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Abstract—An efficient, accurate and distributed metadata- management. However, the performance of metadata services
oriented prefetching scheme is critical to the overall perfor- plays a critical role in achieving high I/O scalability and
mance in large distributed storage systems. In this paper, we ,q,ghput, especially in light of the rapidly increasing scale in
present a novel weighted-graph-based prefetching technique, modern storage systems where the volume of data reaches and
built on successor relationship, to gain performance benefit ge sy - .
from prefetching specifically for clustered metadata servers, an €ven exceeds Peta byté®){® bytes) while metadata amounts
arrangement envisioned necessary for petabyte-scale distributed to Tera bytes 10'? bytes) or more [9]. In fact, more than 50%
storage systems. Extensive trace-driven simulations show that by of all 1/0 operations are to metadata [10], suggesting further

adopting our new prefetching algorithm, the hit rate for metadata ; ; _
access on the client site can be increased by up to 13%, while thethat multiple metadata servers are required for a petabyte-scale

average response time of metadata operations can be reduced bystorage §ystem to avoid potentlal_ performance bottleneck on
up to 67%, compared with LRU and an existing state of the art @ centralized metadata server. This paper takes advantages of

prefetching algorithm. some unique characteristics of metadata and proposes a new
prefetching scheme for metadata access that is able to scale
up the performance of metadata services in large scale storage
A novel decoupled storage architecture diverting actual fifgystems.
data flows away from metadata traffics has emerged to be afBy exploiting the access locality widely exhibited in most
effective approach to alleviate the I/O bottleneck in modetfO workloads, caching and prefetching have become an
storage systems [1]-[4]. Unlike conventional storage systeneffective approach to boost I/O performance by absorbing a
these new storage architectures use separate servers for ldag® number of I/O operations before they touch disk surfaces.
and metadata services, as shown in[ffig 1. Accordingly, larj@wever, prefetching metadata for large metadata services
imposes two challenges. First, the prefetching operation has

I. INTRODUCTION

g y to be conducted in a distributed environment. Due to the
o — — skewed load toward metadata in most file systems [11], a
‘omputational File Data - - H

Nodes Sormgesever  FleDaa centralized metadata management system will not scale up

well with the 1/0 workload in a large scale storage system
conssing | [2], [9]. Accordingly, in a petabyte-scale storage system, the
el ﬁg f j load of metadata services is likely distributed among a group
o speed | |_a — of metadata servers. Second, existing caching and prefetching

Sirege senet algorithms may not work well for metadata. Most caching and
prefetching schemes are designed for and apply on actual file
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n “Soner” data and ignore metadata characteristics. Those algorithms are
N Flie Data f ogn . . .

: g49 not specifically optimized for metadata accesses since usually
Computaionsl c — file data and metadata operations show different characteristics

Storage Server

and exhibit different access behaviors. For example, a file
might be read multiple times while its metadata is only
volume of actual file data does not need to be transferradcessed once. A “Is -I" command touches the metadata of
through metadata servers, which significantly increases tmeiltiple files but might not access their data. In addition, the
data throughput. Previous studies on this new storage architgize of metadata is typically uniform and much smaller than
ture mainly focus on optimizing the scalability and efficiencthe size of file data in most file systems. In order to achieve
of file data accesses by using a RAID style striping [Shptimal performance, a new prefetching and caching algorithm
caching [6], scheduling [7] and networking [8] and very littlehat considers the differences between data and metadata is
attention has been paid to the scalability of the metadatkearly desirable.

Fig. 1. System architecture



The most important characteristic of metadata is its relative e) Probability-based Successor Group Predicti®dased
small size compared with typical file sizes. With a relativelgn file successor observations, a file relationship graph is built
small data size, the mis-prefetching penalty for metadata timrepresent the probability of a given file following another.
both the disk side and the memory cache side is likeBased on the relationship graph, the prefetch strategy builds
much less than that for file data, allowing the opportunitthe prefetching group by following steps:

for exploring and adopting more aggressive prefetching algo-1) The missed item is first added into the group.

rithms. In contrast, most of the previous prefetching algorithms 2) Add the items with the highest conditional probability
share the same characteristic in that they are conservative on ynder the condition the items in the current prefetching

prefetching. That is, they prefetch at most one file upon each  group were accessed together.

cache miss. In addition, even when a cache miss happens3) Repeat step 2 until the group size limitation is met.

certain rigid policies are applied before issuing a prefetching

in order to maintain a high level of prefetching accuracy!!l- NEXUS: A WEIGHTED-GRAPH-BASED PREFETCHING

Nevertheless, considering the huge number and the relatively ALGORITHM

small size of metadata items, aggressive prefetching can béAs a more effective way for metadata prefetching, our

profitable provided that a higher system performance andNexus algorithm distinguishes itself in two aspects. First,

reasonable prediction accuracy is achieved. Nexus can more accurately capture the metadata access tempo-
In this paper, we develop a novel prefetching algorithmal locality exhibited in metadata access streams by observing

named Nexus to perform more aggressive prefetching whilee affinity among both immediate and indirect successors.

maintaining a reasonable prefetching accuracy. A lookirffecond, Nexus exploits the fact that metadata usually is small

ahead history window is deployed to capture better locality armi size and deploy an aggressive prefetching strategy.

to scrutinize the real successor relationship among interleaved . . .

accesses sequence. Comprehensive simulation results indi@atgelat'onsmp graph overview

that Nexus significantly improves the performance of metadataOur algorithm uses a metadata relationship graph to assist

retrieval in Peta-byte scale cluster storage system. prefetching decision making. The relationship graph is used
The outline of the rest of the paper is as follows: Relatd@ dynamically represent the locality strength between prede-

work is discussed in Sectifd II. Sectiod 11l described our Nex$§ssors and successors in metadata access streams. Directed

algorithm in detail. Evaluation methodologies and results ag&aphs are chosen to represent the relationship since the rela-

discussed in sectign ]V. We conclude this paper in sefflon tjonship between a predecessor and a successor is essentially
unidirectional. Each metadata corresponding to a file or direc-

Il. RELATED WORK tory is represented as a vertex in our relationship graph. The lo-
cality strength between a pair of metadata items is represented
Previous rt_asearch work on prefet_c_hing_ both at the disk Ie_\@; a weighed edge. Figdre 2 shows an example of relationship
and at the file level can be classified into three categoriggaph consisting of metadata for six files/directories. From
predictive prefetching [12], application-controlled prefetchinghis graph, we can observe that the predecessor-successor

[13], and compiler-directed prefetching [14]. relationship betweeptusr and /usr /bin is much stronger than
Among the latest advancement in the area of predictiygat betweeryusr and /usr/src.

prefetching, in order to study the prefetching accuracy while

maintaining a reasonable performance gain, Darrell Long et al.

introduced several file access predictors including First Suc- =

cessor, Last Successor, Noah (Stable Successor) [15], Recent

Popularity (also known as Begtout-of-k) and Probability- y \

based Successor Group Prediction [16], [17]. The differences 2

among these predictors are summarized as follows. [ tusribin/ts ]~ jusribin/ps J=—=[ rusrroinvcn |

a) First SuccessorThe file that followed fileA the first
time A was accessed is always predicted to follaw

b) Last SuccessorThe file that followed fileA the last B. Relationship graph construction
time A was accessed is predicted to folldw To understand how this relationship graph works for im-

c) Noah (Stable Successorgimilar to Last Successor, proved prefetching performance, it is necessary to first under-
except that a current prediction is maintained; and the curregéand how this graph is built. The relationship graph is built
prediction is changed to last successor if last successor wasthe fly while the MDS receives and serves requests from a
the same foIS consecutive accesses whedés a predefined large number of clients. A history window with a predefined
parameter. capacity is used to keep the requests most recently received by

d) Recent Popularity (Besj-out-of«): Based on last the MDS server. For example, if the history window capacity
k observations on fileA’s successors, ifi out of thosek is set to ten, only ten most recent requests are kept in the
observations turn out to target the same BlethenB will window. Upon the arrival of a new request, the oldest request
be predicted to followA. in this history window is replaced by the new comer. In this

Fig. 2. Relationship graph demo



way the history window is dynamically updated and alway®. Major advantages of Nexus

contains the current predecessor-successor relationship at ar% The farther the sight, the wiser the decisiofihe key
time. The relationship information is then integrated into th '
graph on a per-request basis, by either inserting a new e
(if the predecessor-successor relationship is discovered for
very first time) into the graph or adding an appropriate weig
to an existing edge (if this relationship has been observ

.befor.e)._ A pseudocode describing how a relationship grag nsequence, any successors after the immediate successor are
is built is presented below.

) ignored. This short-sighted method is incapable of identifying
/égfchflgf;’L‘/’f?lg’ﬁgﬁg’é‘;iiﬁ?& the affinity of two references with some intervals, which
1 G—o ) _ ‘ widely exists in many applications. For example, for the
2 for each new incoming metadata requgst pattern “A?B”, we can easily find two situations where this

ifference between the relationship-based and probability-
Sed approaches lies in the ability to look farther than the
fmediate successor. The shortcoming of the probability-
sed prefetching model is obvious: it only considers the
mediate successors as candidates for future prediction. As a

Z foric?fzcdhg(r;((;}?gj%t%reques(z # j) in history window pattern exhibits.
g ter;sega%%da%r:)r%%%gt’ej%vggﬁtvi’ghegggrj%p”ate weight « Compiling programs: gcc compilerd”) is always first
7 replace the oldest item in history window wijh launched; and then the source cod¥(‘to be compiled
For example, if the history window size is two and a request  is loaded; at last the common header files or common
sequence of shared libraries (B”) is loaded afterward.
ABCADCBA - -- « Multimedia application: initially media player application

(“A”) is launched; after that the media clip?() to be
played is loaded; at last the decoder progra®”}“for
that type of media is loaded.

is observed, the step-by-step graph construction from scratch
is shown in Figurg 3(®) ( The weight assignment methodology
taken here is linear decremental, described later in Sdctipn Ill- o . I .

. n addition to above mentioned applications, interleaved
[E.J on pagpl4). In contrast, Figure 3(b) shows the same graeppplication may create similar kinds of scenarios. The

construction procedure with a history window size of three'probability-based model cannot detect such access patterns,
thus limiting its ability to make better predictions. However,
this omitted information is considered in our relationship-
based prefetching algorithm, which is able to look farther than
the immediate successor when we build our relationship graph.
We use a simple trace sequence mentioned before,
ABCADCBA---, to further illustrate the difference be-
tween the probability-based approach and our relationship-
based method. In the probability-based model, sificeever
appears immediately afted, C' will never be predicted as
A’s successor. In fact, the reference stream showsGhiata
good candidate ad’s successor because it always shows up
next nextto A. The rationale is that the pattern we observed
is a repetition of pattern 4A?C” and we assume this pattern
will repeat in the near future. As discussed in T|I-C, should
our relationship-based prediction be applied, three out of four
prediction results will contairt'.
C. Prefetching based on the relationship graph From the above example, we clearly see the advantages of
Once the graph is built for the access sequencelationship-based prefetching over probability-based prefetch-
ABCADCBA--- as shown in Figurg 3(a) and Figure 3(b)ing. The essential ability to look farther than the immediate
it is possible to prefetch a successor group with an adjustableccessor directly renders this advantage. In contrast, should
size in the graph when a cache miss happens for an elemenwvé apply the same idea to probability-based approach, the
that group. The prediction result depends on the order of themplexity of the algorithm would increase exponentially. For
outbound edge weights (represented by values associated witample, if looking ahead window size is set to increased from
arrows in the relationship graph) of the latest missed elemehtto 2, using probability-based approach, we would have to
A larger weight indicates a stronger relationship and a highewaintain the conditional probability for each tripfy(C|AB)
prefetching priority. In the above sample access sequenittstead of for each two-tupleB(B|A).
supposing that the last requedt sees a miss, according to 2) Aggressive prefetching is natural for metadata servers:
the graph shown in Figufe 3{a), the prediction result will ball previous prefetching algorithms tend to be conservative
{C} if the prefetching group size is one, ¢, D} if the due to the prohibitive mis-prefetch penalty and cache pollu-
prefetching group size is two; similar results deduced frotion. However, the penalty of an incorrect metadata prefetch
Figure[3(b) will be{B} and {B,C}, respectively. might be much less prohibitive than that of the file data

nyA—L2 g

(a) Looking ahead window size =2 (b) Looking ahead window size = 3
Fig. 3. Graph construction examples



prefetch, and the cache pollution problem is not as severe solution. This assumption is based on the observation of
as in the case of file data caching. The evidence behind this the attenuation of radiation in the air in our real life.
reasoning is the observation that while the average file sizes Exponential decremental assignment
is 22KB [18], the average size of a file's metadata is only The attenuation of edge weights might be even faster
1.375KBEL This observation encourages us to conduct more than polynomial decrement. In this case, an exponential
aggressive prefetching on metadata. decrement model is adopted. This approach is referred to
as exponentialdecremental assignment in the future.
) ) _ _ To find out which assignment method can best reflect the
In implementing our algorithms, several design factors negstality strength in the metadata reference streams, we conduct
to be considered to optimize the performance. Correspondi@)(gberimemS on the HP trace [10] to compare the hit rate
sensitivity studies on those factors are carried out as followsehieved by those four edge-weight assignment methods. To be
1) Successor relationship strengtssigning an appropri- comprehensive, these experiments are conducted with different
ate weight between the nodes to represent the strengthcghfigurations in three dimensions: cache size, number of
their relationship as predecessor and successor is criticalstR.cessors to look ahead (or history window size), and number
our a_lgorithm because it affech '_[he pred_iction accuracy (_)f O8f successors to prefetch as a group (or prefetching group
algorithm. A formulated description of this problem is: G'Ve%ize). Since the result for the polynomial assignment is very
an access sequence of length close to that for the exponential assignment, we remove the
My MyMs ... M, former results to show readers a clearer figure. The results for

the remaining three approaches are shown in Figure 4.
how much weight should be added to the predecessor .

successors edges,

E. Algorithm design considerations
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respectively. Four approaches are taken into consideration:
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« ldentical assignment Look Ahead Prefetch T g s
Assigning all the successors 8f; the same importance.
This approach is very similar to the probability model (a) Cache size = 250

5|

Ml identical
[CIExponential
ANMDecremental

introduced by Griffioen and Appleton [19]. It may look

simple and straightforward, but it is indeed effective. -
The key point is that at least the successor following £,
the immediate successors are taken into consideratior ~ 71—
However, the draw back of this approach is also obvious:

Prefetch
w

o
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it cannot differentiate the importance of the immediate - Prefetch ) e——
successor and its followers, which might subsequently ook Ahead
skew the relationship strengths to some extend. This (b) Cache size = 750
approach is referred to adentical assignment for later 81 5

Identical

discussions. _ Expanentsl
« Linear decremental assignmefte assumption behind 2 ;
this approach is that the closer the access distance i *+
the reference stream, the stronger the relationship. Fc 7§

Wl identical
[C]Exponential
AR WDecremental

Prefetch
o
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example, we may assign those edge weights mentione Lm,kAhe; Prefetch ’ e

above in a linear decremental order,18dor (M, M5), 9 Lok Ahead

for (My, Ms), 8 for (M7, My), and so on. (The weight in (c) Cache size = 1250

the example shown in Figufe 3(a) g§nd 3(b) is calculated Fig. 4. Edge weight assignment approaches comparison

this way.) This approach is referred to dscremental ) _

assignment in the rest of this paper. In Figure[4, the 3D graphs on the left show the hit rate
« Polynomial decremental assignment achieved by those three approaches over three cache size (in

Another possibility is that, with increase in the success&Mms of cachelines) configurations (i.e. 250, 750 and 1250)
distance, the decrease in the relationship strength migHth both the look-ahead window size and prefetching group-
be more radical than the linear one. For example, pol§iZ€ varying from 1 to 5. (These values are carefully chosen
nomial decrement assignment is a possible alternatizorder to be representative while non-exhaustive.) The three
2D graphs on the right show the corresponding planform (a
1The calculation is carried out as following: Since the average file size ¥-Y plane looking downward along the Z axis) of the same
22KB, and an inode_ of 12_8 bytes is aIIocqted for every 2KB of file data [18yeasurements. These 2D graphs clearly show that the linear
Thus the average size of inode for each filR2 B/2K B x 128 Bytes = Bssi h tak he lead f th
1.375KB. It means that the size of metadata is roughly 6.25% of thg_ecremema SS|g_nment aPPrF’aC _ta es t_ e lead most of the
corresponding file data. time. We also notice that the identical assignment beats others
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Fig. 5. Sensitivity study: look ahead windows size and prefetch group size

in some cases even though this approach is very simple. Te&tionship graph for all the requests received by a particular
linear decremental assignment approach consistently outpeetadata server; or 2) Build a relationship graph for requests
forms others. Thus, in the future experiments, we will deplagent from each individual client and received by a particular
this approach as our edge-weight-assignment scheme.  metadata server. In this paper, we refer to the former version
2) How far to look ahead and how many to prefetch: as server-oriented access grouping, and the latter as client-
To fully exploit the benefit of bulk prefetching, we needbriented access grouping.
to decide the distance to look ahead and the bulk size towe have developed a client-oriented grouping algorithm
prefetch. Looking ahead too far may compromise the algand compared it with the server-oriented grouping by running
rithm’s effectiveness by introducing noises to the relationshthem on the HP traces, as shown in Figife 6. r Figure 6
graph; and prefetching too much may result in a lot of
inaccurate prefetching, possible cache pollution, and cause
performance degradation. We compare the average response
time by performing a number of experiments on a combination
of these two key parameters, i.e., look ahead window size
and prefetching group size. The result is shown in Figlire 5.
From Figure b, we found that looking ahe&dsuccessive
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@ Client-based group
140 prefetching

120 W Server-based group
100 prefetching

80 4
60 -

Average Response Time(ms)

files” metadata and prefetching 2 files’ metadata at a time 0
. . & @ @ & @ & & & N4
turned out to be the best combination. The results also seem Qo@ Q@@“ Q@@“ Qo@ Qo-\@“ Qé@“ 00-\@“ QQ@ 0(@
hat the | he looki head wind ize, th NS P
to suggest that the larger the looking ahead window size, the & EF S E e
. . . . 2 Q' Q'
better the hit rate achieved. This observation prompts us to TS A R S S L

experiment on much larger look-ahead window sizes, with

sizes 10, 50, and 100 respectively, and found contradicting ] ) ) ]
results to our conjecture: none of those three look-aheGi§arly shows that client-oriented grouping algorithm always

window size configurations achieves a better hit rate than tRitPerforms the server-oriented one. Thus we adopt the client-

windows size of5. The reason is that looking too far ahea@'i€nted grouping algorithm whenever possible.

might overw_helm the prefetching algorithm by introducing IV. EVALUATION METHODOLOGY AND RESULTS

too much noise—those irrelevant future accesses are also taken

into consideration as successors, reducing the usefulnesg of/Vorkloads

the relationships captured by the look-ahead window. Hit rateWe evaluate our design by running trace-driven simulations

comparison reveals consistent results but are omitted here duer the LLNL trace collected at Lawrence Livermore National

to space limitation. In the rest of the paper's experiments, thaboratory in July 2003 [20] and the HP file system trace

look-ahead distance and the prefetching group size are fixggllected at the HP Lab in December 2001 [21]. These traces

to 5 and2 respectively for best performance gains. gather I/O events of both file data and metadata. In our
3) Server-oriented grouping vs. client-oriented grouping:simulations, we filter out the file data activities and feed only

One way to improve the effectiveness of the metadata meetadata events to our simulator.

lationship graph is to enforce better locality. Since multiple 1) LLNL trace: One of the main reasons for petabyte-scale

clients may access any given metadata server simultaneousigrage systems is the need to accommodate scientific appli-

most likely request streams from different clients will be&ations that are increasingly demanding on 1/O and storage

interleaved, making the pattern more difficult to observe. Theapacities and capabilities. As a result, some of the best traces

it may be a good idea to differentiate the different client® evaluate our prefetching algorithm are those generated by

when building the relationship graph. Thus there are twszientific applications. To the best of our knowledge, the only

different approaches to build the relationship graph: 1) Buildracent scientific application trace publicly available for large

Fig. 6. Server-oriented grouping client-oriented grouping



clusters is the LLNL2003 file system trace. It was obtaineal novel prefetching algorithm for metadata. To simplify our
in the Lustre Lite [1] parallel file system on a large Linuxsimulation design, cooperative caching [22], a widely used
cluster with more thar800 dual-processor nodes. It consisthierarchical cache design, together with its cache coherence
of 6403 trace files with a total od6,537,033 1/O events. control mechanism, i.e. write-invalidate [23], is adopted in
In our simulations, we only consider the metadata activitiesur simulation framework to cope with the consistency issue.
described in Figurp]7. The metadata operations are furthéowever, it must be noted that the choice of cooperative
caching is pragmatic for its relative maturity and simplicity

| _Name [ Count | Description | and, as such, it does not necessarily imply that it is the only
access 16 check user’s access permissions or best choice for consistency control. In fact, we believe
close 111,215 close a file descriptor that a metadata-oriented consistency protocol is needed to
fstat64 81,663 | retrieve file status optimize the performance, which is one of our future research
ftruncate64| 198 truncate a file to a specified length directions.
open 327,990| open or create a file In our simulation framework, the storage system consists
stat64 59,892 | display file status of four layers: 1) client cache, 2) metadata server cache,
statfs 980 display file system status 3) cooperative cache, and 4) hard disks. When the system
unlink 8 delete a name and possibly the file receives a metadata request, it first checks its local cache
it refers to (client cache); upon an cache miss, the client sends the request

to the corresponding MDS; if the MDS also sees a miss, the
MDS looks up the cooperative cache as a last resort before
classified into two categories: metadata read and metadegading the request to disks.
write. Operations such asccess, and stat fall into the Thus the overall cache hit rate includes three components
metadata read group, whilgruncate64 andunlink belong from the client's point of view: local hit (client cache hit),
to the metadata write group since they need to modify thiemote hit (metadata server cache hit), and cooperative cache
attributes of the file. However, the classification afen  hit. Obviously, local hit rate directly reflects the effectiveness
and close remains ambiguous. Ampen operation cannot of the prefetching algorithm because grouping and prefetching
be simply classified as metadata read since it may create done on the client site.
files according to its semantics in UNIX. Similarly, dose If, in the best case, a metadata request is satisfied by the
operation can be classified into both groups since it may inatlient cache, the response time for that request is estimated as
metadata update operations, depending on whether the lileal main memory access latency. Otherwise, if that request is
attributes are dirty or not. Fospen requests, the situationsent to a MDS and satisfied by the server cache, the overhead
is easier since we can look at the parameter and return vahifenetwork delay is included in the response time. In an even
of the system call to determine its type. For example, if theorse case, the server cache does not contain the requested
parameter is QRDONLY and the return value is a positivemetadata while the cooperative cache does, extra network
number, then we know for sure that this is a metadata redelay should be considered. In the worst case, the MDS has to
operation. Forlose, we can always treat it as a metadata writeend the request to disks where the requested metadata resides,
assuming that thiast modify timdield is always updated upon extra disk access overhead contributes to the response time.
file closure. Prefetching happens when a client sees a local cache miss.
2) HP trace: To provide a more comprehensive compariln this case the metadata request is sent to MDS. Upon arrival
son, we also conduct our simulations on the HP trace [21]0Athat request at the metadata server, the requested metadata
10-day trace of file system collected on a time-sharing seruerretrieved (from server side cache, cooperative cache or hard
with a total of 500 GB storage capacity and 236 users. Sindisk) by the MDS along with the entire prefetching group.
it is not a scientific application trace, we artificially scale it up . ) i
to emulate a multi-MDS multi-client application by mergingo- 'race-driven simulations
multiple trace files into one to increase the access densitylrace-driven simulations based on the HP trace and the
while maintaining timing order of the access sequences. lbNL trace were conducted to compare different caching-
our simulations, any 1/0 operations not related to metadagefetching algorithms, including conventional caching al-

Fig. 7. List of operations obtained Istracein LLNL trace collection

are also filtered out. gorithms such as LRU (Least Recently Used), LFU (Least
) ] Frequently Used) and MRU (Most Recently Used), some
B. Simulation framework prefetching algorithms such as First Successor, Last Successor,

A simulation framework was developed to simulate and state of the art prefetching algorithms such as Noah (Stable
clustered-MDS based storage system consisting of multieiccessor), Recent Popularity (also known as Bestt-of-
MDSs and multiple clients with the ability to adopt flexiblek), and Probability-Graph Based prefetching (referred to as
caching/prefetching algorithms. In such a hierarchical storaB& in the rest of this paper).
system, metadata consistency control becomes a prominertlost previous studies use only prediction accuracy to
problem for the designers. However, this is not the focwevaluate the prefetching effectiveness. However, this measure-
of our current study, which is the design and evaluation ofient is neither adequate nor sufficient. The ultimate goal



of prefetching is to reduce the average response time Ngxus even beats OFﬁby a small margin. These results
absorbing 1/0 requests before they reach disks. A highsuggest that Nexus can effectively identify the locality strength
prediction accuracy does not necessarily indicate a higher &itd make a judicious prefetching decision without noticeable
rate nor a lower average response time, since too conservatisehe pollution side-effect.

prefetching, even with a high level of prefetching accuracy, ) )

might not be as beneficial. Thus in our simulations, we nét Average response time comparison

only measure the cache hit rate, but also the average responsg measure the prefetch overhead of Nexus, the average
time by integrating a golden disk simulator, DiskSim 3.0 [24}esponse time is measured by incorporating disk simulators.
into our simulation framework. Figure[9 presents the results obtained from both HP trace
We conduct experiments for all the caching/prefetchinghd LLNL trace. Again, Nexus achieves consistently better
algorithms mentioned above. Due to space limitation, wserformance than any other algorithms except OPT. Figure
remove the results for less representative algorithms, includ[@gp) indicates that the average response time is reduced by up

LFU, MRU (these two are always worse than LRU); Firsfo 67% compared with DL2 and up to 22% compared with
Successor, Last Successor, Noah, Recent Popularity, singe.

these algorithms are consistently inferior to DL. In addition,

Optimal Caching [25], referred to as OPT in the rest of this Impact of consistency control

paper, is simulated as an ideal caching algorithm for theoreticalrhe study on the impact of consistency control on the
comparison purpose. In OPT, the item to be replaced dgyorithm is also carried out on the HP trace and the LLNL
always the farthest in the future access sequence. Since {fige. Since HP trace is essentially metadata read dominant,
prefetching group size for Nexus is set 2o we have tried its result is not as representative as LLNL trace. As the space
both 1 and 2 for this parameter on DL, referred to as DLls |imited, here we only show the average response time
and DL2, respectively, in order to provide a fair comparisoRomparison results collected on the LLNL trace, as in Figure

In sum, in this paper we will present the results for fivgg. These results indicate that the average response time was
caching/prefetching algorithms including Nexus, DL1, DLZ,

LRU and OPT.

In addition, we also conducted these experiments in a multi-
metadata-server multi-client environment in order to test the
scalability of our algorithm.

D. Hit rate comparison

Average Response Time (ms)

We have collected the hit rate for all the three levels
of cache: client cache, server cache and cooperative cache.
Since a group of metadata are prefetched to a client cache
upon a cache miss, and the server cache and the cooperative ¥
cache might offset the effect of the client cache hit rate, Fig. 10. Impact of consistency control

the overall hit rate does not show fully and truly the merits . .
) . o . not noticeably affected by the consistency control. It shows

of our prefetching algorithm. Instead, it is the client cach . . :
; " . i that Nexus is not very sensitive to the write workload. A
that enjoys the benefits from our prefetching algorithm. The . S i )
%ssmle explanation is the characteristic of the workloads in

i ; i i P
experimental results confirmed our suspicion. Figuire 8 show: ich most of the metadata are either read-only or write-once

that the client cache hit rate comparisons on the HP trace ahge o S
his scientific application.

the LLNL trace. Due to space limitation, only the resultd!

V. CONCLUSIONS

We introduced Nexus, a novel weighted-graph-based
O nexus . . apr .
Z di1 prefetching algorithm specifically designed for clustered meta-
mdi2 data servers. Aiming at the emerging MDS-cluster-based stor-
[ opt age system architecture and exploiting the characteristic of
metadata access, our prefetching algorithm distinguishes itself
in the following aspects.
« Nexus exploits the ability to look ahead farther than the

immediate successor to make wiser predictions. Sensitiv-
Fig. 8. Hit rate comparison with 2 metadata servers and 200 clients |ty Study shows that the best performance gain is achieved
when the looking ahead window size is set5to

_

HP Trace LLNL Trace

for 2 metadata servers a0 clients are presented in this

paper.Figur{]8 shows that the client cache hit rate of NexusPIease note that OPT is the theoretical hit rate upper bound for pure
can outperform DL1 and DL2 by more than 8%. Furthermoreaching approaches, not for caching/prefetching approaches.
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Based on the wiser prediction decision, aggressives
prefetching is adopted in our Nexus prefetching algorithm
to take advantage of the relatively small metadata siz
Our study shows that prefetchirdgas a group upon each
cache miss is optimal under the two particular trace$l
studied. Conservative prefetching lose the chance to mayg,
imize the advantage of prefetching, and too aggressive
but not so accurate prefetching might hurt the overall
performance by introducing extra burden to the disk aqgo]
polluting the cache.

The relationship strengths of the successors are differ-
entiated in our relationship graph by assigning variarﬂfl]
edge weights. Four approaches for edge weight assign-
ment were studied in our sensitivity study. The result§
show that the linear decremental assignment approac
represents the most accurate strength for the relationships.
In addition to server-oriented grouping, we also explordéd]
client-oriented grouping as a way to capture better meta-
data access locality by differentiating between the sources
of the metadata requests. Sensitivity study results sh&W!
the latter approach’s consistent performance gain over the
former approach, confirming our assumption. [15]

Other than focusing on the prefetching accuracy — an
indirect performance measurement, we pay our attentions to
the more direct performance goal — cache hit rate improviél
ment and average response time reduction. Simulation results
show remarkable performance gains on both hit rate apd
average response time over conventional and state of the[flgrt

caching/prefetching algorithms. [19]
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