
Scheduling for Improved Write Performance in a Cost-
Effective, Fault-Tolerant Parallel Virtual File System

(CEFT-PVFS)

Yifeng Zhu1, Hong Jiang1, Xiao Qin1, Dan Feng2, and David R. Swanson1

1Department of Computer Science and Engineering
University of Nebraska – Lincoln, Lincoln, Nebraska, USA

2Department of Computer Science and Engineering
Huazhong University of Science and Technology, Wuhan, China

Abstract. Without any additional hardware, CEFT-PVFS utilizes the existing
disks on each cluster node to provide RAID-10 style parallel I/O service. In
CEFT-PVFS, all servers are also computational nodes and can be heavily
loaded by different applications running on the cluster, thus potentially degrad-
ing the I/O performance. To minimize the degradation, I/O requests can be
scheduled on a less loaded server in each mirroring pair. To help define the
meaning of “load” in face of multiple resources such as CPU, memory, disk and
network, this paper examines the impacts of these resources by measuring ag-
gregate I/O throughput of the simplest CEFT-PVFS configurations, under spe-
cific and isolated workload stresses. Based on the heuristic rules found from the
experimental results, a scheduling algorithm for dynamic load balancing is de-
veloped. In a CEFF-PVFS with 16 data servers, we evaluate this algorithm un-
der different workloads. The results show that the proposed scheduling algo-
rithm significantly improves the overall performance.

Introduction

The high performance-cost ratio of Linux cluster computing has made it as one of the
most popular platforms for high-performance computing nowadays. Nevertheless,
similarly with traditional massively parallel computers, the improvement of I/O per-
formance remains a challenge. The most cost-effective approach to alleviate the I/O
bottleneck is to build a parallel file system that taps into the aggregated bandwidth of
existing disks on cluster nodes to deliver a high-performance and scalable storage
service. This approach does not need any additional hardware. PVFS [1] is one
notable example of such file systems, which stripes the data among the cluster nodes
and accesses these nodes in parallel to store or retrieve data. The fatal disadvantage of
PVFS is that it does not provide any fault tolerance in its current version. Like disk ar-
rays [2], without redundancy, these parallel storage systems are too unreliable to be
useful since the failure of any cluster node will make all storage services unavailable.

A Cost-Effective, Fault-Tolerant Parallel Virtual File System (CEFT-PVFS)
[3][4], has been designed and implemented to meet the critical demands on reliability
while still being able to deliver a considerably high throughput. While PVFS is a
RAID 0 style system and it does only striping in its current implementation, CEFT-

In the Proceedings of ClusterWorld Conference and Expo, 2003

2 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

PVFS is a RAID 10 style system, which combines striping with mirroring by first
striping among the primary group of storage nodes and then duplicating all the data in
the primary group to the backup group to provide fault tolerance. As shown in our
previous studies [3], the experiments conducted in a cluster of 128 nodes and theo-
retical reliability analysis based on Markov chain models show that, in cluster envi-
ronments, mirroring can improve the reliability by a factor of over 40 (4000%) while
sacrificing the peak write performance by 33-58% when both systems are of identical
sizes (i.e., counting the 50% mirroring disks in the mirrored system). In [4], we pre-
sent that the read performance of CEFT-PVFS can be improved by 100% by doubling
the parallelism: reading the first half of a file from one storage group and the second
half from the other group in parallel.

In this study, we propose a dynamical scheduling algorithm in CEFT-PVFS to im-
prove the write performance. In a cluster, all the storage server nodes in CEFT-PVFS
or PVFS, as integral parts of a cluster, usually also serve as computational nodes. Ap-
plication programs running on these server nodes will compete for the system re-
sources, such as CPU, memory, disk and network bandwidth, with CEFT-PVFS or
PVFS server daemons. This resources contention can significantly degrade the overall
I/O performance. PVFS cannot avoid this performance degradation since there is only
one copy of the desired data, and thus all the I/O requests have to be directed to the
destination nodes, even if these nodes are extremely heavily loaded. On the other
hand, CEFT-PVFS stores two data copies on different nodes. In this paper, we pro-
pose a heuristic scheduling algorithm, based on the availability of various kinds of re-
sources (CPU, network bandwidth, memory and disk) on server nodes, to improve the
write performance by scheduling the I/O requests to run on the nodes that can poten-
tially deliver a higher I/O throughput.

The rest of this paper is organized as follows. We discuss the related work first and
then give an overview of our CEFT-PVFS. Next the impacts of the system resources’
constraints and of the striping group size on the CEFT-PVFS performance are inves-
tigated. A scheduling algorithm based on the heuristic rules is presented and evaluated
under different system resource constraints (stressed workload). Finally, we conclude
the paper with comments on current and future work.

Related Work

Extensive research has been conducted in the area of parallel I/O. Among the many
successful parallel I/O systems proposed or implemented is a production-level file
system, Parallel Virtual File System (PVFS) [1], developed at the Clemson University
and Argonne National Lab. Like RAID, the files are partitioned into stripe units, and
the stripes are distributed to disks on cluster nodes in a round robin fashion. Unlike
RAID, PVFS provides a file-level, instead of block-level interface, and all the data
traffic flows in parallel, without going through a centralized component, which can
become a performance bottleneck. The experimental results show that PVFS provides
high performance, even for non-contiguous I/O accesses [5], which may cause sig-
nificant performance degradation in a conventional storage system. On the other
hand, PVFS in its current form is only a RAID-0 style storage system without any

 Scheduling for Improved Write Performance in CEFT-PVFS 3

fault-tolerance. Any single server node failure will render the entire file system dys-
functional. One of the authors of PVFS [6] further addressed the importance and ne-
cessity to incorporate fault-tolerance into PVFS.

CEFT-PVFS extends the work of PVFS by incorporating a fault-tolerant mecha-
nism in the form of server mirroring. Thus, CEFT-PVFS is a RAID-10 style parallel
file system, which first stripes the data across a group of storage nodes and then mir-
rors these data into another group. In CEFT-PVFS, a new naming mechanism, MD5
sum [7] is used for the striped data, which overcomes the inability of PVFS to back up
the metadata server, the most critical component in the storage system. Four different
mirroring (or duplication) protocols are designed and implemented in software, with-
out adding any new hardware. In addition, the reliability of these protocols is theoreti-
cally analyzed based on a Markov chain model.

There are several studies related to PVFS. Ref. [8] implements a kernel level cach-
ing to improve I/O performance of concurrently executing processes. Ref. [9] ana-
lyzes the role of sensitivity of the data servers and clients, and concludes that when a
node serves both as an I/O client and as a data server, the overall I/O performance will
be degraded. In [10][11], a scheduling scheme is introduced for the service order of
different requests on each server according to their desired locations in the space of
LBA in order to reduce disk arm seeking time.

The study in this paper is different from the above studies in that it attempts to im-
prove the write performance of CEFT-PVFS by exploiting the possible disparity in
resource availability between two nodes of each mirroring pair and among mirroring
pairs within a server group. To the best of our knowledge, this paper is the first to ad-
dress this issue.

Overview of CEFT-PVFS

In CEFT-PVFS, we choose to use mirroring to improve the reliability. As the storage
capacity increases exponentially, the storage cost decreases accordingly; according to
Moore’s Law, a terabyte of IDE storage will cost $100 US within three years. Com-
pared with IDA [12][13] and RAID 5 style [14][15] parallel systems, the mirroring
approach adds the smallest operational overhead and its recovery process and concur-
rency control are relatively simple and thus have higher efficiency. Another benefit
from mirroring, which the other redundancy approaches can not achieve, is that the
aggregate read performance can be doubled by doubling the parallelism, that is, read-
ing data from two mirroring groups simultaneously.

CEFT-PVFS divides server nodes into two storage groups, one primary group and
one backup group. The primary and backup groups have the same number of server
nodes, as shown in Figure 1. The division of the primary and backup group is based
on files; for different files, the division of the primary group and the backup group
can be different. In each group, there is one metadata server, which records the strip-
ing information for each file. To access the data in CEFT-PVFS, all clients need to
contact the metadata servers first to get the destination data server addresses and the
striping information about their desired data. After that all I/O operations will take
place between the clients and servers directly in parallel through the network.

4 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

Another important responsibility of the metadata server is to choose one node
among each mirroring pair to form a primary storage group for each individual I/O.
When an I/O request arrives, the metadata server will check whether the required
metadata exists. If the metadata exists and the duplication flags indicate that the re-
quired data file on some data server nodes has not finished the duplication, then these
data server nodes have to be included into the primary group. In the other cases, the
metadata server is needed to choose one node among each pair according to the work-
loads on the data servers. Each data server node periodically collects its CPU, net-
work, memory and disk usage information and sends it to the metadata server along
with the heartbeat message. Based on this information, a scheduling algorithm, given
in the later sections, will be used to form the primary storage group.

Myrinet Switch

...Client
node

Primary group

...

Data
Server 1D 1

Data
Server 2D 2

Data
Server ND N

Backup group

...

Data
Server 1' D 1'

Data
Server 2' D 2'

Data
Server N' D N'

Metadata
ServerMeta

Client
node

Client
node

Metadata
Server' Meta'

For write accesses in CEFT-PVFS, we have designed and implemented four dupli-

cation protocols to meet different requirements for reliability and write performance.
Duplication can be either synchronous or asynchronous, i.e., the completion of write
accesses can be signaled after the data has already taken residence on both groups or
only on the primary group. At the same time, duplications can be performed either by
the client nodes themselves or by the servers in the primary group. The four protocols
are created based on different combinations from these two categories. The experi-
mental measurements and theoretical analysis based on Markov chain models indicate
that protocols with higher peak write performance are inferior to those with lower
peak write performance in terms of reliability, with the latter achieving a higher reli-
ability at the expense of some write bandwidth [3].

Impact of System Recourse Constraints and Striping Group Size
on Performance

Among the four duplication protocols, in this paper we only address the asynchronous
server duplication protocol in which the servers do the duplication and the I/O opera-

Fig. 1. Logical block diagram of CEFT-PVFS

 Scheduling for Improved Write Performance in CEFT-PVFS 5

tions are considered completed when the data has taken residence on the primary
group. This protocol benefits more from the scheduling than the other three protocols
while the skipping will impact the performance of all protocols.

Environment and Benchmark

The performance results presented here are measured on the PrairieFire cluster [16]
where CEFT-PVFS has been implemented and installed, at the University of Ne-
braska-Lincoln. At the time of our experiment, the cluster had 128 computational
nodes, each with two AMD Athlon MP 1600 processors, 1 GByte of RAM, a 2 giga-
bits/s full-duplex Myrinet [17] card, and a 20GB IDE (ATA100) hard drive. Under
the same network and system conditions in which CEFT-PVFS operates, the Netperf
[18] benchmark reports a TCP bandwidth of 126.51 MBytes/s with 47% CPU utiliza-
tion. The disk write bandwidth is 32 MBytes/s when writing a large file of 2 GBytes
according to the Bonnie benchmark [19].

A micro-benchmark, similar to the one used in [1][20][21][22], was used to meas-
ure the overall write performance of this parallel file system. In this benchmark, each
client concurrently opens a new common file, then writes disjoint portions of this file,
and finally closes it. The response time of the slowest client is considered as the over-
all response time. Figure 2 shows the pseudocode of this benchmark.

for all clients:

synchronize all clients using MPI barrier;
t1 = current time;
open a file;
synchronize all clients using MPI barrier;
loop to write data;
close the file;
t2 = current time;
ct = t1 – t2; /* overall completion time */
send ct to client 0;

for client 0:
 find maximum of ct; /*find slowest client */
calculate write throughput using maximum ct;

Fig. 2. Pseudocode of the benchmark

Impact of CPU, disk, memory and network workload on write performance

In a cluster environment, applications usually have different requirements for sys-
tem resources, primarily CPU, disk, memory and network. In this section, we will
present the impact of different workload conditions of CPU, disk, memory, and net-
work on the performance of CEFT-PVFS. Since CEFT-PVFS, an RAID-10 style sys-
tem, strides the files among the data server nodes in a round-robin fashion and the
write performance is largely determined by the slowest data server in one storage
group, it is essential to understand the characteristics and behaviors of individual data

6 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

servers under a variety of system resource utilizations, in order to be able to make
load-balancing decisions dynamically. To make this problem tractable, we measure
the performance of CEFT-PVFS in its simplest configuration, in which either group
contains only one data server and one metadata server, and in its simplest I/O access
pattern, in which only one client writes a new file to the data server. While we artifi-
cially put different stresses on one of the recourses of the data server and keep the
other resources idle, we measure the write performance with increasing I/O loads, i.e.,
increasing the file size. Each measurement is repeated 30 times and the average value
is calculated after discarding the 2 highest and the 2 smallest measurements. The
measurement results are detailed in the following paragraphs.

Impact of CPU workload on write performance

While CPUs in general are not the bottleneck for I/O operations, CPUs on the data
server nodes, which usually also serve as computation nodes in a cluster, may be
heavily loaded by scientific applications, especially compute-intensive programs, thus
potentially increasing the I/O response time. As the experiments show, the influence
of CPU load on the I/O performance is insignificant when the usage of both CPUs is
below 99%. We define the average CPU load as the average number of processes
ready to run during the last minute. To artificially make the load of an idle CPU a
specific number, such as three, we can fork three processes and let each process exe-
cute an infinite busy loop. Figure 3 shows the write performance under different CPU
loads while both CPUs on the data server node are 99% utilized and the memory, disk
and network are nearly 100% idle. The experiments indicate that the write perform-
ance will be reduced by approximately 31%, 60%, 70%, and 73% on average if the
CPU is busy and the average load is 1, 2, 3, and 4, respectively.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120
Write performance under different CPU loads(1 server node and 1 client node)

data size (MBytes)

w
rit

e
pe

rf
or

m
an

ce
 (

M
B

yt
es

/s
ec

)

Average Load 0
Average Load 1 and Usage of one CPU > 99%
Average Load 2 and Usages of both CPUs > 99%
Average Load 3 and Usages of both CPUs > 99%
Average Load 4 and Usages of both CPUs > 99%

Fig. 3. The influence of CPU loads on write
performance under different data size

 Scheduling for Improved Write Performance in CEFT-PVFS 7

Impact of network traffic load on write performance

CEFT-PVFS uses the TCP/IP to transfer data between the client and server nodes.
The TCP/IP performance over the 2 gigabits/s full-duplex Myrinet of PrairieFire is
measured using Netperf [18]. Based on the basic client-server model, Netperf meas-
ures the performance by sending bulk data between the server and the clients. Figure
4 shows the TCP/IP performance when different numbers of Netperf clients simulta-
neously communicate with one Netperf server. All the Netperf clients and server are
located at different nodes in the cluster. As the figure shows, the server has an average
of 126.51 MBytes/s TCP/IP throughput, which is shared by all the clients. Our test us-
ing gm_debug facilities [17] indicates that, while the PCI bus has a read and write
throughput of 236 MBytes/sec and 209 MBytes/sec respectively, the average CPU
utilization of the Netperf server is only 47% during the measurement. This suggests
that the bottleneck of the TCP/IP performance is likely located at the TCP/IP stack at
the server side, which requires an integrated memory copy and thus generates an ex-
tra, potentially large latency. In addition, this figure also shows that when more than
five nodes concurrently communicate with the same node, the average throughput of
an individual node is less than the maximum disk throughput, implying that when
there are communication-intensive applications running on the CEFT-PVFS server
nodes, the bottleneck of I/O operations could potentially shift from disks to the
TCP/IP stack.

The write performance under different numbers of Netperf clients is measured and
given in Figure 5 when Netperf server and the CEFT-PVFS data server are deliber-
ately placed on the same node. When the data size is small, the Netperf client nodes
and the CEFT-PVFS client nodes share the TCP/IP bandwidth nearly evenly. With the
increase in data size, the performance further degrades due to the compounded nega-
tive impact of memory shortage.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

total number of Netperf client nodes

T
C

P
/IP

 p
er

fo
rm

an
ce

 (
M

B
yt

es
/s

ec
)

TCP/IP performance reported by Netperf

Throughput of the Netperf server node
Throughput of one Netperf client node

Fig. 4. TCP/IP performance when different client nodes
concurrently communicate to one server node

8 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

50

60

70

80

90

100

110

120

data size (MBytes)

w
rit

e
pe

rf
or

m
an

ce
 (

M
B

yt
es

/s
ec

)

Write performance under different network loads(1 data server node and 1 client node)

Without network load
1 Netperf client
2 Netperf clients

Impact of memory and disk load on write performance

Memory and disk are closely coupled in almost all modern operating systems. In
this paper, we only analyze the overall impact of disk and memory. A simple pro-
gram, shown in Figure 6, is developed to stress the disk and memory on data server
nodes. In this program, the synchronous write always guarantees a disk access, but the
operating system usually places the most recently used data in the cache buffer in an
effort to avoid some disk accesses. Although this caching buffer can be automatically
reclaimed by the operating system, the competition for memory between this program
and CEFT-PVFS on the server node will certainly reduce the write performance. As
we have measured, when only this program is running, both CPUs are nearly 95%
idle and therefore will likely little or no negative impact on the write performance
during this set of measurements. Another observation is that, like the network charac-
teristics shown in Figure 3, the disk bandwidth is nearly equally shared by all the I/O-
intensive processes running on the same node, i.e., if there are five processes concur-
rently writing data into the same disk, the I/O performance of each process would be
around 8 MBytes/s when the maximum disk write throughput is 40MBytes/s.

 1. M = allocate(1 MBytes);

2. create a file named F;
3. while(1)
4. if(size(F) > 1 GB)
5. truncate F to zero byte
6. else
7. synchronously append the data
8. in M to the end of F.
9. end of while.

Fig. 5. Write performance under different network
traffic disturbance

Fig. 6. Program to stress the memory and disk

 Scheduling for Improved Write Performance in CEFT-PVFS 9

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

50

60

70

80

90

100

110

120

data size (MBytes)

w
rit

e
pe

rf
or

m
an

ce
 (

M
B

yt
es

/s
ec

)

Influence of memory and disk load on write performance(1 server node and 1 client node)

without stressing disk
stressing disk

Figure 7 plots the write performance when the memory and disk are heavily
loaded. When the above program runs on the CEFT-PVFS server node, the perform-
ance drops nearly 64% even when the data size is only a small fraction of the total
size of the physical memory. Under this heavy disk and memory stress, write per-
formance approximates the disk maximum throughput even when the file size is
small. When data size is large, the write performance drops below the maximum disk
throughput since the data is too large to be buffered so that the disk bandwidth has to
be shared. We conclude that when the CPU load is not high, the disk-memory “com-
pound” plays a more significant role than the network.

To skip or not to skip a busy node while striping?

When the system resources on one mirroring pair are heavily loaded, it might be
beneficial to skip these nodes while striping, in order to balance the write load among
the designated group of mirroring pairs. Can skipping the busy nodes compensate for
the reduced parallelism? To answer this question, we need to exam how the perform-
ance scales with the total number of data server nodes when all the server nodes are
lightly and equally loaded.

Figures 8 and 9 show the aggregate performances corresponding to two cases: con-
stant-sized files being written by a variable number of client nodes, and variable-sized
files being written by a constant number of client nodes, given that all the nodes are
not heavily loaded. The average peak performances in the saturated region in Figure 8
of the three different CEFT-PVFS configurations are 492, 796 and 1386 MBytes/s re-
spectively, which are nearly proportional to the total number of data servers, thus in-
dicating a good scalability of CEFT-PVFS. This scalability, however, does not neces-
sarily hold in the unsaturated regions in Figure 9, implying that a larger number of
server nodes does not necessarily result in a proportionally higher write performance.
In fact, the opposite is true when the file size falls in the range of 0.5 to 8 MBytes. In
other words, for some file sizes a larger number of server nodes result in lower per-

Fig. 7. Write performance when the memory and
disk are heavily loaded

10 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

formance, and vise versa. It is this counter-intuitive property that, shown in both fig-
ures, highlights the necessity of skipping some data servers to improve the overall
performance, even when all the server nodes are well balanced, which will be not ad-
dressed in this paper. Nevertheless, judiciously skipping server nodes, or equivalently
resizing the striping group, in a well-balanced system to improve write performance,
while necessary, is beyond the scope of this paper, and thus will not be addressed.

0 10 20 30 40 50 60
0

500

1000

1500

number of client nodes

ag
gr

eg
at

e
pe

rf
or

m
an

ce
(M

B
yt

es
/s

ec
)

Write Performance with different numbers of data servers

 8 mirroring 8 data servers
16 mirroring 16 data servers
32 mirroring 32 data servers

0.5 1 2 4 8 16 32 64 128 256
100

150

200

250

300

350

400

450

500

550

600

ag
gr

eg
at

e
w

rit
e

pe
rf

or
m

an
ce

 (
M

B
yt

es
/s

ec
)

data size that each client node writes(MBytes)

Write performance with different numbers of data server nodes

8 mirroring 8 server nodes
7 mirroring 7 server nodes
6 mirroring 7 server nodes
5 mirroring 5 server nodes
4 mirroring 4 server nodes

In a realistic setting of cluster computing, the workload on all the data servers could

be significantly different since parallel scientific applications usually are scheduled to
run on only a portion of nodes, instead of every node. It is possible, in fact, rather
likely, that one mirroring pair are both heavily loaded, thus degrading the overall per-

Fig. 8. Aggregate write performance of CEFT-PVFS when
each client writes 16 MBytes data to the servers

Fig. 9. Aggregate write performance of CEFT-PVFS
when the total number of clients nodes is 16

 Scheduling for Improved Write Performance in CEFT-PVFS 11

formance substantially. In such cases, skipping the busy pair helps alleviate the nega-
tive impact of the pair due in part to their dual roles in the cluster as a CEFT-PVFS
server node and as a compute node. Experiment results show that if a mirroring pair is
heavily loaded and the maximum I/O throughput that they can provide is only about
half of the disk bandwidth, skipping this mirroring pair usually improves the overall
performance. This observation is helpful in developing the heuristic scheduling algo-
rithm, to be described later.

The skipping is most beneficial to the data that are written once and are rarely re-
written or read. A cluster is a highly dynamic environment with a constantly changing
workload on each node. Therefore, although skipping a server may boost the write
performance at the time of the first write, if the file is going to be rewritten or read
many times, the performance benefit will be amortized by future reads and writes.
Thus in this paper, only written once application is addressed for skipping.

Scheduling algorithm

Previous sections presented, quantitatively, the impact of resource availability of
various kinds on the behaviors of write operations in its simplest configuration and
under the simplest workload pattern. In addition, experimental results suggest that ju-
diciously skipping some server nodes while striping can be potentially beneficial to
performance enhancement, especially for write-once applications. While such sim-
plistic but quantitative results about performance impact of resource availability may
not be directly extended to a CEFT-PVFS with multiple data servers and more com-
plex I/O workload, the relative sensitivities of resource availability of different kind
and the scalability information implied can give useful heuristic hints to the develop-
ment of a dynamic scheduling algorithm for load balancing.

Since the metadata server is responsible for all the scheduling work, which can po-
tentially form a bottleneck, we try to keep the schedule algorithm as simple as possi-
ble to reduce the scheduling overhead. A straightforward algorithm is developed in
this paper. In this algorithm, we only consider skipping at most one data server in a
striping group to reduce the intrinsic scheduling complexity. Based on our experi-
ences, skipping one node that can provide at most half of the maximum disk through-
put significantly boosts the overall performance. Thus the value of one half of the
maximum disk throughput is used as the threshold to decide on skipping.

The basic idea of this algorithm is that for each mirroring pair, if it is not heavily
stressed, choose one node that could potentially deliver a higher I/O throughput from
each mirroring pair to construct the primary storage group. In addition, according to
the skipping reasons, all these pairs are sorted into four groups, CPU, memory, disk,
and network. While each group is assigned a different priority and the priorities from
the highest to the lowest are network, memory, disk and CPU, a pair in the non-empty
group with the highest priority will be randomly chosen to be skipped.

In this dynamic scheduling algorithm, the available disk throughput Di on node i is
estimated as min(Dmax−Dused, Dmax/(n+1)), where Dmax, Dused and n are the maximum
disk throughput, the disk throughput of the last interval, and the total number of proc-
esses that are doing I/O operations respectively. The available network throughput is

12 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

estimated in a similar way. The size of the free memory space on a node is obtained
from the memory management system of the operating system kernel. All these pa-
rameters are stored on the metadata server. The data server nodes collect this informa-
tion and send it to the metadata server every one-second.

Function:

choose a data server between node i and its mirrored node j
Inputs:

NETi, NETj: available network throughput on node i and j
MEMi, MEMj: size of available free memories on node i and j
DISKi, DISKj: available disk throughput on node i and j
CPUi1, CPUi2, CPUj1, CPUj2: average CPU usages on node i and j
LOADi, LOADj: average CPU load on node i and j
DISKmax: maximum disk throughput
FSIZE: size of the desired portion of the destination file

Algorithm:
1. if min(CPUi1,CPUi2,CPUj1,CPUj2) ≥ 99% and min(LOADi,LOADj) > 2
2. set the skipping flag;
3. else if min(CPUi1, CPUi2) ≥ 99% and LOADi > 2
4. choose node j;
5. else if min(CPUj1, CPUj2) ≥ 99% and LOADj > 2
6. choose node i;
7. else if MEMi > FSIZE and MEMj > FSIZE
8. if NETi ≤ 0.5*DISKmax and NETj ≤ 0.5*DISKmax
9. set the skipping flag;
10. else
11. choose i if NETi ≥ NETj; otherwise, choose j;
12. end
13. else if MEMi ≤ FSIZE and MEMj ≤ FSIZE
14. if min(DISKi, NETi) ≤ 0.5*DISKmax
15. and min(DISKj, NETj) ≤ 0.5*DISKmax
16. set the skipping flag;
17. else
18. choose i if min(DISKi, NETi) > min(DISKj, NETj);
19. otherwise j;
20. end
21. else
22. choose i if MEMi > FSIZE > MEMj and NETi ≥ 0.5*DISKmax
23. choose j if MEMj > FSIZE > MEMi and NETj ≥ 0.5*DISKmax
24. choose i if MEMj > FSIZE > MEMi and NETi ≥ 0.5*DISKmax
25. choose j if MEMi > FSIZE > MEMj and NETj ≥ 0.5*DISKmax
26. otherwise set the skipping flag;
27. end

Fig. 10. Scheduling algorithm for I/O requests

 Scheduling for Improved Write Performance in CEFT-PVFS 13

Performance evaluation

In this section, we will evaluate our heuristic scheduling algorithm in a CEFT-PVFS
that has eight data servers in one striping group. To fairly compare the performance
with scheduling and without scheduling, the benchmark programs need to be executed
in the same environment with identical workload. In a real cluster in production
mode, such as the PrairieFire in which CEFT-PVFS is installed, unfortunately, it is
nearly impossible to obtain such a repeatable environment since the workload on each
node is constantly changing with the progression of applications running in the clus-
ter. Therefore, instead of doing comparisons in a real environment, we compare per-
formances in an artificially created environment in which the load of a specific kind
of resource on a server node is kept approximately constant by using the programs de-
scribed in the previous sections, although interferences from other computation pro-
grams running on the cluster can not be avoided.

To make sure that the bottleneck of the I/O operation is located on the server side
rather than the client side, 16 client nodes are used to simultaneously write to the
server and the aggregate performance is measured. Two sets of experiments are con-
ducted. In the first set, the workload stress is applied only on one node while its mir-
roring node is kept almost idle so that skipping will not be necessary. In the second
set, the workload stress is put on both nodes of a mirroring pair so that it will become
necessary to skip. In each set of experiments, the CPU, network, and the disk-memory
compound are each stressed in turn, and the results are presented in the following fig-
ures. In each figure, the average write performance of the scheduling algorithm is
shown, since under different stress conditions of the same resource, the performances
of the scheduling algorithm are very close.

Figures 11 and 12 show results of experiments in which the CPU and network of
one primary node are stressed, respectively. In experiments reported in Figure 13,
both the disk and memory are stressed on one node or on two nodes in the same strip-
ing group. In Figures 14 and 15, the CPU and network of one mirroring pair are
stressed simultaneously. Figure 16 gives the comparison when both the disk and
memory on one mirroring pair are stressed. The performance of the scheduling is sig-
nificantly better than the performance of non-scheduling in the vast majority of the
test cases.

In the cases of skipping, shown in Figures 14-16, the aggregate performance of the
scheduling algorithm starts to decrease sharply when the data size of each client is
larger than 64MBytes. This sharp decrease is due to the fact that, as data size from
each client node increases, the total file size allocated on one server node becomes so
significant that the negative impact of load redistribution (as a result of skipping) onto
the remaining 7 server nodes quickly offsets the positive gain from skipping. These
figures show that when one of the resources on a server node is heavily loaded, our
scheduling algorithm derived from the heuristic observations, can significantly im-
prove the write performance.

14 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

500

550

ag
gr

eg
at

e
w

rit
e

pe
rf

or
m

an
ce

 (
M

B
yt

es
/s

ec
)

data size that each client node writes (MBytes)

Write performance comparison under different CPU loads

With scheduling
Without scheduling, CPU load 1
Without scheduling, CPU load 2
Without scheduling, CPU load 3

2 4 8 16 32 64 128 256 512
150

200

250

300

350

400

450

500

550

ag
gr

eg
at

e
w

rit
e

pe
rf

or
m

an
ce

 (
M

B
yt

es
/s

ec
)

data size on each I/O server node (MBytes)

Write performance comparison under different network loads

With scheduling
Without scheduling, 1 Netperf client
Without scheduling, 2 Netperf clients

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

500

550

ag
gr

eg
at

e
w

rit
e

pe
rf

or
m

an
ce

 (
M

B
yt

es
/s

ec
)

data size that each client node writes (MBytes)

Write performance comparison under heavy disk and memory usage

With scheduling
Without scheduling, 1 disk is busy
Withour scheduling, 2 disks are busy

Fig. 11. Stress CPUs on one server node

Fig. 12. Stress network on one server

Fig. 13. Stress disk and memory on one server node

 Scheduling for Improved Write Performance in CEFT-PVFS 15

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

500

ag
gr

eg
at

e
w

rit
e

pe
rf

or
m

an
ce

 (
M

B
yt

es
/s

ec
)

data size that each client node writes(MBytes)

Write performance when skipping one busy mirroring pair

Skipping one busy mirroring pair
Without skipping, CPU average load 2
Without skipping, CPU average load 3
Without skipping, CPU average load 4

2 4 8 16 32 64 128 256

100

150

200

250

300

350

400

450

500

ag
gr

eg
at

e
w

rit
e

pe
rf

or
m

an
ce

 (
M

B
yt

es
/s

ec
)

data size that each client node writes (MBytes)

Write performance when skipping one busy mirroring pair

Skipping one busy mirroring pair
Without skipping, heaving network traffic on both nodes

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

ag
gr

eg
at

e
w

rit
e

pe
rf

or
m

an
ce

 (
M

B
yt

es
/s

ec
)

data size that each client node writes(MBytes)

Write performance when skipping one busy mirroring pair

Skipping one busy mirroring pair
Without skipping, the disk and memory on both nodes are busy

Fig. 15. Stress network on one mirroring

Fig. 16. Stress disk and memory on one mirroring pair

Fig. 14. Stress CPUs on one mirroring pair

16 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

Figure 17 shows the comparison of our scheduling algorithm with two other algo-
rithms, one solely based on the availability of disk and memory, and the other solely
based on the availability of network bandwidth. This figure clearly shows that two
simplistic algorithms are inferiors to ours since both of them are limited by the
amount of information on which their decisions are based while our algorithm bases
its decision on a more comprehensive piece of system workload information. The per-
formance in Figure 17 is a little higher than the performance in the other figures be-
cause Figure 17 is measured immediately after the reboot of our cluster and there is
almost no computation application except our load stress program.

2 4 8 16 32 64 128 256
150

200

250

300

350

400

450

500

550

600

650

700

ag
gr

eg
at

e
w

rit
e

pe
rf

or
m

an
ce

 (
M

B
yt

es
/s

ec
)

data size that each client node writes(MBytes)

one disk loaded and its mirror node network loaded

Schedule using our algorithms
Schedule according to disk and memory information
Schedule according to network information

Conclusions and Future Work

A reliable and high-performance I/O and storage system is of paramount importance
to parallel and distributed computing. CEFT-PVFS extends PVFS by incorporating
mirroring to provide fault tolerance. Although the peak performance of CEFT-PVFS
can reach the level of GBytes/sec, the performance can be significantly reduced if the
data servers, which also serve as computational nodes in a cluster, are heavily loaded
by applications running in the cluster. Since in CEFT-PVFS each data item has two
copies and they are stored in two different nodes, it provides an opportunity for
scheduling algorithms to exploit the workload disparity between these two nodes in a
mirroring pair or among all mirroring pairs within a striping group. Therefore, in this
paper a heuristic scheduling algorithm is developed to schedule the I/O requests to the
node with less workload in a pair or to skip a heavily loaded pair altogether while
striping, in a hope to improve I/O write performance. To reduce the intrinsic complex-
ity of this scheduling problem and to understand the workload characteristics in a
cluster, we conducted experiments on simplest CEFT-PVFS configurations, under
specific and isolated workload conditions. From the experimental results, we drew
heuristic hints to help design the algorithm. For example if the CPU usage and load

Fig. 17. Stress disk and memory on one node and stress
the network on its mirroring node

 Scheduling for Improved Write Performance in CEFT-PVFS 17

are less than 99% and 2 respectively, CPU will not have a significant influence on the
overall performance. Otherwise, overall performance will be substantially degraded.
Based on these heuristic hints, a simple but effective algorithm is developed and its
performance is evaluated in a CEFT-PVFS with 16 servers under different workload
conditions. The performance measured shows that this scheduling algorithm is capa-
ble of significantly improving the overall I/O write performance when the system is
under an unbalanced workload.

 While we designed and implemented the prototype of the dynamic scheduling
algorithm, many important challenges remain. Our future work is to provide a more
generic and platform-independent algorithm. We need to use more realistic bench-
mark to measure the I/O performance. More experiments are necessary to justify
some parameters of the heuristic rules and detail the rationale behind our algorithm.

Acknowledgement

This work was partially supported by an NSF grant (EPS-0091900) and a Nebraska
University Foundation grant (26-0511-0019). Work was completed using the Re-
search Computing Facility at University of Nebraska – Lincoln. Finally, we are grate-
ful to our anonymous reviewers.

References:

[1] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A Parallel File System
For Linux Clusters,'' in Proceedings of the 4th Annual Linux Showcase and Conference, At-
lanta, GA, Oct. 2000, pp. 317-327.

[2] David A. Patterson, Garth Gibson, and Randy H. Katz, “A case for redundant arrays of in-
expensive disks (RAID),” in Proceedings of the 1988 ACM SIGMOD international confer-
ence on Management of data. 1988, pp. 109-116.

[3] Yifeng Zhu, “CEFT-PVFS: A cost-effective, fault-tolerant parallel virtual file system”,
Master Thesis, Department of Computer Science and Engineering, University of Nebraska –
Lincoln, Dec. 2002.

[4] Yifeng Zhu, Hong Jiang, Xiao Qin, Dan Feng, and David R. Swanson, “Improved read per-
formance in a Cost-Effective, Fault-Tolerant Parallel Virtual File System (CEFT-PVFS),”
in Proceeding of IEEE/ACM Workshop on Parallel I/O in Cluster Computing and Compu-
tational Grids, in conjunction with IEEE International Symposium on Cluster Computing
and the Grid (CCGRID), Tokyo, Japan, May 2003

[5] Avery Ching, Alok Choudhary, Wei-keng Liao, Robert Ross, and William Gropp, "Non-
contiguous I/O through PVFS," in Proceedings of 2002 IEEE International Conference on
Cluster Computing, Sept. 2002.

[6] W.B Ligon III, “Research Directions in Parallel I/O for Clusters,” keynote speech, in Pro-
ceedings of 2002 IEEE International Conference on Cluster Computing, Sept. 2002.

[7] Joseph D. Touch, "Performance analysis of MD5," in ACM Proceedings of the conference
on Applications, technologies, architectures, and protocols for computer communication,
New York, NY, USA, Oct. 1995, pp. 77-86.

18 Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson

[8] Murali Vilayannur, Mahmut Kandemir, and Anand Sivasubramaniam, "Kernel-level cach-
ing for Optimizing I/O by exploiting inter-application data sharing," in Proceedings of 2002
IEEE International Conference on Cluster Computing, Sept. 2002.

[9] Apon, A.W., Wolinski, P.D., and Amerson, G.M. "Sensitivity of cluster file system access
to I/O server selection," in Cluster Computing and the Grid 2nd IEEE/ACM International
Symposium CCGRID2002, 2002, pp. 183-192.

[10] R. B. Ross, "Reactive Scheduling for Parallel I/O Systems," Ph.D. Dissertation, Clemson
University, Dec. 2000.

[11] Ligon, III, W.B., and Ross, R. B., "Server-Side Scheduling in Cluster Parallel I/O Sys-
tems," Calculateurs Parallèles Journal Special Issue on Parallel I/O for Cluster Comput-
ing, Oct. 2001.

[12] Michael O. Rabin, "Efficient Dispersal of Information for Security, Load Balancing, and
Fault Tolerance", Journal of the ACM, vol. 36, no. 2, pp. 335-348, Apr. 1989

[13] Azer Bestvaros, "IDA-based redundant arrays of inexpensive disks", in Proceedings of
the First International Conference on Parallel and Distributed Information Systems, pp. 2-
9, Dec. 1991

[14] J. H. Hartman and J. K. Ouserhout, "The Zebra striped network file system," ACM
Transactions on Computer Systems, vol. 13, no. 3, pp. 274-310, Aug. 1995

[15] Luis-Felipe Cabrera and Darrel D. E. Long, "Swift: using distributed disk stripping to
provide high I/O data rates," in Computing Systems, vol. 4, no. 4, 1991

[16] Prairiefire Cluster at University of Nebraska - Lincoln, http://rcf.unl.edu, 2003.
[17] Myrinet, http://www.myrinet.com/, 2003.
[18] Netperf, http://www.netperf.org/netperf/NetperfPage.html, 2003.
[19] Bonnie, http://www.textuality.com/bonnie, 2003
[20] Hakan Taki and Gil Utard, “MPI-IO on a parallel file system for cluster of workstations,”

in Proceedings of the IEEE computer Society International Workshop on Cluster Comput-
ing, Melbourne, Australia, 1999, pp. 150-157

[21] Rosario Cristaldi, Giulio Iannello, and Francesco Delfino, “The cluster file system: Inte-
gration of high performance communication and I/O in clusters,” in Proceeding of the 2nd
IEEE/ACM international symposium on Cluster computing and the grid, Berlin, Germany,
May 2002.

[22] Steven A. Moyer and V. S. Sunderam, “PIOUS: A scalable parallel I/O system for dis-
tributed computing environments,” in Proceedings of the Scalable High-Performance Com-
puting Conference, 1994, pp. 71-78.

