
ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

1 
 

Lab 1: Interfacing Push-button and LED 

Instructor: Prof. Yifeng Zhu 

Spring 2016 

Goals 
1. Get familiar with the Keil uVision software development environment 

2. Create a C project for STM32L4 discovery kit and program the kit 

3. Learn basics of GPIO input and output configuration 

4. Perform simple digital I/O input (interfacing push button) and output (interfacing LED)  

5. Understand polling I/O (busy waiting) and its inefficiency 

Grading Rubrics (Total = 20 points) 
1. Pre-lab assignment (2 points) 

2. Documentation and Maintainability (5 points) 

3. Functionality and Correctness (5 points) 

4. Lab Demonstration (5 points) 

5. Something cool (3 points) 

NOTE: Do NOT connect the discovery kit into your PC or laptop before installing the software. Windows 
might associate the kit with an incorrect USB device driver. 

Pre-lab assignment 
1. Windows operation system is required. Our development software, Keil uVision, can only run in 

Windows. If your computer runs Linux or Mac OS, you can install virtual machines.   

2. Download free Keil uVision (MDK-Lite Edition) and install it. It is free but limits your data and 

code to 32 KB, which is not an issue for all homework and lab assignments in this course.  

3. Follow the tutorial of setting up Gitlab sever. Set up your public and private keys 

4. Read Textbook Chapter 4.6 to review bitwise operations. 

5. Read Textbook Chapter 14 GPIO. 

Lab assignment 
 Following Book Chapter 14 and implement a C program that toggles both Blue and Green LED 

when the user button is pressed. 

 Do something cool.  

The following gives a few examples but you are not limited to this. Creative ideas are always 

encouraged. 

o Using an oscilloscope to show the voltage output of LED and the voltage signal of the pin 

connected to the pushbutton.  Find out the latency between the button pressed and LED 

lighting up. 

o Using the software logic analyzer provided in MDK-KEIL to analyze the digital input and 

output signals. 

o Using an oscilloscope to show the GPIO output signal difference when the GPIO have 

different output speeds. Using GPIO a LED to send out SOS in Morse code (· · · – – – · · ·) if 

the user button is pressed. DOT, DOT, DOT, DASH, DASH, DASH, DOT, DOT, DOT. DOT is on 

for ¼  second and DASH is on for ½  second, with ¼  second between these light-ons. 



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

2 
 

LEDs on the Board 
There are two LEDs on the STM32L4 discovery board, which are connected to the GPIO Port B Pin 2 
(PB2) and the GPIO Port E Pin 8 (PE8) pin of the STM32L4 processor, respectively.  
 
To light up a LED, software must at least perform the following three operations: 

1. Enable the clock of the corresponding GPIO port. (By default, the clock to all peripherals, including 

GPIO ports, are turned off in order to improve the energy efficiency.) 

2. Set the mode of the corresponding GPIO pin must be set as output,  (By default, the mode of all 

GPIO pin is analog) 

3. Set the output value of the corresponding GPIO pin to 1.  (When the output value is 1, the voltage 

on the GPIO pin is 3V. When the output value is 0, the voltage is 0V.) 

 
 
The joystick (MT-008A) has five keys, including up, down, left, right, and select. Each key has an output 
pin and all of them are connected to a common pin, as shown below. 

 

The joystick is connected to the GPIO pins PA0, PA1, PA5, PA2, and PA3. A capacitor and a resister are 
added for each GPIO pin to perform hardware debouncing.  

 

 
 

 
Note: At ambient temperature, the GPIOs (general purpose input/outputs) can sink or source up to ±8 
mA. 



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

3 
 

 

PIN Connections 
STM32L476VGT6 microcontroller featuring 1 Mbyte of Flash memory, and 128 Kbytes of RAM in 
LQFP100 package (with 100 pins). The onboard peripherals are connected as follow. 

 

Peripheral 
Peripheral’s 

Interface 
Pin Peripheral 

Peripheral’s 
Interface 

Pin 

Joystick 
(MT-008A) 

Center PA0 

LCD 

VLCD  PC3 
Left PA1 COM0  PA8 
Right PA2 COM1   PA9       
Up PA3 COM2   PA10     
Down PA5 COM3   PB9 

User LEDs 
LD4 Red PB2 SEG0  PA7      
LD5 Green PE8 SEG1  PC5      

CS43L22 
Audio DAC 

Stereo   
I2C address 

0x94 
 

SAI1_MCK PE2 SEG2  PB1      
SAI1_FS PE4 SEG3  PB13     
SAI1_SCK PE5 SEG4  PB15     
SAI1_SD PE6 SEG5  PD9      
I2C1_SCL PB6 SEG6   PD11      
I2C1_SDA PB7 SEG7   PD13      
Audio_RST PE3 SEG8   PD15      

MP34DT01 
MEMS MIC 

Audio_DIN PE7 SEG9   PC7       
Audio_CLK PE9    SEG10  PA15      

LSM303C 
eCompass 

MAG_CS    PC0 SEG11  PB4       
MAG_INT   PC1 SEG12  PB5      
MAG_DRDY PC2 SEG13  PC8      
MEMS_SCK   PD1 ( SPI2_SCK) SEG14  PC6      
MEMS_MOSI PD4 ( SPI2_MOSI) SEG15  PD14     
XL_CS   PE0 SEG16  PD12     
XL_INT PE1 SEG17  PD10     

L3GD20  
Gyro 

MEMS_SCK   PD1 ( SPI2_SCK) SEG18  PD8 
MEMS_MOSI PD4 ( SPI2_MOSI) SEG19  PB14 
MEMS_MISO PD3 ( SPI2_MISO) SEG20  PB12 
GYRO_CS    PD7 SEG21  PB0 
GYRO_INT1 PD2 SEG22  PC4 
GYRO_INT2 PB8 SEG23  PA6 

ST-Link V2 

USART_TX PD5 

USB OTG 

OTG_FS_PowerSwitchOn PC9 
USART_RX PD6 OTG_FS_OverCurrent PC10 
SWDIO PA13 OTG_FS_VBUS PC11 
SWCLK PA14 OTG_FS_ID PC12 
SWO PB3 OTG_FS_DM PA11 
3V3_REG_ON PB3 OTG_FS_DP PA12 

Quad SPI 
Flash 

Memory 

QSPI_CLK PE10(QUADSPI_CLK) 

Clock 

OSC32_IN PC14 
QSPI_CS PE11(QUADSPI_NCS) OSC32_OUT PC15 
QSPI_D0 PE12(QUADSPI_BK1_IO0) OSC_IN PH0 
QSPI_D1 PE13(QUADSPI_BK1_IO1) OSC_OUT PH1 
QSPI_D2 PE14(QUADSPI_BK1_IO2)    
QSPI_D3 PE15(QUADSPI_BK1_IO3)    



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

4 
 

Clock Configuration 
There are two major types of clocks: system clock and peripheral clock. 
 
System Clock 
In order to meet the requirement of performance and energy-efficiency for different applications, the 

processor core can be driven by four different clock sources, including , HSI (high-speed internal) 
oscillator clock,  HSE (high-speed external) oscillator clock,  PLL clock, and MSI (multispeed internal) 

oscillator clock.  A faster clock provides better performance but usually consumes more power, 
which is not appropriate for battery-powered systems.  
 
Peripheral Clock 
All peripherals require to be clocked to function. However, clocks of all peripherals are turned off by 
default in order to reduce power consumption.  
 

The following figure shows the clock tree of STM32L476VGT6, the processor used in the STM32L4 
Discovery kit.  The clock sources in the domain of Advanced High-performance Bus (AHB), low-speed 
Advanced Peripheral Bus 1 (APB1) and high-speed Advanced Peripheral Bus 2 (APB2) can be switched 
on or off independently when it is not used.  Software can select various clock sources and scaling factors 
to achieve desired clock speed, depending on the application’s needs.  
 
The software provided in this lab uses the 16MHz HSI as the input to the PLL clock. Appropriate scaling 
factors have been selected to achieve the maximum allowed clock speed (80 MHz). See the function void 
System_Clock_Init() for details. 
 
void System_Clock_Init(void){ 
   ... 
   
  // Enable the Internal High Speed oscillator (HSI) 
  RCC->CR |= RCC_CR_HSION; 
  while((RCC->CR & RCC_CR_HSIRDY) == 0); 
 
  RCC->CR    &= ~RCC_CR_PLLON;  
  while((RCC->CR & RCC_CR_PLLRDY) == RCC_CR_PLLRDY); 
  
  // Select clock source to PLL 
  RCC->PLLCFGR &= ~RCC_PLLCFGR_PLLSRC; 
  RCC->PLLCFGR |= RCC_PLLCFGR_PLLSRC_HSI; // 00 = No clock, 01 = MSI, 10 = HSI, 11 = HSE 
  
  // Make PLL as 80 MHz 
  // f(VCO clock) = f(PLL clock input) * (PLLN / PLLM) = 16MHz * 20/2 = 160 MHz 
  // f(PLL_R) = f(VCO clock) / PLLR = 160MHz/2 = 80MHz 
  RCC->PLLCFGR = (RCC->PLLCFGR & ~RCC_PLLCFGR_PLLN) | 20U << 8; 
  RCC->PLLCFGR = (RCC->PLLCFGR & ~RCC_PLLCFGR_PLLM) | 1U << 4;  
  RCC->PLLCFGR &= ~RCC_PLLCFGR_PLLR;  // 00: PLLR = 2, 01: PLLR = 4, 10: PLLR = 6, 11: PLLR = 8 
  RCC->PLLCFGR |= RCC_PLLCFGR_PLLREN; // Enable Main PLL PLLCLK output  
  RCC->CR   |= RCC_CR_PLLON;  
  while((RCC->CR & RCC_CR_PLLRDY) == 0); 
  
  // Select PLL selected as system clock 
  RCC->CFGR &= ~RCC_CFGR_SW; 
  RCC->CFGR |= RCC_CFGR_SW_PLL; // 00: MSI, 01:HSI, 10: HSE, 11: PLL 
  
  // Wait until System Clock has been selected 
  while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL); 



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

5 
 

MSIRANGE[3:0] in RCC_CR:

0000: 100 kHz    0110: 4 MHz (reset value)

0001: 200 kHz    0111: 8 MHz

0010: 400 kHz    1000: 16 MHz

0011: 800 kHz    1001: 24 MHz

0100: 1M Hz       1010: 32 MHz

0101: 2 MHz       1011: 48 MHz

MCOPRE[2:0] 

in RCC_CFGR

MCOSEL[2:0] 

in RCC_CFGR

SW[1:0] in 

RCC_CFGR

00

01

11

10
HPRE[3:0] in 

RCC_CFGR

PPRE1[2:0] in 

RCC_CFGR

PPRE2[2:0] in 

RCC_CFGR

RCC_PLLCFGR

RCC_PLLSAI1CFGR

RCC_PLLSAI2CFGR

SAI = Serial Audio Interface

Figure modified from STM32L476xx Datasheet

PLLSRC[1:0] in 

RCC_PLLCFGR

01

10
11

PLLM = 2

PLLN = 20 8MHz

PLLR = 2

160MHz

80MHz

8MHz

8MHz

PLLSAI1N = 24

PLLSAI1P = 17

192MHz

11.2941 MHz

11.2941 MHz

80MHz

80MHz

ADCSEL[1:0] in RCC_CCIPR

SAI1SEL[1:0] in RCC_CCIPR

SAI2SEL[1:0] in RCC_CCIPR

11

01
10

CLK48SEL[1:0] in 

RCC_CCIPR

11

10
01

10

00
01

11

10

00
01

11

Connected 

to 32.768 

KHz 

external 

crystal 

oscillator

Not 

populated  

on the kit

Should be /1, 8



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

6 
 

  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or 
without pull-up or pull-down) or as peripheral alternate function. In this lab, we will configure PB2 and 
PE8 as push-pull output.  

Each general-purpose I/O port x (x = A, B, C, …, H) has  

 four 32-bit configuration registers 

o GPIOx_MODER (mode register) 

o GPIOx_OTYPER  (output type register) 

o GPIOx_OSPEEDR (output speed register)  

o GPIOx_PUPDR (pull-up/pull-down register) 

 two 32-bit data registers 

o GPIOx_IDR (input data register) 

o GPIOx_ODR (output data register) 

 a 32-bit set/reset register (GPIOx_BSRR).  

 a 32-bit locking register (GPIOx_LCKR)  

 two 32-bit alternate function selection registers  

o GPIOx_AFRH (alternative function high register) 

o GPIOx_AFRL (alternative function low register) 



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

7 
 

MODE

00: Input 

01: General purpose output mode

10: Alternate function mode

11: Analog mode (Default)

OTYPE

0: Output push-pull (Default)

1: Output open-drain

OSPEED

00: Very low speed

01: Low speed

10: High speed

11: Very high speed

PUPDIR

00: No pull-up, pull-down (Default)

01: Pull-up

10: Pull-down

11: Reserved

IDR

ODR

BSRR

BSRR allows to set 

and reset each 

individual bit in ODR.

(atomic bitwise 

handling)

Write 1 to BSRR(i):  set ODR(i)

Write 1 to BSRR(i+SIZE): reset ODR(i)

Write 0 to BSRR has no effect on ODR

Open drain: A “0” output 

activates N-MOS whereas a “1” 

output leaves the port in Hi-Z 

(P-MOS is never activated)

Push-pull: A “0” output register 

activates N-MOS whereas a “1” 

output activates P-MOS

                 High, if Input > a high threshold

Output =  Low,  if Input < a lower threshold

                 Unchanged, otherwise

The data present on the I/O 

pin are sampled into IDR 

every AHB clock cycle.

 
 

Code Comments and Documentation 

Program comments are used to improve code readability, and to assist in debugging and maintenance.  A 
general principal is “Structure and document your program the way you wish other programmers would” 
(McCann, 1997).   

The book titled “The Elements of Programming Style” by Brian Kernighan and P. J. Plauger gives good 
advices for beginners.  

1. Format your code well. Make sure it's easy to read and understand. Comment where needed but 

don't comment obvious things it makes the code harder to read. If editing someone else's code, 

format consistently with the original author. 

2. Every program you write that you intend to keep around for more than a couple of hours ought to 

have documentation in it. Don't talk yourself into putting off the documentation. A program that is    

perfectly clear today is clear only because you just wrote it. Put it away for a few months, and it 

will most likely take you a while to figure out what it does and how it does it. If it takes you a    

while to figure it out, how long would it take someone else to figure it out? 



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

8 
 

3. Write Clearly - don't be too clever - don't sacrifice clarity for efficiency. 

4. Don’t over comment. Use comments only when necessary. 

5. Format a program to help the reader understand it. Always Beautify Code. 

6. Say what you mean, simply and directly. 

7. Don't patch bad code - rewrite it. 

8. Make sure comments and code agree. 

9. Don't just echo code in comments - make every comment meaningful. 

10. Don't comment bad code - rewite it.  

11. The single most important factor in style is consistency. The eye is drawn to something that 

"doesn't fit," and these should be reserved for things that are actually different. 

  



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

9 
 

Comparison between STM32L1 (used by book) and STM32L4 (used in our 
lab) 
The book was based on STM32L1 board but we are using STM32L4 board this semester. They 
are slightly different. The following table compares the RCC clock setting and GPIO. 
 
 STM32L1 STM32L4 
Core Cortex-M3 @ 32MHz Cortex-M4 @ 80MHz with FPU and DSP 

MSI 
64 kHz, 128 kHz, 256 kHz, 512 kHz, 1.02 
MHz, 2.05 MHz (default value), 4.1 MHz 

100 kHz, 200 kHz, 400 kHz, 800 kHz, 1 MHz, 2 
MHz, 4 MHz (default value), 8 MHz, 16 MHz, 
24 MHz, 32 MHz and 48 MHz 

LSI 37 kHz 32 kHz RC 

RCC 

RCC_AHBENR RCC_AHB1ENR (AHB1)  
RCC_AHB2ENR (AHB2)  
RCC_AHB3ENR (AHB3)  

RCC_AHBLPENR 
(LP = Low Power) 

RCC_AHB1SMENR (AHB1) 
RCC_AHB2SMENR (AHB2) 
RCC_AHB3SMENR (AHB3) 
(SM = Sleep Mode) 

RCC_APB1ENR 
 

RCC_APB1ENR1 
RCC_APB1ENR2 

RCC_APB1LPENR 
(LP = Low Power) 

RCC_APB1SMENR1 
RCC_APB1SMENR2 
(SM = Sleep Mode) 

RCC_APB2ENR RCC_APB2ENR 
RCC_APB2LPENR 
(LP = Low Power) 

RCC_APB2SMENR 
(SM = Sleep Mode) 

GPIO Default mode is Digital Input Default mode is Analog 
Alternative functions are different. 
 

AF0 SYSTEM 
AF1 TIM2 
AF2 TIM3/TIM4/TIM5 
AF3 TIM9/TIM10/TIM11 
AF4 I2C1/I2C2 
AF5 SPI1/SPI2 
AF6 SPI3 
AF7 USART1/ USART2/ USART3 
AF8 UART4/UART5 
AF9  
AF10 USB 
AF11 LCD 
AF12       FSMC 
AF13  
AF14 RI 
AF15 EVENTOUT 

Alternative functions are different.  
 

AF0 SYSTEM 
AF1 TIM1/TIM2/TIM5/TIM8/LPTIM1 
AF2 TIM1/TIM2/TIM3/TIM4/TIM5 
AF3 TIM8 
AF4 I2C1/I2C2/I2C3 
AF5 SPI1/SPI2 
AF6 SPI3/DFSDM 
AF7 USART1/USART2/ USART3 
AF8 UART4/UART5/LPUART1 
AF9 CAN1/TSC 
AF10 OTG_FS/QUADSPI 
AF11 LCD 
AF12   SDMMC1/COMP1/COMP2/FMC/SWPMI1 
AF13 SAI1/SAI2 
AF14 TIM2/TIM15/TIM16/TIM17/LPTIM2 
AF15 EVENTOUT 

 Add a new register GPIO_ASCR (Analog 
Switch Control Register) 
 
0: Disconnect analog switch to the ADC input  



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

10 
 

1: Connect analog switch to the ADC input 
 
typedef struct { 
  __IO uint32_t MODER; 
  __IO uint32_t OTYPER; 
  __IO uint32_t OSPEEDR; 
  __IO uint32_t PUPDR; 
  __IO uint32_t IDR; 
  __IO uint32_t ODR; 
  __IO uint32_t BSRR; 
  __IO uint32_t LCKR;  
  __IO uint32_t AFR[2];     
  __IO uint32_t BRR;  
  __IO uint32_t ASCR;    
} GPIO_TypeDef; 
 

For example, to use PA.2 as analog input: 
GPIOA->ASCR |= 1U<<2; 

 

 
  



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

11 
 

Lab 1: Pre-Lab Assignment (2 points) 
Spring 2016 

Student Name: _______________________________ 
TA: ___________________________________ 
Time & Date: ________________________ 

 
1. Enable the clock of GPIO Port A (for joy stick ), Port B (for Red LED) and Port E (for Green LED) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 

2
2

 

2
1

 

2
0

 

1
9

 

1
8

 

1
7

 

1
6

 

1
5

 

1
4

 

1
3

 

1
2

 

1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

AHB2ENR              

R
N

G
E

N
 

 

A
E

S
E

N
 

  

A
D

C
E

N
 

O
T

G
F

S
E

N
 

    

G
P

IO
P

H
E

N
 

G
P

IO
P

G
E

N
 

G
P

IO
P

F
E

N
 

G
P

IO
P

E
E

N
 

G
P

IO
P

D
E

N
 

G
P

IO
P

C
E

N
 

G
P

IO
P

B
E

N
 

G
P

IO
P

A
E

N
 

Mask                                 

Value                                 

 
 
     Note: Why do we need the mask?  

When we toggle, set, or reset specific bits of a word (4 bytes), we have to keep the other 
bits of the word unchanged.  For example, we want to set bit 2 of the variable aWord, the 
following code is incorrect because it resets all the other bits in this word. 

aWord = 4; 
      The correct approach is: 

aWord |= 4; 
 

Typically we use mask to facilitate the operations of toggling, setting or resetting a group 
of bits in a variable. 
 

Mask = 0x8004; 
aWord |= Mask;    // Set bit 15 and bit 2 
aWord &= ~Mask;   // Reset bit 15 and bit 2 
aWord ^= Mask;    // Toggle bit 15 and bit 2 
 

 
  



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

12 
 

 
2. Pin Initialization for Red LED (PB 2) 

 

a. Configure PB 2 as Output 

GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 
2
2

 

2
1

 

2
0

 

1
9

 

1
8

 

1
7

 

1
6

 

1
5

 
1
4

 

1
3

 

1
2

 

1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

 
MODER 

M
O

D
E

R
1

5
[1

:0
] 

M
O

D
E

R
1

4
[1

:0
] 

M
O

D
E

R
1

3
[1

:0
] 

M
O

D
E

R
1

2
[1

:0
] 

M
O

D
E

R
1

1
[1

:0
] 

M
O

D
E

R
1

0
[1

:0
] 

M
O

D
E

R
9
[1

:0
] 

M
O

D
E

R
8
[1

:0
] 

M
O

D
E

R
7
[1

:0
] 

M
O

D
E

R
6
[1

:0
] 

M
O

D
E

R
5
[1

:0
] 

M
O

D
E

R
4
[1

:0
] 

M
O

D
E

R
3
[1

:0
] 

M
O

D
E

R
2
[1

:0
] 

M
O

D
E

R
1
[1

:0
] 

M
O

D
E

R
0
[1

:0
] 

Mask 
                                

Value 
                                

 

     GPIOB Mode Register MASK Value = 0x_____________________________________  (in HEX) 

 GPIOB Mode Register Value = 0x_____________________________________  (in HEX) 

 
b. Configure PB 2 Output Type as Push-Pull 

Push-Pull (0, reset), Open-Drain (1) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 

2
2

 

2
1

 

2
0

 

1
9

 

1
8

 

1
7

 

1
6

 

1
5

 

1
4

 

1
3

 

1
2

 

1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

OTYPER 

 
Reserved 

O
T

1
5

 

O
T

1
4

 

O
T

1
3

 

O
T

1
2

 

O
T

1
1

 

O
T

1
0

 

O
T

9
 

O
T

8
 

O
T

7
 

O
T

6
 

O
T

5
 

O
T

4
 

O
T

3
 

O
T

2
 

O
T

1
 

O
T

0
 

Mask 
                

Value 
                

    
GPIOB Output Type Register MASK Value = 0x_____________________________________  (in HEX)  

GPIOB Output Type Register Value = 0x_____________________________________  (in HEX) 

 

c. Configure PB 2 Output Type as No Pull-up No Pull-down 

NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 
2
2

 

2
1

 

2
0

 

1
9

 
1
8

 

1
7

 

1
6

 

1
5

 
1
4

 

1
3

 

1
2

 
1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

PUPDR 

P
U

P
D

R
1

5
[1

:0
] 

P
U

P
D

R
1

4
[1

:0
] 

P
U

P
D

R
1

3
[1

:0
] 

P
U

P
D

R
1

2
[1

:0
] 

P
U

P
D

R
1

1
[1

:0
] 

P
U

P
D

R
1

0
[1

:0
] 

P
U

P
D

R
9
[1

:0
] 

P
U

P
D

R
8
[1

:0
] 

P
U

P
D

R
7
[1

:0
] 

P
U

P
D

R
6
[1

:0
] 

P
U

P
D

R
5
[1

:0
] 

P
U

P
D

R
4
[1

:0
] 

P
U

P
D

R
3
[1

:0
] 

P
U

P
D

R
2
[1

:0
] 

P
U

P
D

R
1
[1

:0
] 

P
U

P
D

R
0
[1

:0
] 

Mask 
                                

Value 
                                

 

GPIOB Pull-up Pull-down Register MASK Value = 0x_____________________________________  (in HEX)  

GPIOB Pull-up Pull-down Register Value = 0x_____________________________________  (in HEX) 

 



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

13 
 

3. Pin Initialization for Green LED (PE 8) 
 

a. Configure PE 8 as Output 

GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 
2
2

 

2
1

 

2
0

 

1
9

 

1
8

 

1
7

 

1
6

 

1
5

 
1
4

 

1
3

 

1
2

 

1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

 
MODER 

M
O

D
E

R
1

5
[1

:0
] 

M
O

D
E

R
1

4
[1

:0
] 

M
O

D
E

R
1

3
[1

:0
] 

M
O

D
E

R
1

2
[1

:0
] 

M
O

D
E

R
1

1
[1

:0
] 

M
O

D
E

R
1

0
[1

:0
] 

M
O

D
E

R
9
[1

:0
] 

M
O

D
E

R
8
[1

:0
] 

M
O

D
E

R
7
[1

:0
] 

M
O

D
E

R
6
[1

:0
] 

M
O

D
E

R
5
[1

:0
] 

M
O

D
E

R
4
[1

:0
] 

M
O

D
E

R
3
[1

:0
] 

M
O

D
E

R
2
[1

:0
] 

M
O

D
E

R
1
[1

:0
] 

M
O

D
E

R
0
[1

:0
] 

Mask 
                                

Value 
                                

 

     GPIOE Mode Register MASK Value = 0x_____________________________________  (in HEX) 

 GPIOE Mode Register Value = 0x_____________________________________  (in HEX) 

 
b. Configure PE 8 Output Type as Push-Pull 

Push-Pull (0, reset), Open-Drain (1) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 

2
2

 

2
1

 

2
0

 

1
9

 

1
8

 

1
7

 

1
6

 

1
5

 

1
4

 

1
3

 

1
2

 

1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

OTYPER 

 
Reserved 

O
T

1
5

 

O
T

1
4

 

O
T

1
3

 

O
T

1
2

 

O
T

1
1

 

O
T

1
0

 

O
T

9
 

O
T

8
 

O
T

7
 

O
T

6
 

O
T

5
 

O
T

4
 

O
T

3
 

O
T

2
 

O
T

1
 

O
T

0
 

Mask 
                

Value 
                

    
GPIOE Output Type Register MASK Value = 0x_____________________________________  (in HEX)  

GPIOE Output Type Register Value = 0x_____________________________________  (in HEX) 

 

c. Configure PE 8 Output Type as No Pull-up No Pull-down 

NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 
2
2

 

2
1

 

2
0

 

1
9

 
1
8

 

1
7

 

1
6

 

1
5

 
1
4

 

1
3

 

1
2

 
1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

PUPDR 

P
U

P
D

R
1

5
[1

:0
] 

P
U

P
D

R
1

4
[1

:0
] 

P
U

P
D

R
1

3
[1

:0
] 

P
U

P
D

R
1

2
[1

:0
] 

P
U

P
D

R
1

1
[1

:0
] 

P
U

P
D

R
1

0
[1

:0
] 

P
U

P
D

R
9
[1

:0
] 

P
U

P
D

R
8
[1

:0
] 

P
U

P
D

R
7
[1

:0
] 

P
U

P
D

R
6
[1

:0
] 

P
U

P
D

R
5
[1

:0
] 

P
U

P
D

R
4
[1

:0
] 

P
U

P
D

R
3
[1

:0
] 

P
U

P
D

R
2
[1

:0
] 

P
U

P
D

R
1
[1

:0
] 

P
U

P
D

R
0
[1

:0
] 

Mask 
                                

Value 
                                

 

GPIOE Pull-up Pull-down Register MASK Value = 0x_____________________________________  (in HEX)  

GPIOE Pull-up Pull-down Register Value = 0x_____________________________________  (in HEX) 

  



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

14 
 

 
4. Pin Initialization for Joy Stick  

 

a. Configure PA0 (Center), PA1 (Left), PA2 (Right), PA3 (Up), and  PA5 (Down) as Input 

GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 
2
2

 

2
1

 

2
0

 

1
9

 

1
8

 

1
7

 

1
6

 

1
5

 
1
4

 

1
3

 

1
2

 

1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

 
MODER 

M
O

D
E

R
1

5
[1

:0
] 

M
O

D
E

R
1

4
[1

:0
] 

M
O

D
E

R
1

3
[1

:0
] 

M
O

D
E

R
1

2
[1

:0
] 

M
O

D
E

R
1

1
[1

:0
] 

M
O

D
E

R
1

0
[1

:0
] 

M
O

D
E

R
9
[1

:0
] 

M
O

D
E

R
8
[1

:0
] 

M
O

D
E

R
7
[1

:0
] 

M
O

D
E

R
6
[1

:0
] 

M
O

D
E

R
5
[1

:0
] 

M
O

D
E

R
4
[1

:0
] 

M
O

D
E

R
3
[1

:0
] 

M
O

D
E

R
2
[1

:0
] 

M
O

D
E

R
1
[1

:0
] 

M
O

D
E

R
0
[1

:0
] 

Mask 
                                

Value 
                                

 

      GPIOA Mode Register MASK Value = 0x_____________________________________  (in HEX) 

  GPIOA Mode Register Value = 0x_____________________________________  (in HEX) 

 
 

b. Configure PA0 (Center), PA1 (Left), PA2 (Right), PA3 (Up), and  PA5 (Down) as Pull-

down 

NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11) 

Register 3
1

 

3
0

 

2
9

 

2
8

 

2
7

 

2
6

 

2
5

 

2
4

 

2
3

 
2
2

 

2
1

 

2
0

 

1
9

 
1
8

 

1
7

 

1
6

 

1
5

 
1
4

 

1
3

 

1
2

 
1
1

 

1
0

 

9
 

8
 

7
 

6
 

5
 

4
 

3
 

2
 

1
 

0
 

PUPDR 

P
U

P
D

R
1

5
[1

:0
] 

P
U

P
D

R
1

4
[1

:0
] 

P
U

P
D

R
1

3
[1

:0
] 

P
U

P
D

R
1

2
[1

:0
] 

P
U

P
D

R
1

1
[1

:0
] 

P
U

P
D

R
1

0
[1

:0
] 

P
U

P
D

R
9
[1

:0
] 

P
U

P
D

R
8
[1

:0
] 

P
U

P
D

R
7
[1

:0
] 

P
U

P
D

R
6
[1

:0
] 

P
U

P
D

R
5
[1

:0
] 

P
U

P
D

R
4
[1

:0
] 

P
U

P
D

R
3
[1

:0
] 

P
U

P
D

R
2
[1

:0
] 

P
U

P
D

R
1
[1

:0
] 

P
U

P
D

R
0
[1

:0
] 

Mask 
                                

Value 
                                

 

GPIOE Pull-up Pull-down Register MASK Value = 0x_____________________________________  (in HEX)  

GPIOE Pull-up Pull-down Register Value = 0x_____________________________________  (in HEX) 

 
 

  



ECE 271 Microcomputer Architecture and Applications________________________________________University of Maine 

15 
 

 

Lab 1: Lab Demo 
You should be able to correctly answer the following questions to TAs. 

1. Why did we configure the pins that drive the LEDs (PB 2 and PE 8) as push-pull instead of open-drain? 

2. What is GPIO speed? What is the default speed? Did you notice any difference of you choose different 

speeds in this lab assignment? 

3. Show TA that you can toggle a LED in the debug environment by directly changing the value of the 

Output Data Register (ODR) of a GPIO port. 

Lab 1: Lab Code Submission 
1. Submit and maintain your code in gitlab server 

2. Make sure to comment your codes appropriately 

3. Make sure to complete the Readme.Md file 

Lab 1: Post-Lab Assignment (1 point) 
1. The joy stick on the STM32L4 board has a hardware debouncing circuit.  The following is one example 

debouncing circuit. Explain briefly how the hardware debouncing circuit works. Find out a typical 

solution for software debouncing. 

PA0

Vdd

Push 

Button

10KΩ

330Ω

100nF

 
 

 Place your answer to this question in the file Readme.md  

 Submit it to the Gitlab Server.  

 If you have figures/images, you can put your answer in a word document, and put a note in 

Readme.md. Make sure to perform “git add” to the word document. 


