. Interfacing with keypad

4. Stepper motor control

5. SysTick

6. RTC

7. PWM (diming LED, servo motors)

8. Timer input capture (Ultra sonic

distance sensor)

9. ADC (potentiometer, infrared

distance sensing)

10. DAC (music synthesizing)

▪ Higher level courses

1. External Interrupts

2. UART (Bluetooth hc-05,

ESP8266)

3. I2C (temperature sensor,

OLED display)

4. SPI (gyro, accelerometer,

nRF24L01)

5. RGB LED strip (WS2812)

6. ADC

7. CODEC and Mic

8. CRC

Polling,

Interrupt,

DMA

Obstacle

Infrared

transmitter

Infrared

receiver

Partition

Covering both fundamental and advanced topics

Example Lab: Digital Inputs

R1 R2 R3 R4 C1 C2 C3 C4

R1
R2

R3
R4

C1 C2
C3

C4

1 2 3

4 5 6

7 8 9

0 #

R1

R2

R3

R4

C1 C2 C3

*

R1 R2 R3 R4 C1 C2 C3

+3V

Output Port

(Outputs from from

the processor)

Input Port

(Inputs to the

Processor)

PE

10

PE

11

PE

12

PE

13

PA

1

PA

2

PA

3

2.2KΩ

2.2KΩ

2.2KΩ

PE 10

PE 11

PE 12

PE 13

PA 1 PA 2 PA 3

A

B

C

D

C4
PA 5

C4

2.2KΩ

PA

5

Example Lab: Digital Outputs

PB 2

PB 6

PB 3

PB 7

IN 1 OUT 1

IN 2 OUT 2

IN 3 OUT 3

IN 4 OUT 4

IN 5 OUT 5

IN 6 OUT 6

IN 7 OUT 7

IN 8 OUT 8

COMGND

Stepper

Motor2

Orange

Red

Pink

Yellow

Red

Blue

3

4

5

6

1

GND

ULN2803

IN 1

IN 2

IN 3

IN 4

GND

+5V

VCC

ABCD

A

B

B

A

28BYJ-48

A

A

B B

Example Lab: Timer PWM output

20 ms (50 Hz)

~1 ms

1.5 ms

~2 ms

Angular Rotation

-90º

0º

90º

Example Lab:
Ultrasonic Distance Measurement

Trigger

Echo

PE 11

PB.6

5V

GND

Vdd

Timer 4

Channel 1

Timer 1

Channel 2

PSC= 15

ARR =

0xFFFF

1MHz
CNT

CCR2 = 10

HSI

16MHz

PWM

Output

Logic
=

PSC= 15

ARR =

0xFFFF

1MHz
CNT

CCR1

Edge

Detector
Trigger

Timer 1

counts down

Trigger

Proportional to distanceEdge detector triggers logging

the CNT value into CCR1.

0

0xFFFF

Period = 1µs × 2
16

= 0.65s

0.65s

10µs

Echo

Example Lab: ADC

Obstacle

Infrared

transmitter

Infrared

receiver

Partition

PA1

ADC12_IN6

3V

Anode

Cathode

100Ω

3V

2.2KΩ

Collector

Emitter

Start

 Configure GPIO PC.0 as Analog Input

 Note: PC.0 is connected the ADC Channel 10 (PC.0 = ADC_IN10)

 1. Enable the clock of GPIO C

 2. Set PC.0 as Analog Input (GPIO_MODER)

 Analog to Digital Converter 1 (ADC1) Setup

 Note: HSI (16MHz) is always used for ADC on STM32L.

 1. Turn on the ADC clock (RCC_APB2ENR_ADC1EN)

 2. Turn off the ADC conversion (ADC1->CR2)

 3. Set the length of the regular channel sequence to 1 since we only perform ADC in Channel 10.

 (L[4:0] bits of register ADC1->SQR1)

 4. Set Channel 10 as the 1
st
 conversion in regular sequence

 (SQ1[4:0] bits of register ADC1->SQR5)

 5. Configure the sample time register for channel 10 (SMP10[2:0] bits of register ADC1->SMPR2)

 6. Enable End-Of-Conversion interrupt (EOCIE bit of register ADC1->CR1)

 7. Enable continuous conversion mode (CONT bit of register ADC1->CR2)

 8. Configure delay selection as delayed until the converted data have been read

 (DELS[2:0] bits in register ADC1->CR2)

 9. Enable the interrupt of ADC1_IRQn in NVIC

 10. Configure the interrupt priority of ADC1_IRQn

 11. Turn on the ADC conversion (ADON bit of register ADC1->CR2)

 Note: Make sure that we should write to CR2 register before the next step since SWSTART

 cannot be updated if ADC is off.

 12. Start the conversion of the regular channel (ADC_CR2_SWSTART)

 Note: If SWSTART only performs one conversion, then it is very likely that your code did not

 set up the delay correctly in step 8.

Dead Loop

 Configure GPIO PB.6 as output with push-pull for blue LED

 1. Turn on HSI (RCC_CR_HSION)

 2. Wait for it is ready (RCC_CR_HSIRDY).

Lab Components

Pre-Lab

Assignment (10%)

Pre-Lab

Assignment (10%)

In-lab AssignmentIn-lab Assignment

Post-lab

Assignment (5%)

Post-lab

Assignment (5%)

• Check at the beginning

of the lab session

• Graded on completion,

not correctness

• Graded at beginning of

next lab session

• Graded based on

• Documentation

• Correctness

• Something cool (6%)

Hands-on Lab #1

Light up an LED in 100% assembly

Pre-Lab Assignment

My approach of teaching

1. Using modern platforms and tools

2. Bare-metal programming

3. Structured programming in Assembly

4. Lab-centered learning

5. Online tutorials

YouTube Lectures & Tutorials

▪ Short Lectures

1. Why do we use Two's Complement?

2. Carry and Borrow Flag

3. Overflow Flag

4. Pointer

5. Memory Mapped I/O

6. GPIO Output: Lighting up a LED

7. GPIO Input: Interfacing a joystick

▪ Tutorials

1. Create a project in Keil v5

2. Debugging in Keil v5

3. Clock configuration of STM32L4 processors

4. Printing messages via UART through ST-Link V2.1

5. How to fix common errors?

8. Timer: PWM output

9. Interrupt Enable and Interrupt Priority

10. Interrupts

11. External Interrupts (EXTI)

12. System Timer (SysTick)

13. Booting process

14. LCD

15. Race Conditions

One open challenge:
How to get more female students?

▪ Out of 60K subscribers

Summary

1. Using modern platforms and tools

2. Bare-metal programming

3. Structured programming in Assembly

4. Lab-centered learning

5. Online tutorials

For more information

▪ Send email to Yifeng.Zhu@maine.edu for

▪ An exam copy of my book

▪ Complete instructor resources: slides, exams, quizzes, solutions, lab handouts & solutions

▪ My book website: http://web.eece.maine.edu/~zhu/book/

▪ Sample labs, lab kit, FAQ

▪ My YouTube Channel:

https://www.youtube.com/channel/UCY0sQ9hpSR6yZobt1qOv6DA

Thank STMicroelectronics for organizing this workshop!

mailto:Yifeng.Zhu@maine.edu
http://web.eece.maine.edu/~zhu/book/
https://www.youtube.com/channel/UCY0sQ9hpSR6yZobt1qOv6DA

