
ECE275: Sequential Logic Circuits

Lab 5

Pascal Francis-Mezger

October 13, 2020

Contents

0 Lab Overview 2

1 Part 1: Logic Synthesizer Comparison 2

2 Part 2: Using an Always Loop 3

3 Part 3: Using a Clock on the FPGA 4

4 Conclusions 4

1



0 Lab Overview

This lab’s goal is to get you acquainted with higher level math and functionality
of Verilog. The always loop you use in part 2 will be more useful when you get
into sequential logic later in the semester. The goal of showing it to you now is
to help you understand that Verilog has a much higher feature set then simply
converting boolean expressions into equivalent logic gate hardware.

The other value of this lab is that you can utilize the always block created
here to test code in the future automatically. If you want to sweep through a
wide range of input values without needing to manually flip switches, you can
utilize the method in Part 3.

1 Part 1: Logic Synthesizer Comparison

For the first section you will be replacing last weeks lab with higher level Verilog
equivalents. Up until now you have utilized basic AND and OR to create your
logic. You will now use math functions to simplify your code. You will see
that if you are trying to make very specific hardware implementations it may
be easier to write specific hardware routines. For many situations it is easier
to implement logic using higher level functions, but you lose granularity of gate
design for your project.

Before you continue, open last weeks ripple adder lab, and open the ”Tech-
nology Map viewer” from the compilation results. It is under the netlist viewer.
Right click on the boxes that represent you modules and select the display con-
tent option. You may need to drill down several levels this way to show what
your actual logic gates (AND/OR) look like. You can export this view by going
to file¿export. This will help you review it after you implement new code and
recompile.
Next, replace the ripple adder implementation from last week with simple ad-
dition. Utilize the Verilog code:

1 assign LEDG[4:0]=SW[8:5]+SW[4:1]+SW[0];

Does this produce the same results on the LEDs as the ripple adder code from
last week?

Review the ”Technology Map Viewer”. Are the results similar to the ripple
adder method from last week? Are there any advantages with this method?
Any disadvantages?

2



2 Part 2: Using an Always Loop

In this section you will utilize an always loop to continually count up based on
an input value triggering. It will trigger based on the positive edge, so every
time a transition from false to true is triggered, the always loop will run the
code contained inside once. In this first case we will utilize a switch for the
trigger. When the switch turns on, it will create a positive edge (false to true
conversion). Another positive edge will not be triggered until the switch moves
to off and then back on. Each time the switch is triggered on, the always loop
will run once.

Use the code shown below for this section. Make sure to analyze the com-
ments so that you understand what is going in the code, as you will have to
slightly modify it for the next section.

1 module lab5part2top(

2 input [9:0] SW ,

3 output [9:0] LEDG

4 );

5 // Register can only be on left hand side of equation inside an always block

6 reg [3:0] summed_counter; // stores current count

7 //Runs whenever posedge SW[0] is true. This is when SW[0] goes from off to on

8 always @ (posedge SW[0]) begin

9 //1’b1 is the representation of binary 1 in Verilog

10 //This adds one to the current sum each posedge of SW[0]

11 summed_counter = summed_counter + 1’b1;

12 end

13 // Display the current sum on the first four green LEDs

14 assign LEDG[3:0] = summed_counter[3:0];

15 endmodule

After programming the FPGA, repeatedly toggle SW[0], and watch what hap-
pens with the green LEDs. Does the value sum correctly, where each time the
switch goes false to true, the binary value represented by the LEDs increases by
1?

What is the maximum value that can be represented by this code? What hap-
pens when this maximum value is exceeded?

What could you do to increase the maximum value you can represent?

3



3 Part 3: Using a Clock on the FPGA

In this section you will modify the code so that it counts up on a positive edge of
one of the FPGA clocks instead of the switch. In the future we will look at how
to reduce the frequency of the clock using a phase locked loop so that the clock
is more useful, but for now we will just use the clock at the full frequency. The
DE0 FPGA we are utilizing has one internal clock going to two pins, that runs
at 50MHz. This means the clock will produce 50 million positive edge triggers
per second. You can find information about the pin assignment of the clock on
page 27 of the DE0 manual linked on the class website. You can also find it’s
pin assignment in the QSF file. Add the clock as an input to your module (in-
put somename, and then use the QSF to assign somename to the 50 MHz clock).

Due to the clock running so fast, we need to utilize more bits to make the
counting readable. If we tried to display the count using a 9 bit register, it
would roll over faster than the eye could see. This is because 9 bits can only
represent 29 = 512 states. 512 counts

50000000 counts
second

= 10.24µseconds We can instead

use a larger register to represent many more states. If we change the register
summed counter to 31:0 instead of 3:0, we can represent 32 bits. This would
give 232 = 4.29 billion, and 4.29 billion counts

50 million counts
second

= 85.9 seconds.

After adding the clock as an input, and expanding the register, you will need
to make the always trigger on a positive edge of the clock. Just replace SW[0]
in the alway with the name of your clock.

The last thing you will have to do is change the assign statement for the green
LEDs so they display the 9 most significant bits of the summed counter reg-
ister. These are the slowest changing values of the register.

After you have made these changes, download your code to the FPGA.

Do the LEDs count up as you would expect? What happens after maximum
value of the summed counter is reached (all 9 green LEDs would be on)?

4 Conclusions

Save this code, as next week you will be utilizing the counter to display a timer
on the seven segment LEDs. This will require you to convert the count value
to BCD, and then use a multiplexer to select which seven segment should have
what digit.

One more important thing to understand with this lab is the value of the speed
of the FPGA in this case. It would be difficult to create a timer/counter with
this fine granularity (50 million counts per second, each value individually rep-
resentable) on a microprocessor, where an FPGA can do it relatively easily.

4


