Using multiplexers to implement logic

eg. Two-variable problem
But car we use a 2:1 max?

- a 4-variable problem
$8: 1$ max

Same problem (1)

Other possibilities
(2)

Poss,billatits

$$
w_{1} w_{2}
$$

$$
\omega_{1} \omega_{3}
$$

$$
w_{1} w_{4}
$$

$$
w_{2} w_{3}
$$

$$
\omega_{z} \omega_{y}
$$

$$
w_{3} w_{4}
$$

fanctions of

$$
\omega_{2}+w_{3}
$$

(4)

(5)

Possibbitics

Decoder/demultiplexer

As a demultipleger think of Enable as input (signal) $w_{2} w_{1} w_{0}$ then select where the signal goes

Implement the function

a	b	f
0	0	0
\rightarrow	0	0
\rightarrow	0	1
\rightarrow	1	0
0	1	1
1	1	0
1	0	0
\rightarrow	1	0
1	1	1
	11	0

$a b c$	$f f$
000	0
0001	1
010	0
011	1
0	0
100	1
101	0
110	0
111	1
11	1

Binary Encoder
Expect
one-hot 2^{n}
encoding inputs

Code Converters

DP decimal point
frith metic
(compare

$f=$ majority of eg. 3 samples

$$
\begin{aligned}
& 011 \rightarrow f=1 \\
& 100 \rightarrow f=0
\end{aligned}
$$

