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Abstract. Without any additional hardware, CEFT-PVFS utilizes the existing 
disks on each cluster node to provide RAID-10 style parallel I/O service. In 
CEFT-PVFS, all servers are also computational nodes and can be heavily 
loaded by different applications running on the cluster, thus potentially degrad-
ing the I/O performance. To minimize the degradation, I/O requests can be 
scheduled on a less loaded server in each mirroring pair. To help define the 
meaning of “load” in face of multiple resources such as CPU, memory, disk and 
network, this paper examines the impacts of these resources by measuring ag-
gregate I/O throughput of the simplest CEFT-PVFS configurations, under spe-
cific and isolated workload stresses. Based on the heuristic rules found from the 
experimental results, a scheduling algorithm for dynamic load balancing is de-
veloped.  In a CEFF-PVFS with 16 data servers, we evaluate this algorithm un-
der different workloads. The results show that the proposed scheduling algo-
rithm significantly improves the overall performance. 

Introduction 

The high performance-cost ratio of Linux cluster computing has made it as one of the 
most popular platforms for high-performance computing nowadays. Nevertheless, 
similarly with traditional massively parallel computers, the improvement of I/O per-
formance remains a challenge. The most cost-effective approach to alleviate the I/O 
bottleneck is to build a parallel file system that taps into the aggregated bandwidth of 
existing disks on cluster nodes to deliver a high-performance and scalable storage 
service. This approach does not need any additional hardware. PVFS [1] is one 
notable example of such file systems, which stripes the data among the cluster nodes 
and accesses these nodes in parallel to store or retrieve data. The fatal disadvantage of 
PVFS is that it does not provide any fault tolerance in its current version. Like disk ar-
rays [2], without redundancy, these parallel storage systems are too unreliable to be 
useful since the failure of any cluster node will make all storage services unavailable.  

A Cost-Effective, Fault-Tolerant Parallel Virtual File System (CEFT-PVFS) 
[3][4], has been designed and implemented to meet the critical demands on reliability 
while still being able to deliver a considerably high throughput. While PVFS is a 
RAID 0 style system and it does only striping in its current implementation, CEFT-
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PVFS is a RAID 10 style system, which combines striping with mirroring by first 
striping among the primary group of storage nodes and then duplicating all the data in 
the primary group to the backup group to provide fault tolerance. As shown in our 
previous studies [3], the experiments conducted in a cluster of 128 nodes and theo-
retical reliability analysis based on Markov chain models show that, in cluster envi-
ronments, mirroring can improve the reliability by a factor of over 40 (4000%) while 
sacrificing the peak write performance by 33-58% when both systems are of identical 
sizes (i.e., counting the 50% mirroring disks in the mirrored system). In [4], we pre-
sent that the read performance of CEFT-PVFS can be improved by 100% by doubling 
the parallelism: reading the first half of a file from one storage group and the second 
half from the other group in parallel. 

In this study, we propose a dynamical scheduling algorithm in CEFT-PVFS to im-
prove the write performance. In a cluster, all the storage server nodes in CEFT-PVFS 
or PVFS, as integral parts of a cluster, usually also serve as computational nodes. Ap-
plication programs running on these server nodes will compete for the system re-
sources, such as CPU, memory, disk and network bandwidth, with CEFT-PVFS or 
PVFS server daemons. This resources contention can significantly degrade the overall 
I/O performance. PVFS cannot avoid this performance degradation since there is only 
one copy of the desired data, and thus all the I/O requests have to be directed to the 
destination nodes, even if these nodes are extremely heavily loaded. On the other 
hand, CEFT-PVFS stores two data copies on different nodes.  In this paper, we pro-
pose a heuristic scheduling algorithm, based on the availability of various kinds of re-
sources (CPU, network bandwidth, memory and disk) on server nodes, to improve the 
write performance by scheduling the I/O requests to run on the nodes that can poten-
tially deliver a higher I/O throughput. 

The rest of this paper is organized as follows. We discuss the related work first and 
then give an overview of our CEFT-PVFS. Next the impacts of the system resources’ 
constraints and of the striping group size on the CEFT-PVFS performance are inves-
tigated. A scheduling algorithm based on the heuristic rules is presented and evaluated 
under different system resource constraints (stressed workload). Finally, we conclude 
the paper with comments on current and future work. 

Related Work 

Extensive research has been conducted in the area of parallel I/O. Among the many 
successful parallel I/O systems proposed or implemented is a production-level file 
system, Parallel Virtual File System (PVFS) [1], developed at the Clemson University 
and Argonne National Lab. Like RAID, the files are partitioned into stripe units, and 
the stripes are distributed to disks on cluster nodes in a round robin fashion. Unlike 
RAID, PVFS provides a file-level, instead of block-level interface, and all the data 
traffic flows in parallel, without going through a centralized component, which can 
become a performance bottleneck. The experimental results show that PVFS provides 
high performance, even for non-contiguous I/O accesses [5], which may cause sig-
nificant performance degradation in a conventional storage system.  On the other 
hand, PVFS in its current form is only a RAID-0 style storage system without any 
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fault-tolerance. Any single server node failure will render the entire file system dys-
functional. One of the authors of PVFS [6] further addressed the importance and ne-
cessity to incorporate fault-tolerance into PVFS.  

CEFT-PVFS extends the work of PVFS by incorporating a fault-tolerant mecha-
nism in the form of server mirroring. Thus, CEFT-PVFS is a RAID-10 style parallel 
file system, which first stripes the data across a group of storage nodes and then mir-
rors these data into another group. In CEFT-PVFS, a new naming mechanism, MD5 
sum [7] is used for the striped data, which overcomes the inability of PVFS to back up 
the metadata server, the most critical component in the storage system. Four different 
mirroring (or duplication) protocols are designed and implemented in software, with-
out adding any new hardware. In addition, the reliability of these protocols is theoreti-
cally analyzed based on a Markov chain model. 

There are several studies related to PVFS. Ref. [8] implements a kernel level cach-
ing to improve I/O performance of concurrently executing processes. Ref. [9] ana-
lyzes the role of sensitivity of the data servers and clients, and concludes that when a 
node serves both as an I/O client and as a data server, the overall I/O performance will 
be degraded. In [10][11], a scheduling scheme is introduced for the service order of 
different requests on each server according to their desired locations in the space of 
LBA in order to reduce disk arm seeking time.  

The study in this paper is different from the above studies in that it attempts to im-
prove the write performance of CEFT-PVFS by exploiting the possible disparity in 
resource availability between two nodes of each mirroring pair and among mirroring 
pairs within a server group. To the best of our knowledge, this paper is the first to ad-
dress this issue. 

Overview of CEFT-PVFS 

In CEFT-PVFS, we choose to use mirroring to improve the reliability. As the storage 
capacity increases exponentially, the storage cost decreases accordingly; according to 
Moore’s Law, a terabyte of IDE storage will cost $100 US within three years. Com-
pared with IDA [12][13] and RAID 5 style [14][15] parallel systems, the mirroring 
approach adds the smallest operational overhead and its recovery process and concur-
rency control are relatively simple and thus have higher efficiency. Another benefit 
from mirroring, which the other redundancy approaches can not achieve, is that the 
aggregate read performance can be doubled by doubling the parallelism, that is, read-
ing data from two mirroring groups simultaneously. 

CEFT-PVFS divides server nodes into two storage groups, one primary group and 
one backup group. The primary and backup groups have the same number of server 
nodes, as shown in Figure 1. The division of the primary and backup group is based 
on files; for different files, the division of the primary group and the backup group 
can be different. In each group, there is one metadata server, which records the strip-
ing information for each file. To access the data in CEFT-PVFS, all clients need to 
contact the metadata servers first to get the destination data server addresses and the 
striping information about their desired data. After that all I/O operations will take 
place between the clients and servers directly in parallel through the network. 
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Another important responsibility of the metadata server is to choose one node 
among each mirroring pair to form a primary storage group for each individual I/O. 
When an I/O request arrives, the metadata server will check whether the required 
metadata exists. If the metadata exists and the duplication flags indicate that the re-
quired data file on some data server nodes has not finished the duplication, then these 
data server nodes have to be included into the primary group. In the other cases, the 
metadata server is needed to choose one node among each pair according to the work-
loads on the data servers. Each data server node periodically collects its CPU, net-
work, memory and disk usage information and sends it to the metadata server along 
with the heartbeat message. Based on this information, a scheduling algorithm, given 
in the later sections, will be used to form the primary storage group. 
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For write accesses in CEFT-PVFS, we have designed and implemented four dupli-

cation protocols to meet different requirements for reliability and write performance. 
Duplication can be either synchronous or asynchronous, i.e., the completion of write 
accesses can be signaled after the data has already taken residence on both groups or 
only on the primary group. At the same time, duplications can be performed either by 
the client nodes themselves or by the servers in the primary group. The four protocols 
are created based on different combinations from these two categories. The experi-
mental measurements and theoretical analysis based on Markov chain models indicate 
that protocols with higher peak write performance are inferior to those with lower 
peak write performance in terms of reliability, with the latter achieving a higher reli-
ability at the expense of some write bandwidth [3].  

Impact of System Recourse Constraints and Striping Group Size 
on Performance 

Among the four duplication protocols, in this paper we only address the asynchronous 
server duplication protocol in which the servers do the duplication and the I/O opera-

Fig. 1. Logical block diagram of CEFT-PVFS 
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tions are considered completed when the data has taken residence on the primary 
group. This protocol benefits more from the scheduling than the other three protocols 
while the skipping will impact the performance of all protocols.  

Environment and Benchmark 

The performance results presented here are measured on the PrairieFire cluster [16] 
where CEFT-PVFS has been implemented and installed, at the University of Ne-
braska-Lincoln. At the time of our experiment, the cluster had 128 computational 
nodes, each with two AMD Athlon MP 1600 processors, 1 GByte of RAM, a 2 giga-
bits/s full-duplex Myrinet [17] card, and a 20GB IDE (ATA100) hard drive. Under 
the same network and system conditions in which CEFT-PVFS operates, the Netperf 
[18] benchmark reports a TCP bandwidth of 126.51 MBytes/s with 47% CPU utiliza-
tion. The disk write bandwidth is 32 MBytes/s when writing a large file of 2 GBytes 
according to the Bonnie benchmark [19]. 

A micro-benchmark, similar to the one used in [1][20][21][22], was used to meas-
ure the overall write performance of this parallel file system. In this benchmark, each 
client concurrently opens a new common file, then writes disjoint portions of this file, 
and finally closes it. The response time of the slowest client is considered as the over-
all response time.  Figure 2 shows the pseudocode of this benchmark. 

 
for all clients: 

synchronize all clients using MPI barrier; 
t1 = current time; 
open a file; 
synchronize all clients using MPI barrier; 
loop to write data; 
close the file; 
t2 = current time; 
ct = t1 – t2; /* overall completion time */ 
send ct to client 0; 

 
for client 0: 
 find maximum of ct; /*find slowest client */ 
calculate write throughput using maximum ct; 

 
Fig. 2. Pseudocode of the benchmark 

Impact of CPU, disk, memory and network workload on write performance 

In a cluster environment, applications usually have different requirements for sys-
tem resources, primarily CPU, disk, memory and network. In this section, we will 
present the impact of different workload conditions of CPU, disk, memory, and net-
work on the performance of CEFT-PVFS. Since CEFT-PVFS, an RAID-10 style sys-
tem, strides the files among the data server nodes in a round-robin fashion and the 
write performance is largely determined by the slowest data server in one storage 
group, it is essential to understand the characteristics and behaviors of individual data 
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servers under a variety of system resource utilizations, in order to be able to make 
load-balancing decisions dynamically. To make this problem tractable, we measure 
the performance of CEFT-PVFS in its simplest configuration, in which either group 
contains only one data server and one metadata server, and in its simplest I/O access 
pattern, in which only one client writes a new file to the data server.  While we artifi-
cially put different stresses on one of the recourses of the data server and keep the 
other resources idle, we measure the write performance with increasing I/O loads, i.e., 
increasing the file size. Each measurement is repeated 30 times and the average value 
is calculated after discarding the 2 highest and the 2 smallest measurements. The 
measurement results are detailed in the following paragraphs. 

Impact of CPU workload on write performance 
 

While CPUs in general are not the bottleneck for I/O operations, CPUs on the data 
server nodes, which usually also serve as computation nodes in a cluster, may be 
heavily loaded by scientific applications, especially compute-intensive programs, thus 
potentially increasing the I/O response time. As the experiments show, the influence 
of CPU load on the I/O performance is insignificant when the usage of both CPUs is 
below 99%. We define the average CPU load as the average number of processes 
ready to run during the last minute. To artificially make the load of an idle CPU a 
specific number, such as three, we can fork three processes and let each process exe-
cute an infinite busy loop. Figure 3 shows the write performance under different CPU 
loads while both CPUs on the data server node are 99% utilized and the memory, disk 
and network are nearly 100% idle. The experiments indicate that the write perform-
ance will be reduced by approximately 31%, 60%, 70%, and 73% on average if the 
CPU is busy and the average load is 1, 2, 3, and 4, respectively.  
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Fig. 3. The influence of CPU loads on write
performance under different data size 
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Impact of network traffic load on write performance 
 

CEFT-PVFS uses the TCP/IP to transfer data between the client and server nodes. 
The TCP/IP performance over the 2 gigabits/s full-duplex Myrinet of PrairieFire is 
measured using Netperf [18]. Based on the basic client-server model, Netperf meas-
ures the performance by sending bulk data between the server and the clients. Figure 
4 shows the TCP/IP performance when different numbers of Netperf clients simulta-
neously communicate with one Netperf server. All the Netperf clients and server are 
located at different nodes in the cluster. As the figure shows, the server has an average 
of 126.51 MBytes/s TCP/IP throughput, which is shared by all the clients. Our test us-
ing gm_debug facilities [17] indicates that, while the PCI bus has a read and write 
throughput of 236 MBytes/sec and 209 MBytes/sec respectively, the average CPU 
utilization of the Netperf server is only 47% during the measurement. This suggests 
that the bottleneck of the TCP/IP performance is likely located at the TCP/IP stack at 
the server side, which requires an integrated memory copy and thus generates an ex-
tra, potentially large latency.  In addition, this figure also shows that when more than 
five nodes concurrently communicate with the same node, the average throughput of 
an individual node is less than the maximum disk throughput, implying that when 
there are communication-intensive applications running on the CEFT-PVFS server 
nodes, the bottleneck of I/O operations could potentially shift from disks to the 
TCP/IP stack. 

The write performance under different numbers of Netperf clients is measured and 
given in Figure 5 when Netperf server and the CEFT-PVFS data server are deliber-
ately placed on the same node. When the data size is small, the Netperf client nodes 
and the CEFT-PVFS client nodes share the TCP/IP bandwidth nearly evenly. With the 
increase in data size, the performance further degrades due to the compounded nega-
tive impact of memory shortage.  
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Fig. 4. TCP/IP performance when different client nodes 
concurrently communicate to one server node 
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Impact of memory and disk load on write performance 
 

Memory and disk are closely coupled in almost all modern operating systems. In 
this paper, we only analyze the overall impact of disk and memory. A simple pro-
gram, shown in Figure 6, is developed to stress the disk and memory on data server 
nodes. In this program, the synchronous write always guarantees a disk access, but the 
operating system usually places the most recently used data in the cache buffer in an 
effort to avoid some disk accesses. Although this caching buffer can be automatically 
reclaimed by the operating system, the competition for memory between this program 
and CEFT-PVFS on the server node will certainly reduce the write performance. As 
we have measured, when only this program is running, both CPUs are nearly 95% 
idle and therefore will likely little or no negative impact on the write performance 
during this set of measurements. Another observation is that, like the network charac-
teristics shown in Figure 3, the disk bandwidth is nearly equally shared by all the I/O-
intensive processes running on the same node, i.e., if there are five processes concur-
rently writing data into the same disk, the I/O performance of each process would be 
around 8 MBytes/s when the maximum disk write throughput is 40MBytes/s. 

 
 1. M = allocate(1 MBytes);

2. create a file named F; 
3. while(1) 
4.   if(size(F) > 1 GB) 
5.      truncate F to zero byte 
6.   else 
7.      synchronously append the data 
8.      in M to the end of F. 
9. end of while. 

 
 
 

Fig. 5. Write performance under different network 
traffic disturbance

Fig. 6. Program to stress the memory and disk
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Figure 7 plots the write performance when the memory and disk are heavily 
loaded. When the above program runs on the CEFT-PVFS server node, the perform-
ance drops nearly 64% even when the data size is only a small fraction of the total 
size of the physical memory. Under this heavy disk and memory stress, write per-
formance approximates the disk maximum throughput even when the file size is 
small. When data size is large, the write performance drops below the maximum disk 
throughput since the data is too large to be buffered so that the disk bandwidth has to 
be shared. We conclude that when the CPU load is not high, the disk-memory “com-
pound” plays a more significant role than the network. 

To skip or not to skip a busy node while striping? 

When the system resources on one mirroring pair are heavily loaded, it might be 
beneficial to skip these nodes while striping, in order to balance the write load among 
the designated group of mirroring pairs.  Can skipping the busy nodes compensate for 
the reduced parallelism? To answer this question, we need to exam how the perform-
ance scales with the total number of data server nodes when all the server nodes are 
lightly and equally loaded. 

Figures 8 and 9 show the aggregate performances corresponding to two cases: con-
stant-sized files being written by a variable number of client nodes, and variable-sized 
files being written by a constant number of client nodes, given that all the nodes are 
not heavily loaded. The average peak performances in the saturated region in Figure 8 
of the three different CEFT-PVFS configurations are 492, 796 and 1386 MBytes/s re-
spectively, which are nearly proportional to the total number of data servers, thus in-
dicating a good scalability of CEFT-PVFS. This scalability, however, does not neces-
sarily hold in the unsaturated regions in Figure 9, implying that a larger number of 
server nodes does not necessarily result in a proportionally higher write performance. 
In fact, the opposite is true when the file size falls in the range of 0.5 to 8 MBytes. In 
other words, for some file sizes a larger number of server nodes result in lower per-

Fig. 7. Write performance when the memory and
disk are heavily loaded
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formance, and vise versa.  It is this counter-intuitive property that, shown in both fig-
ures, highlights the necessity of skipping some data servers to improve the overall 
performance, even when all the server nodes are well balanced, which will be not ad-
dressed in this paper. Nevertheless, judiciously skipping server nodes, or equivalently 
resizing the striping group, in a well-balanced system to improve write performance, 
while necessary, is beyond the scope of this paper, and thus will not be addressed.  
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In a realistic setting of cluster computing, the workload on all the data servers could 

be significantly different since parallel scientific applications usually are scheduled to 
run on only a portion of nodes, instead of every node. It is possible, in fact, rather 
likely, that one mirroring pair are both heavily loaded, thus degrading the overall per-

Fig. 8. Aggregate write performance of CEFT-PVFS when 
each client writes 16 MBytes data to the servers

Fig. 9. Aggregate write performance of CEFT-PVFS 
when the total number of clients nodes is 16 
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formance substantially. In such cases, skipping the busy pair helps alleviate the nega-
tive impact of the pair due in part to their dual roles in the cluster as a CEFT-PVFS 
server node and as a compute node. Experiment results show that if a mirroring pair is 
heavily loaded and the maximum I/O throughput that they can provide is only about 
half of the disk bandwidth, skipping this mirroring pair usually improves the overall 
performance. This observation is helpful in developing the heuristic scheduling algo-
rithm, to be described later.  

The skipping is most beneficial to the data that are written once and are rarely re-
written or read. A cluster is a highly dynamic environment with a constantly changing 
workload on each node. Therefore, although skipping a server may boost the write 
performance at the time of the first write, if the file is going to be rewritten or read 
many times, the performance benefit will be amortized by future reads and writes. 
Thus in this paper, only written once application is addressed for skipping. 

Scheduling algorithm 

Previous sections presented, quantitatively, the impact of resource availability of 
various kinds on the behaviors of write operations in its simplest configuration and 
under the simplest workload pattern. In addition, experimental results suggest that ju-
diciously skipping some server nodes while striping can be potentially beneficial to 
performance enhancement, especially for write-once applications. While such sim-
plistic but quantitative results about performance impact of resource availability may 
not be directly extended to a CEFT-PVFS with multiple data servers and more com-
plex I/O workload, the relative sensitivities of resource availability of different kind 
and the scalability information implied can give useful heuristic hints to the develop-
ment of a dynamic scheduling algorithm for load balancing.  

Since the metadata server is responsible for all the scheduling work, which can po-
tentially form a bottleneck, we try to keep the schedule algorithm as simple as possi-
ble to reduce the scheduling overhead. A straightforward algorithm is developed in 
this paper. In this algorithm, we only consider skipping at most one data server in a 
striping group to reduce the intrinsic scheduling complexity.  Based on our experi-
ences, skipping one node that can provide at most half of the maximum disk through-
put significantly boosts the overall performance. Thus the value of one half of the 
maximum disk throughput is used as the threshold to decide on skipping.  

The basic idea of this algorithm is that for each mirroring pair, if it is not heavily 
stressed, choose one node that could potentially deliver a higher I/O throughput from 
each mirroring pair to construct the primary storage group. In addition, according to 
the skipping reasons, all these pairs are sorted into four groups, CPU, memory, disk, 
and network. While each group is assigned a different priority and the priorities from 
the highest to the lowest are network, memory, disk and CPU, a pair in the non-empty 
group with the highest priority will be randomly chosen to be skipped. 

In this dynamic scheduling algorithm, the available disk throughput Di on node i is 
estimated as min(Dmax−Dused, Dmax/(n+1)), where Dmax, Dused and n are the maximum 
disk throughput, the disk throughput of the last interval, and the total number of proc-
esses that are doing I/O operations respectively. The available network throughput is 
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estimated in a similar way. The size of the free memory space on a node is obtained 
from the memory management system of the operating system kernel. All these pa-
rameters are stored on the metadata server. The data server nodes collect this informa-
tion and send it to the metadata server every one-second.  

 
Function:  

choose a data server between node i and its mirrored node j 
Inputs: 

NETi, NETj: available network throughput on node i and j 
MEMi, MEMj: size of available free memories on node i and j 
DISKi, DISKj: available disk throughput on node i and j 
CPUi1, CPUi2, CPUj1, CPUj2: average CPU usages on node i and j 
LOADi, LOADj: average CPU load on node i and j 
DISKmax: maximum disk throughput 
FSIZE: size of the desired portion of the destination file 

 
Algorithm: 
1. if min(CPUi1,CPUi2,CPUj1,CPUj2) ≥ 99% and min(LOADi,LOADj) > 2 
2. set the skipping flag; 
3. else if min(CPUi1, CPUi2) ≥ 99% and LOADi > 2 
4. choose node j; 
5. else if min(CPUj1, CPUj2) ≥ 99% and LOADj > 2 
6. choose node i; 
7. else if MEMi > FSIZE and MEMj > FSIZE 
8.     if NETi ≤ 0.5*DISKmax and NETj ≤ 0.5*DISKmax 
9.        set the skipping flag; 
10.     else 
11.        choose i if NETi ≥ NETj; otherwise, choose j; 
12.     end 
13. else if MEMi ≤ FSIZE and MEMj ≤ FSIZE  
14.     if min(DISKi, NETi) ≤ 0.5*DISKmax  
15.        and min(DISKj, NETj) ≤ 0.5*DISKmax 
16.         set the skipping flag; 
17.     else 
18.         choose i if min(DISKi, NETi) > min(DISKj, NETj);    
19.         otherwise j; 
20.      end 
21. else 
22.      choose i if MEMi > FSIZE > MEMj and NETi ≥ 0.5*DISKmax 
23.      choose j if MEMj > FSIZE > MEMi and NETj ≥ 0.5*DISKmax 
24.      choose i if MEMj > FSIZE > MEMi and NETi ≥ 0.5*DISKmax 
25.      choose j if MEMi > FSIZE > MEMj and NETj ≥ 0.5*DISKmax 
26.         otherwise set the skipping flag; 
27. end 
 

Fig. 10. Scheduling algorithm for I/O requests 
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Performance evaluation 

In this section, we will evaluate our heuristic scheduling algorithm in a CEFT-PVFS 
that has eight data servers in one striping group. To fairly compare the performance 
with scheduling and without scheduling, the benchmark programs need to be executed 
in the same environment with identical workload. In a real cluster in production 
mode, such as the PrairieFire in which CEFT-PVFS is installed, unfortunately, it is 
nearly impossible to obtain such a repeatable environment since the workload on each 
node is constantly changing with the progression of applications running in the clus-
ter. Therefore, instead of doing comparisons in a real environment, we compare per-
formances in an artificially created environment in which the load of a specific kind 
of resource on a server node is kept approximately constant by using the programs de-
scribed in the previous sections, although interferences from other computation pro-
grams running on the cluster can not be avoided.  

To make sure that the bottleneck of the I/O operation is located on the server side 
rather than the client side, 16 client nodes are used to simultaneously write to the 
server and the aggregate performance is measured. Two sets of experiments are con-
ducted. In the first set, the workload stress is applied only on one node while its mir-
roring node is kept almost idle so that skipping will not be necessary. In the second 
set, the workload stress is put on both nodes of a mirroring pair so that it will become 
necessary to skip. In each set of experiments, the CPU, network, and the disk-memory 
compound are each stressed in turn, and the results are presented in the following fig-
ures. In each figure, the average write performance of the scheduling algorithm is 
shown, since under different stress conditions of the same resource, the performances 
of the scheduling algorithm are very close.   

Figures 11 and 12 show results of experiments in which the CPU and network of 
one primary node are stressed, respectively. In experiments reported in Figure 13, 
both the disk and memory are stressed on one node or on two nodes in the same strip-
ing group. In Figures 14 and 15, the CPU and network of one mirroring pair are 
stressed simultaneously. Figure 16 gives the comparison when both the disk and 
memory on one mirroring pair are stressed. The performance of the scheduling is sig-
nificantly better than the performance of non-scheduling in the vast majority of the 
test cases. 

In the cases of skipping, shown in Figures 14-16, the aggregate performance of the 
scheduling algorithm starts to decrease sharply when the data size of each client is 
larger than 64MBytes. This sharp decrease is due to the fact that, as data size from 
each client node increases, the total file size allocated on one server node becomes so 
significant that the negative impact of load redistribution (as a result of skipping) onto 
the remaining 7 server nodes quickly offsets the positive gain from skipping. These 
figures show that when one of the resources on a server node is heavily loaded, our 
scheduling algorithm derived from the heuristic observations, can significantly im-
prove the write performance. 
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Fig. 11. Stress CPUs on one server node 

Fig. 12. Stress network on one server 

Fig. 13. Stress disk and memory on one server node
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Fig. 15. Stress network on one mirroring 

Fig. 16. Stress disk and memory on one mirroring pair

Fig. 14. Stress CPUs on one mirroring pair



16  Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson  

 

Figure 17 shows the comparison of our scheduling algorithm with two other algo-
rithms, one solely based on the availability of disk and memory, and the other solely 
based on the availability of network bandwidth. This figure clearly shows that two 
simplistic algorithms are inferiors to ours since both of them are limited by the 
amount of information on which their decisions are based while our algorithm bases 
its decision on a more comprehensive piece of system workload information. The per-
formance in Figure 17 is a little higher than the performance in the other figures be-
cause Figure 17 is measured immediately after the reboot of our cluster and there is 
almost no computation application except our load stress program. 
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Conclusions and Future Work 

A reliable and high-performance I/O and storage system is of paramount importance 
to parallel and distributed computing. CEFT-PVFS extends PVFS by incorporating 
mirroring to provide fault tolerance. Although the peak performance of CEFT-PVFS 
can reach the level of GBytes/sec, the performance can be significantly reduced if the 
data servers, which also serve as computational nodes in a cluster, are heavily loaded 
by applications running in the cluster. Since in CEFT-PVFS each data item has two 
copies and they are stored in two different nodes, it provides an opportunity for 
scheduling algorithms to exploit the workload disparity between these two nodes in a 
mirroring pair or among all mirroring pairs within a striping group. Therefore, in this 
paper a heuristic scheduling algorithm is developed to schedule the I/O requests to the 
node with less workload in a pair or to skip a heavily loaded pair altogether while 
striping, in a hope to improve I/O write performance. To reduce the intrinsic complex-
ity of this scheduling problem and to understand the workload characteristics in a 
cluster, we conducted experiments on simplest CEFT-PVFS configurations, under 
specific and isolated workload conditions. From the experimental results, we drew 
heuristic hints to help design the algorithm. For example if the CPU usage and load 

Fig. 17. Stress disk and memory on one node and stress 
the network on its mirroring node 
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are less than 99% and 2 respectively, CPU will not have a significant influence on the 
overall performance. Otherwise, overall performance will be substantially degraded. 
Based on these heuristic hints, a simple but effective algorithm is developed and its 
performance is evaluated in a CEFT-PVFS with 16 servers under different workload 
conditions. The performance measured shows that this scheduling algorithm is capa-
ble of significantly improving the overall I/O write performance when the system is 
under an unbalanced workload.  

    While we designed and implemented the prototype of the dynamic scheduling 
algorithm, many important challenges remain. Our future work is to provide a more 
generic and platform-independent algorithm. We need to use more realistic bench-
mark to measure the I/O performance. More experiments are necessary to justify 
some parameters of the heuristic rules and detail the rationale behind our algorithm. 
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