Systems versely

(7.3)

, in the n ratios d to the ving the tric and tios, the robot. otor on

ise low-

3 Nm is s end, as l viscous aximum

 $m=2K\varrho$

The total otation is: As you can see, the total inertia with the higher gear reduction ratio is practically the same as the rotor inertia of the motor. The maximum angular accelerations

(a)
$$\ddot{\theta}_m = \frac{T_m}{I_{total}} = \frac{8}{0.098} = 82 \text{ rad/sec}^2$$

(b)
$$\ddot{\theta}_m = \frac{T_m}{I_{total}} = \frac{8}{0.0158} = 506 \text{ rad/sec}^2$$

The no-load maximum angular acceleration of the motor would be about 530 rad/sec². PWM Pulse width modulation

7.3 Comparison of Actuating Systems

Table 7.1 is a summary of actuator characteristics. We will refer to, and discuss, these characteristics throughout this chapter.

stepper motors, secuo mators Table 7.1 Summary of Actuator Characteristics.

Hydraulic

- + Good for large robots and heavy payload
- + Highest power/weight ratio
- + Stiff system, high accuracy, better response
- + No reduction gear needed
- + Can work in wide range of speeds without difficulty
- + Can be left in position without any damage
- May leak; not fit for clean room applications
- Requires pump, reservoir, motor, hoses, and so on
- Can be expensive and noisy; requires maintenance
- Viscosity of oil changes with temperature
- Very susceptible to dirt and other foreign material in oil
- Low compliance
- High torque, high pressure, large inertia on the actuator

Electric

- + Good for all sizes of robots
- + Better control, good for high precision robots
- + Higher compliance than hydraulics
- + Reduction gears reduce inertia on the motor
- + Does not leak, good for clean room
- + Reliable, low maintenance
- + Can be spark-free; good for explosive environments
- Low stiffness
- Needs reduction gears, increased backlash, cost, weight, and so on
- Motor needs braking device when not powered; otherwise, the arm will fall

Pneumatic

- + Many components are usually off-the-shelf
- + Reliable components
- + No leaks or sparks
- + Inexpensive and simple
- + Low pressure compared to hydraulics + Good for on-off
- applications and for pick and place
- + Compliant systems
- Noisy
- Require pressurized air, filter, and so on
- Difficult to control their linear position
- Deform under load constantly
- Very low stiffness; inaccurate response
- Lowest power to weight ratio