
Chapter 6 - Storage Classes

C uses 4 storage classes: auto, register, extern, static

– Class determines the variable's duration, scope and linkage

duration - some variables last the life of the program, others shorter

scope - where is it visible and can therefore be used

linkage - only the current file or also by other source files

2 durations:

automatic storage duration (auto and register)

 lives on the stack or in a register

created on entering a block, destroyed when leaving

normal function variables (local) are like this

keyword auto is rarely used - it is the default

"register" suggests to the compiler to place it in a register - may ignore

today's compilers are pretty good at figuring what to do

static storage duration (extern and static)

these variables exist for the life of the program

storage is allocated and initialized once

(scope of variable can be local or global)

global variables and function names are extern by default

global variables declared outside any function

scope is from the point of declaration to the end of the file

local variables can be declared as static - value persists between calls

static variables are initialized to zero if you don't initialize

more on extern and static later

Scope: where can we reference and use the variable

four scopes are:

function scope

labels (identifier followed by colon) e.g., start: (e.g., inside switch)

- only identifiers with function scope

can't be referenced outside the funciton

file scope

identifier declared outside any function

visible from that point to the end of the file

(global variables and function definitions and function prototypes)

block scope

identifiers inside a block (surrounded by {})

- we've seen this where block is a function

scope ends at end of block

variables must be declared at the beginning of the block

blocks can be nested

variables can have the same name - inner one hides the outer one

function-prototype scope

names used in the function prototype

these are actually ignored as the scope is only within the prototype

e.g.,
static int x;

e.g.,
int countcalls() {

static int count = 0;
return ++count;

}

int x; // not initialized

local variable x:

static int x; // initialized to 0

