ECE 271 Microcomputer Architecture and Applications

Lab 1: Interfacing Push-button and LED Instructor: Prof. Yifeng Zhu Spring 2016

Goals

- 1. Get familiar with the Keil uVision software development environment
- 2. Create a C project for STM32L4 discovery kit and program the kit
- 3. Learn basics of GPIO input and output configuration
- 4. Perform simple digital I/O input (interfacing push button) and output (interfacing LED)
- 5. Understand polling I/O (busy waiting) and its inefficiency

Grading Rubrics (Total = 20 points)

- 1. Pre-lab assignment (2 points)
- 2. Documentation and Maintainability (5 points)
- 3. Functionality and Correctness (5 points)
- 4. Lab Demonstration (5 points)
- 5. Something cool (3 points)

NOTE: Do <u>NOT</u> connect the discovery kit into your PC or laptop before installing the software. Windows might associate the kit with an incorrect USB device driver.

Pre-lab assignment

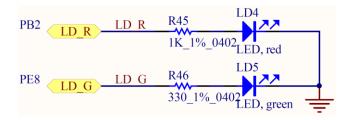
- 1. **Windows** operation system is required. Our development software, Keil uVision, can only run in Windows. If your computer runs Linux or Mac OS, you can install virtual machines.
- 2. Download free **Keil uVision** (MDK-Lite Edition) and install it. It is free but limits your data and code to 32 KB, which is not an issue for all homework and lab assignments in this course.
- 3. Follow the tutorial of setting up Gitlab sever. Set up your public and private keys
- 4. Read Textbook **Chapter 4.6** to review bitwise operations.
- 5. Read Textbook **Chapter 14 GPIO.**

Lab assignment

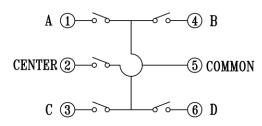
- Following Book Chapter 14 and implement a C program that toggles both Blue and Green LED when the user button is pressed.
- Do something cool.

The following gives a few examples but you are not limited to this. *Creative ideas are always encouraged.*

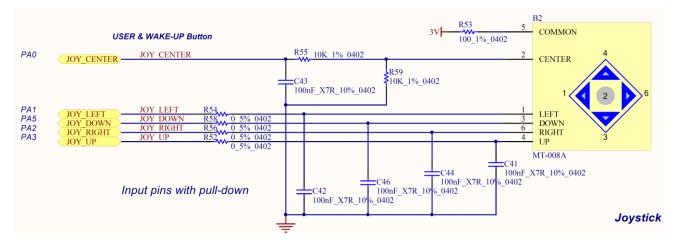
- Using an oscilloscope to show the voltage output of LED and the voltage signal of the pin connected to the pushbutton. Find out the latency between the button pressed and LED lighting up.
- Using the software logic analyzer provided in MDK-KEIL to analyze the digital input and output signals.
- Using an oscilloscope to show the GPIO output signal difference when the GPIO have different output speeds. Using GPIO a LED to send out SOS in Morse code (··· – ···) if the user button is pressed. DOT, DOT, DOT, DASH, DASH, DASH, DOT, DOT, DOT, DOT is on for ¼ second and DASH is on for ½ second, with ¼ second between these light-ons.


ECE 271 Microcomputer Architecture and Applications

LEDs on the Board


There are two LEDs on the STM32L4 discovery board, which are connected to the GPIO Port B Pin 2 (*PB2*) and the GPIO Port E Pin 8 (*PE8*) pin of the STM32L4 processor, respectively.

To light up a LED, software must at least perform the following three operations:


- 1. Enable the clock of the corresponding GPIO port. (By default, the clock to all peripherals, including GPIO ports, are turned off in order to improve the energy efficiency.)
- 2. Set the *mode* of the corresponding GPIO pin must be set as *output*, (By default, the mode of all GPIO pin is **analog**)
- 3. Set the output *value* of the corresponding GPIO pin to *1*. (When the output value is 1, the voltage on the GPIO pin is 3V. When the output value is 0, the voltage is 0V.)

The joystick (MT-008A) has five keys, including *up*, *down*, *left*, *right*, and *select*. Each key has an output pin and all of them are connected to a common pin, as shown below.

The joystick is connected to the GPIO pins PAO, PA1, PA5, PA2, and PA3. A capacitor and a resister are added for each GPIO pin to perform *hardware debouncing*.

Note: At ambient temperature, the GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA.

PIN Connections

STM32L476VGT6 microcontroller featuring 1 Mbyte of Flash memory, and 128 Kbytes of RAM in LQFP100 package (with 100 pins). The onboard peripherals are connected as follow.

Peripheral	Peripheral's Interface	Pin	Peripheral	Peripheral's Interface	Pin
	Center	PA0		VLCD	PC3
T 1	Left	PA1		СОМО	PA8
Joystick	Right	PA2		COM1	PA9
(MT-008A)	Up	PA3		COM2	PA10
	Down	PA5		СОМ3	PB9
User LEDs	LD4 Red	PB2		SEG0	PA7
USEI LEDS	LD5 Green	PE8		SEG1	PC5
6642122	SAI1_MCK	PE2		SEG2	PB1
CS43L22	SAI1_FS	PE4		SEG3	PB13
Audio DAC	SAI1_SCK	PE5		SEG4	PB15
Stereo I2C address	SAI1_SD	PE6		SEG5	PD9
0x94	I2C1_SCL	PB6		SEG6	PD11
0.004	I2C1_SDA	PB7		SEG7	PD13
	Audio_RST	PE3		SEG8	PD15
MP34DT01	Audio_DIN	PE7	LCD	SEG9	PC7
MEMS MIC	Audio_CLK	PE9		SEG10	PA15
	MAG_CS	PC0		SEG11	PB4
	MAG_INT	PC1		SEG12	PB5
1010000	MAG_DRDY	PC2		SEG13	PC8
LSM303C	MEMS_SCK	PD1 (SPI2_SCK)		SEG14	PC6
eCompass	MEMS_MOSI	PD4 (SPI2_MOSI)		SEG15	PD14
	XL_CS	PE0		SEG16	PD12
	XL_INT	PE1		SEG17	PD10
	MEMS_SCK	PD1 (SPI2_SCK)		SEG18	PD8
	MEMS_MOSI	PD4 (SPI2_MOSI)		SEG19	PB14
L3GD20	MEMS_MISO	PD3 (SPI2_MISO)		SEG20	PB12
Gyro	GYRO_CS	PD7		SEG21	PB0
-	GYRO_INT1	PD2		SEG22	PC4
	GYRO_INT2	PB8		SEG23	PA6
	USART_TX	PD5		OTG_FS_PowerSwitchOn	PC9
	USART_RX	PD6		OTG_FS_OverCurrent	PC10
CT Link V2	SWDIO	PA13	USB OTG	OTG_FS_VBUS	PC11
ST-Link V2	SWCLK	PA14	028.016	OTG_FS_ID	PC12
	SWO	PB3		OTG_FS_DM	PA11
	3V3_REG_ON	PB3		OTG_FS_DP	PA12
	QSPI_CLK	PE10(QUADSPI_CLK)		OSC32_IN	PC14
	QSPI_CS	PE11(QUADSPI_NCS)	Clear	OSC32_OUT	PC15
Quad SPI	QSPI_D0	PE12(QUADSPI_BK1_IO0)	Clock	OSC_IN	PH0
Flash	QSPI_D1	PE13(QUADSPI_BK1_IO1)		OSC_OUT	PH1
Memory	QSPI_D2	PE14(QUADSPI_BK1_IO2)			
	QSPI_D3	PE15(QUADSPI_BK1_IO3)			

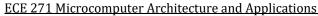
Clock Configuration

There are two major types of clocks: **system clock** and **peripheral clock**.

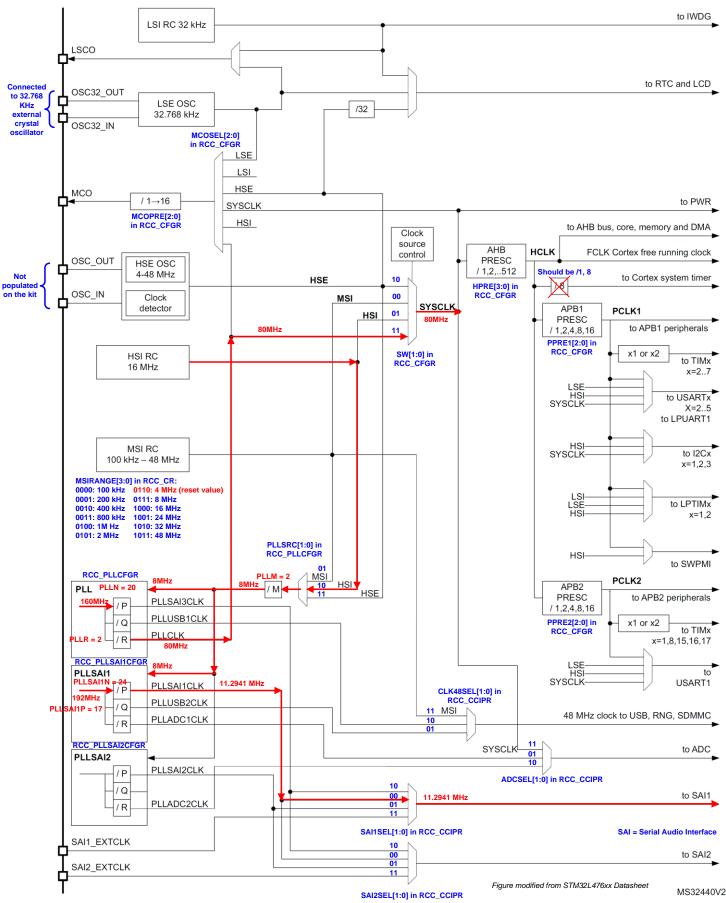
System Clock

In order to meet the requirement of performance and energy-efficiency for different applications, the processor core can be driven by four different clock sources, including, *HSI* (high-speed internal) oscillator clock, *HSE* (high-speed external) oscillator clock, *PLL* clock, and *MSI* (multispeed internal) oscillator clock. A faster clock provides better performance but usually consumes more power, which is not appropriate for battery-powered systems.

Peripheral Clock

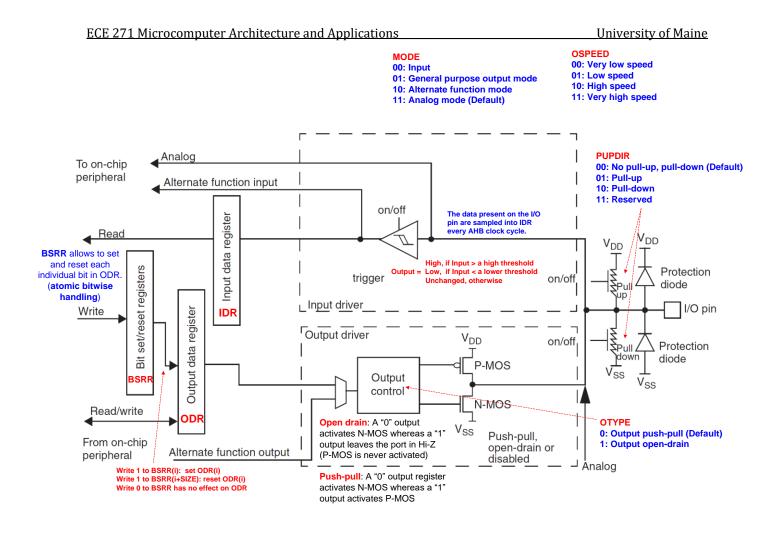

All peripherals require to be clocked to function. However, *clocks of all peripherals are turned off by default in order to reduce power consumption*.

The following figure shows the clock tree of *STM32L476VGT6*, the processor used in the STM32L4 Discovery kit. The clock sources in the domain of Advanced High-performance Bus (*AHB*), low-speed Advanced Peripheral Bus 1 (*APB1*) and high-speed Advanced Peripheral Bus 2 (*APB2*) can be switched on or off independently when it is not used. Software can select various clock sources and scaling factors to achieve desired clock speed, depending on the application's needs.


The software provided in this lab uses the 16MHz HSI as the input to the PLL clock. Appropriate scaling factors have been selected to achieve the maximum allowed clock speed (80 MHz). See the function void **System_Clock_Init()** for details.

```
void System_Clock_Init(void){
    ...
```

```
// Enable the Internal High Speed oscillator (HSI)
RCC->CR |= RCC CR HSION;
while((RCC->CR & RCC CR HSIRDY) == 0);
RCC->CR
           &= ~RCC CR PLLON;
while((RCC->CR & RCC_CR_PLLRDY) == RCC_CR_PLLRDY);
// Select clock source to PLL
RCC->PLLCFGR &= ~RCC PLLCFGR PLLSRC;
RCC->PLLCFGR |= RCC PLLCFGR PLLSRC HSI; // 00 = No clock, 01 = MSI, 10 = HSI, 11 = HSE
// Make PLL as 80 MHz
// f(VC0 clock) = f(PLL clock input) * (PLLN / PLLM) = 16MHz * 20/2 = 160 MHz
// f(PLL R) = f(VCO clock) / PLLR = 160MHz/2 = 80MHz
RCC->PLLCFGR = (RCC->PLLCFGR & ~RCC PLLCFGR PLLN) | 20U << 8;</pre>
RCC->PLLCFGR = (RCC->PLLCFGR & ~RCC_PLLCFGR_PLLM) | 1U << 4;</pre>
RCC->PLLCFGR &= ~RCC_PLLCFGR_PLLR; // 00: PLLR = 2, 01: PLLR = 4, 10: PLLR = 6, 11: PLLR = 8
RCC->PLLCFGR |= RCC PLLCFGR PLLREN; // Enable Main PLL PLLCLK output
        = RCC_CR_PLLON;
RCC->CR
while((RCC->CR & RCC_CR_PLLRDY) == 0);
// Select PLL selected as system clock
RCC->CFGR &= ~RCC CFGR SW;
RCC->CFGR |= RCC CFGR SW PLL; // 00: MSI, 01:HSI, 10: HSE, 11: PLL
// Wait until System Clock has been selected
while ((RCC->CFGR & RCC CFGR SWS) != RCC CFGR SWS PLL);
```



University of Maine

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. *In this lab, we will configure PB2 and PE8 as push-pull output.*

Each general-purpose I/O port x (x = A, B, C, ..., H) has

- four 32-bit configuration registers
 - GPIOx_MODER (mode register)
 - GPIOx_OTYPER (output type register)
 - GPIOx_OSPEEDR (output speed register)
 - GPIOx_PUPDR (pull-up/pull-down register)
- two 32-bit data registers
 - GPIOx_IDR (input data register)
 - GPIOx_ODR (output data register)
- a 32-bit set/reset register (GPIOx_BSRR).
- a 32-bit locking register (GPIOx_LCKR)
- two 32-bit alternate function selection registers
 - GPIOx_AFRH (alternative function high register)
 - GPIOx_AFRL (alternative function low register)

Code Comments and Documentation

Program comments are used to improve code readability, and to assist in debugging and maintenance. A general principal is "Structure and document your program the way you wish other programmers would" (McCann, 1997).

The book titled "The Elements of Programming Style" by Brian Kernighan and P. J. Plauger gives good advices for beginners.

- 1. **Format your code well.** Make sure it's easy to read and understand. Comment where needed but don't comment obvious things it makes the code harder to read. If editing someone else's code, format consistently with the original author.
- 2. Every program you write that you intend to keep around for more than a couple of hours ought to have documentation in it. Don't talk yourself into putting off the documentation. A program that is perfectly clear today is clear only because you just wrote it. Put it away for a few months, and it will most likely take you a while to figure out what it does and how it does it. If it takes you a while to figure it out, how long would it take someone else to figure it out?

ECE 271 Microcomputer Architecture and Applications

- 3. Write Clearly don't be too clever don't sacrifice clarity for efficiency.
- 4. **Don't over comment.** Use comments only when necessary.
- 5. Format a program to help the reader understand it. **Always Beautify Code.**
- 6. Say what you mean, **simply and directly**.
- 7. Don't patch bad code rewrite it.
- 8. Make sure comments and code agree.
- 9. Don't just echo code in comments make every comment meaningful.
- 10. Don't comment bad code rewite it.
- 11. **The single most important factor in style is consistency.** The eye is drawn to something that "doesn't fit," and these should be reserved for things that are actually different.

Comparison between STM32L1 (used by book) and STM32L4 (used in our lab)

The book was based on STM32L1 board but we are using STM32L4 board this semester. They are slightly different. The following table compares the RCC clock setting and GPIO.

	STM32L1	STM32L4
Core	Cortex-M3 @ 32MHz	Cortex-M4 @ 80MHz with FPU and DSP
	64 kHz, 128 kHz, 256 kHz, 512 kHz, 1.02	100 kHz, 200 kHz, 400 kHz, 800 kHz, 1 MHz, 2
MSI	MHz, 2.05 MHz (default value), 4.1 MHz	MHz, 4 MHz (default value) , 8 MHz, 16 MHz,
		24 MHz, 32 MHz and 48 MHz
LSI	37 kHz	32 kHz RC
	RCC AHBENR	RCC_AHB1ENR (AHB1)
	-	RCC_AHB2ENR (AHB2)
		RCC_AHB3ENR (AHB3)
	RCC_AHBLPENR	RCC_AHB1SMENR (AHB1)
	(LP = Low Power)	RCC_AHB2SMENR (AHB2)
		RCC_AHB3SMENR (AHB3)
		(SM = Sleep Mode)
RCC	RCC APB1ENR	RCC_APB1ENR1
nee		RCC_APB1ENR2
	RCC_APB1LPENR	RCC APB1 <mark>SM</mark> ENR1
	(LP = Low Power)	RCC_APB1 <mark>SM</mark> ENR2
		(SM = Sleep Mode)
	RCC_APB2ENR	RCC_APB2ENR
	RCC APB2LPENR	RCC APB2SMENR
	(LP = Low Power)	(SM = Sleep Mode)
GPIO	Default mode is Digital Input	Default mode is Analog
uiio	Alternative functions are different.	Alternative functions are different.
	Alternative functions are unterent.	Alter hative functions are unterent.
	AF0 SYSTEM	AF0 SYSTEM
	AF1 TIM2	AF1 TIM1/TIM2/TIM5/TIM8/LPTIM1
	AF2 TIM3/TIM4/TIM5	AF2 TIM1/TIM2/TIM3/TIM4/TIM5
	AF3 TIM9/TIM10/TIM11	AF3 TIM8
	AF4 I2C1/I2C2	AF4 I2C1/I2C2/I2C3
	AF5 SPI1/SPI2	AF5 SPI1/SPI2
	AF6 SPI3	AF6 SPI3/DFSDM
	AF7 USART1/USART2/USART3	AF7 USART1/USART2/USART3
	AF8 UART4/UART5	AF8 UART4/UART5/LPUART1
	AF9 AF10 USB	AF9 CAN1/TSC AF10 OTG_FS/QUADSPI
	AF10 USB	AF10 OTG_F3/QUADSF1 AF11 LCD
	AF12 FSMC	AF12 SDMMC1/COMP1/COMP2/FMC/SWPMI1
	AF13	AF13 SAI1/SAI2
	AF14 RI	AF14 TIM2/TIM15/TIM16/TIM17/LPTIM2
	AF15 EVENTOUT	AF15 EVENTOUT
		Add a new register GPIO_ASCR (Analog
		Switch Control Register)
		0: Disconnect analog switch to the ADC input
		or Disconnect analog switch to the fib o hiput

ECE 271 Microcomputer Architecture and Application	s University of Maine
	1: Connect analog switch to the ADC input
	<pre>typedef struct { IO uint32_t MODER; IO uint32_t OTYPER; IO uint32_t OSPEEDR; IO uint32_t PUPDR; IO uint32_t IDR; IO uint32_t BSR; IO uint32_t BSRR; IO uint32_t AFR[2]; IO uint32_t BRR; IO uint32_t ASCR; } GPIO_TypeDef; For example, to use PA.2 as analog input: GPIOA->ASCR = 1U<<2;</pre>

University of Maine

ECE 271 Microcomputer Architecture and Applications

Lab 1: Pre-Lab Assignment (2 points) Spring 2016

Student Name: _____

ТА: _____

Time & Date: _____

1. Enable the clock of GPIO Port A (for joy stick), Port B (for Red LED) and Port E (for Green LED)

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	٦	0
AHB2ENR														RNGEN		AESEN			ADCEN	OTGFSEN					GPIOPHEN	GPIOPGEN	GPIOPFEN	GPIOPEEN	GPIOPDEN	PIOPC	GPIOPBEN	GPIOPAEN
Mask																																
Value																																

Note: Why do we need the mask?

When we toggle, set, or reset specific bits of a word (4 bytes), we have to keep the other bits of the word unchanged. For example, we want to set bit 2 of the variable aWord, the following code is incorrect because it resets all the other bits in this word.

aWord = 4;

The correct approach is:

aWord |= 4;

Typically we use mask to facilitate the operations of toggling, setting or resetting a group of bits in a variable.

Mask = 0x8004;	
aWord = Mask;	<pre>// Set bit 15 and bit 2</pre>
aWord &= ~Mask;	<pre>// Reset bit 15 and bit 2</pre>
aWord ^= Mask;	<pre>// Toggle bit 15 and bit 2</pre>

2. Pin Initialization for Red LED (PB 2)

a. Configure PB 2 as Output

GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

Badow Badow AODER15[1:0] AODER14[1:0] AODER12[1:0] AODER10[1:0] MODER1[1:0] MODER1[1:0] MODER2[1:0] MODER2[1:0] MODER2[1:0] MODER2[1:0] MODER2[1:0] MODER2[1:0] MODER2[1:0] MODER2[1:0]	F	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	2	9	5	4	3	2	-	0
MODER HE HE HE HE HE WODEW HE HE HE HE HE		MODER		EK15/1		EK14[1:		EK13[1:	5	וקן		EK11[1	MODEP10[1:0]	ואוסטבא וטן ו.טן			MODER8[1:0]		MODED 7[1:0]	ואסטבראין ו.טן	MODER6[1.0]		MODED6[1:0]	ואיטטבראטן ו.טן	4[1				211	- 1-2	0	r		ואטטברטן ו:טן
Mask		Mask																																
Value		Value																																

 GPIOB Mode Register MASK Value = 0x______ (in HEX)

 GPIOB Mode Register Value = 0x______ (in HEX)

b. Configure PB 2 Output Type as Push-Pull

Push-Pull (0. reset). Open-Drain (1)

Register	31 30 29	28 27	26	25	23 23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	3	2	٢	0
OTYPER													OT15	OT14	OT13	OT12	OT11	OT10	0Т9	OT8	017	ОТб	OT5	OT4	ОТ3	0Т2	OT1	ОТО
Mask				Re	serve	d																						
Value																												

GPIOB Output Type Register MASK Value = 0x_____ (in HEX) GPIOB Output Type Register Value = 0x (in HEX)

c. Configure PB 2 Output Type as No Pull-up No Pull-down

		NO F	PUP	D (00, 1	eset),	, Pullu	ıp (01	l), Pu	lldow	n (1	0), Re	serve	ed (11)		
Register	31 30	29 28	27	26 25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	9 8	7 6	5	3	10
PUPDR	PUPDR15[1:0]	PUPDR14[1:0]	PLIPDR13[1-0]	PUPDR12[1:0]	PUPDR11[1:0]	PUPDR10[1:0]	PUPDR9[1:0]	PUPDR8[1:0]	PUPDR7[1:0]	PUPDR6[1:0]	PUPDR5[1:0]	. PUPDR4[1:0]	PUPDR3[1:0]	PUPDR2[1:0]	PUPDR1[1:0]	PUPDR0[1:0]
Mask																
Value																

GPIOB Pull-up Pull-down Register MASK Value = 0x_____ (in HEX) GPIOB Pull-up Pull-down Register Value = 0x______ (in HEX)

ECE 271 Microcomputer Architecture and Applications University of Maine

3. Pin Initialization for Green LED (PE 8)

a. Configure PE 8 as Output

GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	2	9	2	4	8	2	٢	0
MODER	MODED16[1.0]		MODED14[1:0]	טבאו+ןו.	MODED13[1:0]	וכוחסט	MODER12[1:0]			ואיטטבאדין ו:יטן	MODED10[1:0]	ואיטעבא וטן ו.טן	10.13001001	ואוטטבראשן ו.טן	MODFR8[1:0]		MODED7[1:0]	ואוטטבאיןו:טן	MODERer1.01			ואוטטבראטן ו.טן	MODER4[1:0]			MODEK3[1:0]	MODED2[1:0]	יו בער		שטטבאוןו:טן	MODER0[1:0]	
Mask																																
Value																																

GPIOE Mode Register MASK Value = 0x_____ (in HEX) GPIOE Mode Register Value = 0x______ (in HEX)

b. Configure PE 8 Output Type as Push-Pull

								Pι	ısł	ı-P	ull	(0), re	ese	et),	0p	ber	ı-D	rai	in ([1]											
Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	5	4	3	2	١	0
OTYPER																	OT15	OT14	OT13	OT12	OT11	OT10	0T9	OT8	017	OT6	015	OT4	0Т3	0T2	OT1	ОТО
Mask							Re	esei	ved	ł																						
Value																																

GPIOE Output Type Register MASK Value = 0x_____ (in HEX) GPIOE Output Type Register Value = 0x_____ (in HEX)

c. Configure PE 8 Output Type as No Pull-up No Pull-down NO DUDD (00 react) Dullup (01) Dulldown (10) Decorred (11)

		NO P	UPD	(00, r	esetJ,	Pullu	p (01	. J, Pul	ldow	n (10	JJ, Res	serve	d (11)		
Register	31 30	29 28	27 26	25 24	23 22	21 20	19 18	17 16	15 14	13 12	11 10	9 8	7 6	5 4	3 2	1
PUPDR	PUPDR15[1:0]	PUPDR14[1:0]	PUPDR13[1:0]	PUPDR12[1:0]	PUPDR11[1:0]	PUPDR10[1:0]	PUPDR9[1:0]	PUPDR8[1:0]	PUPDR7[1:0]	PUPDR6[1:0]	PUPDR5[1:0]	PUPDR4[1:0]	PUPDR3[1:0]	PUPDR2[1:0]	PUPDR1[1:0]	PUPDR0[1:0]
Mask																
Value																

GPIOE Pull-up Pull-down Register MASK Value = 0x_____ (in HEX) GPIOE Pull-up Pull-down Register Value = 0x______ (in HEX)

4. Pin Initialization for Joy Stick

a. Configure PA0 (Center), PA1 (Left), PA2 (Right), PA3 (Up), and PA5 (Down) as Input GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

Register	31 30	29 28	27 26	25 24	23 22	21 20	<u>19</u> 18	17 16	15 14	13 12	11 10	9 8	7 6	5 4	3	1
MODER	MODER15[1:0]	MODER14[1:0]	MODER13[1:0]	MODER12[1:0]	MODER11[1:0]	MODER10[1:0]	MODER9[1:0]	MODER8[1:0]	MODER7[1:0]	MODER6[1:0]	MODER5[1:0]	MODER4[1:0]	MODER3[1:0]	MODER2[1:0]	MODER1[1:0]	MODER0[1:0]
Mask																
Value																
GPIOA Mode I	Regist	er MA	ASK V	alue =	= 0x	1 1	<u>n</u>	1 1				(in HI	EX)	1 1	<u> </u>	

GPIOA Mode Register Value = 0x______ (in HEX)

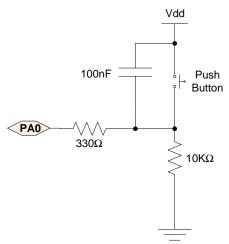
b. Configure PA0 (Center), PA1 (Left), PA2 (Right), PA3 (Up), and PA5 (Down) as Pulldown NO DIDD (00 reset) Dullup (01) Dulldown (10) Deserved (11)

F		1	NU	۱P	υγυ	0	0, r	eset)	, Pu	шu	<u>р (</u> (<u>, i j</u>	, Pu	lla	ow	n (10), I	kes	erv	/ea	(11)						
Register	31	30	29	28	27 26	25	24	23 22	21	20	19	1 0	16	15	14	13	12	11	10	6	∞ ト	9	5	4	3	2	٢	0	
PUPDR		PUPDR15[1:0]			PUPDR13[1:0]		PUPDR12[1:0]	PUPDR11[1:0]	PUPDR11[1:0]		PUPDR9[1:0]		PUPDR8[1:0]		PUPDR7[1:0]			PUPDR5[1:0]		PUPDR4[1:0]		PUPDR3[1:0]		PUPDR2[1:0]		- PUPDR1[1:0]		PUPDR0[1:0]	
Mask																													
Value																													
GPIOE Pull-up Pull-down Register MASK Value = 0x (in HEX))															

GPIOE Pull-up Pull-down Register Value = 0x______ (in HEX)

Lab 1: Lab Demo

You should be able to correctly answer the following questions to TAs.


- 1. Why did we configure the pins that drive the LEDs (PB 2 and PE 8) as push-pull instead of open-drain?
- 2. What is GPIO speed? What is the default speed? Did you notice any difference of you choose different speeds in this lab assignment?
- 3. Show TA that you can toggle a LED in the debug environment by directly changing the value of the Output Data Register (ODR) of a GPIO port.

Lab 1: Lab Code Submission

- 1. Submit and maintain your code in gitlab server
- 2. Make sure to comment your codes appropriately
- 3. Make sure to complete the *Readme.Md* file

Lab 1: Post-Lab Assignment (1 point)

1. The joy stick on the STM32L4 board has a hardware debouncing circuit. The following is one example debouncing circuit. Explain briefly how the hardware debouncing circuit works. Find out a typical solution for software debouncing.

- Place your answer to this question in the file *Readme.md*
- Submit it to the Gitlab Server.
- If you have figures/images, you can put your answer in a word document, and put a note in Readme.md. Make sure to perform "*git add*" to the word document.