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1. IntroductIon to Bloom FIlters

A standard Bloom filter (BF) (Bloom, 1970) is a lossy but space-efficient data structure to support 
membership queries within a constant delay. As shown in Figure 1, a BF includes k independent random 
hash functions and a vector B of a length of m bits. It is assumed that the BF represents a finite set S = 
{x1, x2,…,xn} of n elements from a universe U . The hash functions hi(x), 1 ≤ i ≤ k, map the universe U 
to the bit address space [1,m], shown as follows,

H(x) = {hi(x)   | 1 ≤ hi(x) ≤ m for 1 ≤ i ≤ k}  (1)

ABstrAct

This chapter discusses the false rates of Bloom filters in a distributed environment. A Bloom filter (BF) 
is a space-efficient data structure to support probabilistic membership query. In distributed systems, a 
Bloom filter is often used to summarize local services or objects and this Bloom filter is replicated to 
remote hosts. This allows remote hosts to perform fast membership query without contacting the original 
host. However, when the services or objects are changed, the remote Bloom replica may become stale. 
This chapter analyzes the impact of staleness on the false positive and false negative for membership 
queries on a Bloom filter replica. An efficient update control mechanism is then proposed based on the 
analytical results to minimize the updating overhead. This chapter validates the analytical models and 
the update control mechanism through simulation experiments.
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Definition 1. For all x ∈ U, B[H(x)] ≡ {B[hi(x)] | 1 ≤ i ≤ k}. 

This notation facilitates the description of operations on the subset of B  addressed by the hash func-
tions. For example, B[H(x)] = 1 represents the condition in which all the bits in B at the positions of 
h1(x),…, and hk(x) are 1. “Setting B[H(x)]” means that the bits at these positions in B are set to 1.

Representing the set S using a BF B is fast and simple. Initially, all the bits in B are set to 0. Then for 
each x ∈ S, an operation of setting B[H(x)] is performed. Given an element x, to check whether x  is in 
S , one only needs to test whether B[H(x)] = 1. If no, then x is not a member of S; If yes, x is conjectured 
to be in S. Figure 1 shows the results after the element x is inserted into the Bloom filter.

A standard BF has two well-known properties that are described by the following two theorems.

theorem 1.Zero false negative

For ∀x ∈ U, if ∃i, B[hi(x)] ≠ 1, then x S/Î . 

For a static set S whose elements are not dynamically deleted, the bit vector indexed by those hash func-
tions always never returns a false negative. The proof is easy and is not given in this chapter.

theorem 2.Possible false positive

For ∀x ∈ U, if B[H(x)] = 1, then there is a small probability f+ that x S/Î . This probability is called the 
false positive rate and f+ ≈ (1 − e−kn/m)k. Given a specific ratio of m/n, f+ is minimized when k = (m/n)ln2 

and fmin
m n+ /» .( )0 6185 .

Proof: The proof is based on the mathematical model proposed in (James, 1983; McIlroy, 1982). 
Detailed proof can be found in (Li et al., 2000; Michael, 2002). For the convenience of the reader, the 
proof is briefly presented here.

After inserting n elements into a BF, the probability that a bit is zero is given by:

Figure 1. A Bloom filter with a bit vector of m bits, and k independent hash functions. When an element 
x is added into the set represented, all bits indexed by those hash functions are set to 1.
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Thus the probability that k  bits are set to 1 is
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Assuming each element is equally likely to be accessed and |S||U|, then the false positive rate is
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Given a specific ratio of 
m
n , i.e., the number of bits per element, it can be proved that the false posi-

Figure 2. Expected false positive rate in a standard Bloom filter. A false positive is due to the collision 
of hash functions, where all indexed bits happen to be set by other elements.
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tive rate f+ is minimized when k lnm
n

= 2  and the minimal false positive rate is, as has been shown 
(Michael, 2002)

f+ ≈ 0.5k = (0.6185)m/n (5)

The key advantage of a Bloom filter is that its storage requirement falls several orders of magnitude 
below the lower bounds of error-free encoding structures. This space efficiency is achieved at the cost 
of allowing a certain (typically none-zero) probability of false positives, that is, it may incorrectly return 
an “yes” although x is actually not in S. Appropriately adjusting m and k can minimize this probability 
of false-positive to a sufficiently small value so that benefits from the space and time efficiency far out-
weigh the penalty incurred by false positives in many applications. For example, when the bit-element 
ratio is 8 and the number of hash functions is 6, the expected false positive rate is only 0.0216. Figure 
2 shows the false positive rate under different configurations.

In order to represent a dynamic set that is changing over time, (Li et al., 2000) proposes a variant 
named counting BF. A counting BF includes an array in which each entry is not a bit but rather a counter 
consisted of several bits. Counting Bloom filters can support element deletion operations. Let C = {cj 
| 1 ≤ j ≤ m} denote the counter vector and the counter cj represents the difference between the number 
of settings and the number of unsetting operations made to the bit B[j]. All counters cj for 1 ≤ j ≤ m are 
initialized to zero. When an element x is inserted or deleted, the counters C[H(x)] are incremented or 
decreased by one, respectively. If cj changes its value from one to zero, B[j] is reset to zero. While this 
counter array consumes some memory space, (Li et al., 2000) shows that 4 bits per counter will guarantee 
the probability of overflow minuscule even with several hundred million elements in a BF.

2. ApplIcAtIons oF Bloom FIlters In dIstrIButed systems

Bloom filters have been extensively used in many distributed systems where information dispersed 
across the entire system needs to be shared. For example, to reduce the message traffic, (Li et al, 2000) 
propose a web cache sharing protocol that employs a BF to represent the content of a web proxy cache 
and then periodically propagates that filter to other proxies. If a cache miss occurs on a proxy, that proxy 
checks the BFs replicated from other proxies to see whether they have the desired web objects in their 
caches. (Hong & Tao, 2003; Hua et al., 2008; Ledlie et al., 2002; Matei & Ian, 2002; Zhu et al., 2004; 
Zhu et al., 2008) use BFs to implement the function of mapping logical data identities to their physical 
locations in distributed storage systems. In these schemes, each storage node constructs a Bloom filter 
that summarizes the identities of data stored locally and broadcasts the Bloom filter to other nodes. 
By checking all filters collected locally, a node can locate the requested data without sending massive 
query messages to other nodes. Similar deployments of BFs have been found in geographic routing in 
wireless mobile systems (Pai-Hsiang, 2001), peer-to-peer systems (Hailong & Jun, 2004; John et al., 
2000; Mohan & Kalogeraki, 2003; Rhea & Kubiatowicz, 2002), naming services (Little et al., 2002), 
and wireless sensor networks (Ghose et al. 2003; Luk et al. 2007).

A common characteristic of distributed applications of BFs, including all those described above, is that 
a BF at a local host is replicated to other remote hosts to efficiently support distributed queries. In such 
dynamical distributed applications, the information that a BF represents evolves over time. However, the 
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updating processes are usually delayed due to the network latency or the delay necessary in aggregating 
small changes into single updating message in order to reduce the updating overhead. Accordingly the 
contents of the remote replicas may become partially outdated. This possible staleness in the remote 
replicas not only changes the probability of false positive answers to membership queries on the remote 
hosts, but also brings forth the possibility of false negatives. A false negative occurs when a BF replica 
answers “no” to the membership query for an element while that element actually exists in its host. It 
is generated when a new element is added to a host while the changes of the BF of this host, including 
the addition of this new element, have not been propagated to its replicas on other hosts. In addition, 
this staleness also changes the probability of false positives, an event in which an element is incorrectly 
identified as a member. Throughout the rest of this chapter, the probabilities of false negatives and false 
positives are referred to as the false negative rate and false positive rate, respectively.

While the false negative and false positive rates for a BF at a local host have been well studied in 
the context of non-replicated BF (Bloom, 1970; Broder & Mitzenmacher, 2003; James, 1983; Li et al., 
2000; Michael, 2002), very little attention has been paid to the false rates in the Bloom filter replicas 
in a distributed environment. In the distributed systems considered in this chapter, the false rates of the 
replicas are more important since most membership queries are performed on these replicas. A good 
understanding of the impact of the false negatives and false positives can provide the system designers 
with important and useful insights into the development and deployment of distributed BFs in such im-
portant applications as distributed file, database, and web server management systems in super-scales. 
Therefore, the first objective of this chapter is to analyze the false rates by developing analytical models 
and considering the staleness.

Since different application may desire a different tradeoff between false rate (e.g, miss/fault penalty) 
and update overhead (e.g., network traffic and processing due to broadcasting of updates), it is very 
important and significant for the systems overall performance to be able to control such a tradeoff for 
a given application adaptively and efficiently. The second objective is to develop an adaptive control 
algorithm that can accurately and efficiently maintain a desirable level of false rate for any given ap-
plication by dynamically and judiciously adjusting the update frequency.

The primary contribution of this chapter is its developments of accurate closed-form expressions for the 
false negative and false positive rates in BF replicas, and the development of an adaptive replica-update 
control, based on our analytical model, that accurately and efficiently maintains a desirable level of false 
rate for any given application. To the best of our knowledge, this study is the first of its kind that has 
considered the impact of staleness of replicated BF contents in a distributed environment, and developed 
a mechanism to adaptively minimize such an impact so as to optimize systems performance.

The rest of the chapter is organized as follows. Section 3 presents our analytical models that theo-
retically derive false negative and false positive rates of a BF replica, as well as the overall false rates 
in distributed systems. Section 4 validates our theoretical results by comparing them against results 
obtained from extensive experiments. The adaptive updating protocols based on our theoretical analysis 
models are presented in Section 5. Section 6 gives related work and Section 7 concludes the chapter. 
The chapter is extended from our previous publication (Zhu & Jiang, 2006).
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3. FAlse rAtes In theory

In many distributed systems, the information about what data objects can be accessed through a host or 
where data objects are located usually needs to be shared to facilitate the lookup. To provide high scal-
ability, this information sharing usually takes a decentralized approach, to avoid potential performance 
bottleneck and vulnerability of a centralized architecture such as a dedicated server. While BFs were 
initially used in non-distributed systems to save the memory space in the 1980’s when memory was 
considered a precious resource (Lee, 1982; McIlroy, 1982), they have recently been extensively used 
in many distributed systems as a scalable and efficient scheme for information sharing, due to their low 
network traffic overhead.

The inherent nature of such information sharing in almost all these distributed systems, if not all, 
can be abstracted as a location identification, or mapping problem, which is described next. Without 
loss of generality, the distributed system considered throughout this chapter is assumed to consist of 
a collection of γ autonomous data-storing host computers dispersed across a communication network. 
These hosts partition a universe U of data objects into γ subsets S1, S2,…,Sγ, with each subset stored on 
one of these hosts. Given an arbitrary object x in U, the problem is how to efficiently identify the host 
that stores x from any one of the hosts.

BFs are useful to solve this kind of problems. In a typical approach, each host constructs a BF rep-
resenting the subset of objects stored in it, and then broadcasts that filter to all the other hosts. Thus 
each host keeps γ − 1 additional BFs, one for every other host. Figure 3 shows an example of a system 
with three hosts. Note that a filter iB̂  is a replica of Bi from Host i and iB̂  may become outdated if the 
changes to Bi are not propagated instantaneously. While the solution to the above information sharing 
problem can implemented somewhat differently giving rise to a number of solution variants (Hua et al., 
2008; Ledlie et al., 2002; Zhu et al., 2004), the analysis of false rates presented in this chapter can be 
easily applied to these variants.

The detailed procedures of the operations of insertion, deletion and query of data objects are shown 
in Figure 4. When an object x is deleted from or inserted into Host i, the values of the counting filters 
Ci[H(x)] and bits Bi[H(x)] are adjusted accordingly. When the fraction of modified bits in Bi exceeds 

Figure 3. An example application of Bloom filters in a distributed system with 3 hosts.
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some threshold, Bi is broadcast to all the other hosts to update iB̂ . To look up x, Host i performs the 
membership tests on all the BFs kept locally. If a test on Bi is positive, then x can potentially be accessed 

locally. If a test in the filter jB̂  for any j ≠ i is positive, then x is conjectured to be on Host j with high 
probability. Finally, if none of the tests is positive, x is considered nonexistent in the system.

In the following, we begin the analysis by examining the false negative and false positive rate of a 
single BF replica and then present the analysis of the overall false rates of all BFs kept locally on a host. 
The experimental validations of the analytical models are presented in the next section.

3.1. False rates of Bloom Filter replicas

Let B be a BF with m bits and B̂  a replica of B. Let n and n̂  be the number of objects in the set rep-
resented by B and by B̂ , respectively. We denote ∆1 (∆0) as the set of all one (zero) bits in B that are 

Figure 4. Procedures of adding, deleting and querying object x at host i
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different than (i.e., complement of) the corresponding bits in B̂ . More specifically,

D
1

1 0 1= = , = , " Î ,{ [ ] | [ ] ˆ[ ] [ ]}B i B i B i i m
 

D
0

0 1 1= = , = , " Î , .{ [ ] | [ ] ˆ[ ] [ ]}B i B i B i i m
 

Thus, ∆0 + ∆1 represent the set of changed bits in B that have not been propagated to B̂ . The number 
of bits in this set is affected by the update threshold and update latency. Furthermore, if a nonempty ∆1 
is hit by least one hash function of a membership test on B̂  while all other hash functions of the same 

test hit bits in 
B̂ - -D D

1 0  with a value of one, then a false negative occurs in B̂ . Similarly, a false 
positive occurs if the nonempty ∆1 is replaced by a nonempty ∆0 in the exact membership test scenario 
on a B̂  described above.

Lemma 1. Suppose that the numbers of bits in ∆1 and in ∆0 are mδ1 and mδ0, respectively. Then n̂  
is a random variable following a normal distribution with an extremely small variance (i.e., extremely 
highly concentrated around its mean), that is,

E n
m
k

e kn m(ˆ) ln( )= - + - .- / d d
1 0  (6)

Proof: In a given BF representing a set of n objects, each bit is zero with probability P0(n), given in 
Equation 2, or one with probability P1(n) = 1 − P0(n). Thus the average fractions of zero and one bits 
are P0(n) and P1(n), respectively. Ref. (Michael, 2002) shows formally that the fractions of zero and one 
bits are random variables that are highly concentrated on P0(n) and P1(n) respectively.

Figure 5. An example of a BF B and its replica B̂  where bits are reordered such that bits in ∆1 and ∆0 
are placed together.
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B - -   
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Figure 5 shows an example of B and B̂  where bits in ∆1 and ∆0 are extracted out and placed together. 

The expected numbers of zero bits in B − ∆1 − ∆0 and in 
B̂ - -D D

1 0  should be equal since the bits in 
them are always identical for any given B and B̂ . Thus for any given n, δ1 and δ0, we have

P n E P n
0 0 0 1
( ) ( (ˆ))- = -d d  (7)

Substituting Equation 2 into the above equation, we have

e ekn m kE n m- / - /- = -d d
0 1

( ˆ)

 (8)

After solving Equation 8, we obtain Equation 6.

Figure 6. Expected false negative rate of a Bloom filter replica when the configuration of its original 
Bloom filter is optimal.



10

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

Pragmatically, in any given BF with n objects, the values of δ1 and δ0, which represent the prob-
abilities of a bit falling in ∆1 and ∆0 respectively, are relatively small. Theoretically, the number of bits 
in ∆1 is less than the total number of one bits in B, thus we have δ1 ≤ 1 − e−kn/m. In a similar way, we can 
conclude that δ0 ≤ e−kn/m.

theorem 3.False Negative Rate

The expected false negative rate 
-

f̂  in the BF replica B̂  is P1(n)k – (P1(n) − δ1)
k, where P1(n) = 1 − 

e−kn/m.
Proof: As mentioned earlier, a false negative in B̂  occurs when at least one hash function hits the 

bits in ∆1 in B̂  while the others hit the bits in B̂ - -D D
1 0  with a value of one. Hence, the false nega-
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Since P0(n) = 1 – P1(n) and P n P n
0 1

1(ˆ) (ˆ)= - , Equation 7 can be rewritten as:

Figure 7. Expected false positive rate of a Bloom filter replica when the configuration of its original 
Bloom filter is optimal.



11

Efficient Update Control of Bloom Filter Replicas in Distributed Systems
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Figure 6 shows the expected false negative rate when the false positive of the original BF is minimized. 
The minimal false positive rate is 0.0214, 0.0031 and 0.00046 when the bit-element ratio is 8, 12 and 16 
respectively. Figure 6 shows that the false negative rates of a BF replica are more than 50% of the false 
positive rates of the original BF when δ1 is 5%, and more than 75% when δ1 is 10%. This proves that 
the false negative may be significant and should not be neglected in distributed applications.

theorem 4.False Positive Rate

The expected false positive rate 
+

f̂  for the Bloom filter replica B̂  is (P1(n) + δ0 − δ1)
k , where P1(n) = 

1 − e−kn/m.
Proof: If B̂  confirms positively the membership of an object while this object actually does not be-

long to B, then a false positive occurs. More specifically, a false positive occurs in B̂  if for any x B/Î

, all hit bits by hash functions of the membership test for x are ones in 
B̂ - -D D

1 0 , or for any x ∈ U, 
all hit bits are ones in B̂  but at least one hit bit is in ∆0. Thus, we find that
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Considering n |U and Equation 9, we have
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Figure 8. Comparisons of estimated and experimental 
-

f̂  of B̂  when k is 6, 8 and 11 respectively. The 
initial object number in both B and B̂  is 25, 75, 150 and 300 (m = 1200).
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3.2. overall False rates

In the distributed system considered in this study, there are a total of γ hosts and each host has γ BFs, 
with γ−1 of them replicated from the other hosts. To look up an object, a host performs the membership 
tests in all the BFs kept locally. This section analyzes the overall false rates on each BF replica and 
each host.

Give any BF replica B̂ , the events of a false positive and a false negative are exclusive. Thus it is 

Table 1. False positive rates comparisons when k is 6 and 8 respectively (m = 1200). 

+
f̂  (percentage)

k n̂ δ0 δ1 Estimated Experimental

6 25 0.0942 0.2042 0.0002 0

6 25 0.0800 0.3650 0.0002 0

6 25 0.0600 0.4875 0.0001 0

6 75 0.0800 0.1608 0.0934 0.1090

6 75 0.0600 0.2833 0.0794 0.1090

6 75 0.0483 0.3758 0.0799 0.1090

6 150 0.0533 0.1042 2.2749 2.6510

6 150 0.0400 0.1800 2.3540 2.6510

6 150 0.0325 0.2508 2.1872 2.6530

6 300 0.0250 0.0417 23.6555 25.4790

6 300 0.0183 0.0692 25.4016 25.4710

6 300 0.0117 0.1000 24.7241 25.4750

8 25 0.1083 0.2425 0.00002 0

8 25 0.0792 0.4192 0.00002 0

8 25 0.0550 0.5425 0.00002 0

8 75 0.0792 0.1767 0.0525 0.0540

8 75 0.0550 0.3000 0.0504 0.0540

8 75 0.0425 0.3917 0.0506 0.0540

8 150 0.0475 0.1050 2.5163 2.5770

8 150 0.0350 0.1758 2.6783 2.5780

8 150 0.0283 0.2367 2.5384 2.5790

8 300 0.0192 0.0333 33.2078 33.2580

8 300 0.0133 0.0558 34.4915 33.2550

8 300 0.0083 0.0817 32.1779 33.2550
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Figure 9. Comparisons of estimated and experimental foverall in a distributed system with 5 hosts when k 
is 6, 8, and 11 respectively. The initial object number n on each host is 25, 75, 150 and 300 respectively. 
Then each host adds a set of new objects. The number of new objects on each host increases from 50 to 
300 with a step size of 50. (m = 1200)
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easy to find that the overall false rate of B̂  is

E f E f E f
overall

( ) ( ) ( )= +- +

 (13)

where E f( )-

 and E(f+) are given in Equation 10 and 12 respectively.
On Host i, BF Bi represents all the objects stored locally. While only false positives occur in Bi, both 

false positives and false negatives can occur in the replicas jB̂  for any j ≠ i. Since the failed member-
ship test in any BF leads to a lookup failure, the overall false positive and false negative rates on Host 
i are therefore

Table 2. Overall false rate comparisons under optimum initial operation state when k is 6 and 8 respec-
tively. 100 new objects are added on each host and then a set of existing objects are deleted from each 
host. The number of deleted objects increases from 10 to 100 with a step size of 10. (m = 1200) In the first 
group, initially Initially n = 150 and m/n = 8; in the second group, n = 100 and m/n = 12 initially. 

foverall (percentage)

k δ0 δ1 Estimated Experimental

6 0.0100 0.1705 46.2259 45.2200

6 0.0227 0.1657 42.4850 40.6880

6 0.0347 0.1627 38.7101 37.2420

6 0.0458 0.1582 34.9268 33.8460

6 0.0593 0.1545 31.3748 30.4540

6 0.0715 0.1497 27.8831 27.3700

6 0.0837 0.1445 24.5657 24.8000

6 0.0938 0.1392 21.2719 22.5560

6 0.1045 0.1340 18.2490 20.4520

6 0.1165 0.1300 15.5103 18.7540

8 0.0123 0.2375 30.9531 29.6280

8 0.0255 0.2275 25.7946 23.6280

8 0.0413 0.2180 21.0943 18.0000

8 0.0552 0.2123 16.7982 14.6720

8 0.0658 0.2043 12.9800 12.0040

8 0.0772 0.1965 9.7307 9.7320

8 0.0920 0.1900 7.1016 7.7520

8 0.1075 0.1848 4.9936 6.1280

8 0.1237 0.1788 3.4031 4.8400

8 0.1377 0.1732 2.2034 3.8160
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E f f fhost i
j j i
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and

E f fhost
j j i

j
( ) ( ˆ )-

= , ¹
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1

g

 (15)

where fi
+

, jf
-ˆ

 and jf
+ˆ

 are given in Theorem 2, 3 and 4 respectively.
The probability that Host i fails a membership lookup can be expressed as follows:

E f E f f f f
host host host host host

( ) ( )= + -+ - + -

 (16)

In practice, we can use the overall false rate of a BF replica to trigger updating process and use the 
overall false rate of all BFs on a host to evaluate the whole systems. In a typical distributed environment 
with many nodes, the updating of a Bloom filter replica iB̂  stored on node j can be triggered by either 
the home node i or the node j. Since many nodes hold the replica of Bi, it is more efficient to let the 
home node i to initiate the updating process of all replicas of Bi. Otherwise, the procedure of checking 
whether an updating is needed would be performed by all other nodes, wasting both network and CPU 
resources. Accordingly, we can only use the overall false rate of a BF replica E(foverall) as the updating 
criteria. On the other hand, E(fhost) can be used to evaluate the overall efficiency of all BFs stored on 
the same host.

4. experImentAl VAlIdAtIon

This section validates our theoretical framework developed in this chapter by comparing the analytical 
results produced by our models with experimental results obtained through real experiments.

We begin by examining a single BF replica. Initially the Bloom filter replica B̂  is exactly the same as 
B. Then we artificially change B by randomly inserting new objects into B or randomly deleting existing 
objects from B repeatedly. For each specific modification made to B, we calculate the corresponding 
δ1 and δ0 and use 100,000 randomly generated objects to test the memberships against B̂ . Since the 
actual objects represented in B are known in the experiments, the false negative and positive rates can 
be easily measured.

Figure 8 compares analytical and real false negative rates, obtained from the theoretic models and 
from experiments respectively, by plotting the false negative rate in B̂  as a function of δ1, a measure of 
update threshold, for different numbers of hashing functions (k = 6 and k = 8) when the initial number 
of objects in B are 25, 75, 150 and 300 respectively. Since the false negative rates are independent of 
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δ0, only object deletions are performed in B.
Table 1 compares the analytical and real false positive rates of B̂  when k is 6 and 8 respectively. In 

Figure 10. In an environment of two servers, the figures show the overall false rate on one server when 
the initial number of elements in one server are 25 and 150 respectively. The ratio of bits per element 
is 8 and 6 hash functions are used. The rate for element addition and deletion are respectively 5 and 2 
per time unit on each server.



18

Efficient Update Control of Bloom Filter Replicas in Distributed Systems

these experiments, both object deletions and additions are performed in B while B̂  remains unaltered. 
It is interesting that the false positive rates of B̂  is kept around some constant for a specific n̂  although 
the objects in B changes in the real experiments. It is true that if the number of objects in B increases 
or decreases, the false positive rate in B̂  should decrease or increase accordingly before the changes 
of B is propagated to B̂ . However, due to the fact that n is far less than the total object number in the 
universe U, the change of the false positive rate in B̂  is too small to be perceptible. These tests are made 
accordant with the real scenarios of BF applications in distributed systems. In such real applications, 
the number of possible objects is usually very large and thus BFs are deployed to efficiently reduce the 
network and network communication requirements. Hence, in these experiments the number of objects 
used to test B̂  is much larger than the number of objects in B or B̂  (100,000 random objects are tested). 
Under such large size of testing samples, the influence of the modification in B on the false positive rate 
of B̂  is difficult to be observed.

We also simulated the lookup problem in a distributed system with 5 hosts. Figure 9 shows the com-
parisons of the analytical and experimental average overall false rates on each host. In these experiments, 
we only added new objects without deleting any existing items so that δ0 is kept zero. The experiments 
presented in Table 2 considers both the deletion and addition of objects on each host when the initial 
state of BF on each host is optimized, this is, the number of hash functions is the optimal under the ratio 
between m and the initial number of objects n. This specific setting aims to emulate the real application 
where m/n and k are usually optimally or sub-optimally matched by dynamically adjusting the BF length 
m (Hong & Tao, 2003) or designing the BF length according to the average number of objects (Ledlie 
et al., 2002; Li et al., 2000; Little et al., 2002; Matei & Ian, 2002; Zhu et al., 2004). All the analytical 
results have been very closely matched by their real (experimental) counterparts consistently, strongly 
validating our theoretical models.

5. replIcA updAte protocol

To reduce the false rate caused by staleness, the remote Bloom filter replica needs to be periodically 
updated. An update process is typically triggered if the percentage of dirty bits in a local BF exceeds 
some threshold. While a small threshold causes large network traffic and a large threshold increases the 
false rate, this tradeoff is usually reached by a trial-and-error approach that runs numerous (typically a 
large number of) trials in real experiments or simulations. For example, in the summery cache study (Li 
et al., 2000), it is recommended that if 10 percent of bits in a BF are dirty, then the BF propagates its 
changes to all replicas. However, this approach has the following disadvantages.

1.  It cannot directly control the false rate. To keep the false rate under some target value, complicated 
simulations or experiments have to be conducted to adjust the threshold for dirty bits. If the target 
false rate changes, this tedious process has to be repeated to find a “golden” threshold.

2.  It treats all dirty bits equally and does not distinguish the zero-dirty bits from the one-dirty bits. In 
fact, as shown in previous sections, the dirty one bits and the dirty zero bits exert different impacts 
on the false rates.
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3.  It does not allow flexible update control. In many applications, the penalty of a false positive and 
a false negative are significantly different. For example, in summery cache (Li et al., 2000), a false 
positive occurs if a request is not a cache hit on some web proxy when the corresponding Bloom 
filter replica confirms so. The penalty of a false positive is a waste of query message to this local 
web proxy. A false negative happens if a request can be hit in a local web proxy but the Bloom 
filter replica mistakenly indicates otherwise. The penalty of a false negative is a round-trip delay in 
retrieving information from a remote web server through the Internet. Thus, the penalty of a false 
negative is much larger than that of a false positive. The updating protocols based on the percent-
age of dirty bits do not allow one to place more weight on the false negative rate, thus limiting the 
flexibility and efficiency of the updating process.

Based on the theoretic models presented in the previous sections, an updating protocol that directly 
controls the false rate is designed in this chapter. In a distributed system with γ nodes where each node 
has a local BF to represent all local elements, each node is responsible for automatically updating its 
BF replicas. Each node estimates the false rate of its remote BF replica and if the false rate exceeds 
some desire false rate, as opposed to a predetermined threshold on the percentage of dirty bits in the 
conventional updating approaches, a updating process is triggered. To estimate the false rate of remote 
BF replica B̂ , each node has to record the number of elements stored locally (n), in addition to a copy 
of remote BF replica B̂ . This copy is essentially the local BF B  when the last updating is made. It is 
used to calculate the percentage of dirty one bits (δ1) and the dirty zero bits (δ0). Compared with the 
conventional updating protocols based on the total percentage of dirty bits, this protocol only needs to 
record one more variable (n), thus it does not significantly increase the maintenance overhead.

This protocol allows more flexible updating protocols that consider the penalty difference between 
a false positive and a false negative. The overall false rate can be a weighted sum of the false positive 
rate and the false negative rate, shown as follows:

E f w E f w E f
overall

( ) ( ) ( )= ++ + - -

 (17)

where w+ and w− are the weights. The values of w+ and w− depends on the applications and also the ap-
plication environments.

We prove the effectiveness of this update protocol through event driven simulations. In this simula-
tion, we made the following assumptions.

1.  Each item is randomly accessed. This assumption may not be realistic in some real workloads, in 
which an item has a greater than equal chance of being accessed again once it has been accessed. 
Though all previous theoretic studies on Bloom filters assume a workload with uniform access 
spectrum, further studies are needed to investigate the impact of this assumption.

2.  Each local node deletes or adds items at a constant rate. In fact, the deletion and addition rate changes 
dynamically throughout the lifetime of applications. This simplifying assumption is employed just 
to prove our concept while keeping our experiments manageable in the absence of a real trace or 
benchmark.
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3.  The values of w+ and w− are 1. Their optimal values depend on the nature of the applications and 
environments.

 
We simulate a distributed system with two nodes where each node keeps a BF replica of the other. 

We assume the addition and deletion are 5 and 2 per time unit respectively and our desired false rate 
is 10%. Figure 10 shows the estimated false rate and the measured false rate of node 1 throughout the 
deletion, addition and updating processes. Due to the space limitation, the false rate on node 2, which is 
similar to node 1, is not shown in this chapter. In addition, we have changed the addition rate and dele-
tion rates. Simulation results consistently indicate that our protocol is accurate and effective in control 
the false rate.

6. relAted Work

Standard Bloom filters (Bloom, 1970) have inspired many extensions and variants, such as the Count-
ing Bloom filters (Li et al., 2000), compressed Bloom filters (Michael, 2002), the space-code Bloom 
filters (Kumar et al., 2005), the spectral Bloom filters (Saar & Yossi, 2003), time-decaying Bloom filters 
(Cheng et al., 2005), and the Bloom filter state machine (Bonomi et al., 2006). The counting Bloom 
filters are used to support the deletion operation and handle a set that is changing over time (Li et al., 
2000). Time-decaying Bloom filters maintains the frequency count for each item stored in the Bloom 
filters and the values of these frequency count decay with time (Cheng et al., 2005). Multi-Dimension 
Dynamic Bloom Filters (MDDBF) supports representation and membership queries based on the multi-
attribute dimension (Guo et al., 2006). Its basic idea is to represent a dynamic set A with a dynamic s × 
m bit matrix, in which there are s standard Bloom filters and each Bloom filter has a length of m bits. A 
novel Parallel Bloom Filters (PBF) and an additional hash table has been developed to maintain multiple 
attributes of items and verify the dependency of multiple attributes, thereby significantly decreasing 
false positives (Hua & Xiao, 2006).

Bloom filters have significant advantages in space saving and fast query operations and thus have 
been widely applied in many distributed computer applications, such as aiding longest prefix matching 
(Dharmapurikar et al., 2006), and packet classification (Baboescu & Varghese, 2005). Extended Bloom 
filter provides better throughput performance for router applications based on hash tables by using a 
small amount of multi-port on-chip memory (Song et al., 2005). Whenever space is a concern, a Bloom 
filter can be an excellent alternative to storing a complete explicit list.

In many distributed applications, BFs are often replicated to multiple hosts to support membership 
query without contacting other hosts. However, these replicas might become stale since the changes of 
BFs usually cannot be propagated instantly to all replicas in order to reduce the update overhead. As a 
result, the BF replicas may return false negatives. This observation motivates the research presented in 
this chapter.

7. conclusIon

Although false negatives do not occur in standard BF, this chapter shows that the staleness in a BF replica 
can produce false negative. We presents the theoretical analysis of the impact of staleness existing in 
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many distributed BF applications on the false negative and false positive rates, and developed an adap-
tive update control mechanism that accurately and efficiently maintains a desirable level of false rate 
for a given application. To the best of our knowledge, we are the first to derive accurate closed-form 
expressions that incorporate the staleness into the analysis of the false negative and positive rates of a 
single BF replica, to develop the analytical models of the overall false rates of BF arrays that have been 
widely used in many distributed systems, and to develop an adaptively controlled update process that 
accurately maintains a desirable level of false rate for a given application. We have validated our analy-
sis by conducting extensive experiments. The theoretical analysis presented not only provides system 
designers with significant theoretical insights into the development and deployment of BFs in distributed 
systems, but also are useful in practice for accurately determining when to trigger the processes of up-
dating BF replicas in order to keep the false rates under some desired values, or, equivalently, minimize 
the frequency of updates to reduce update overhead.
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key terms And deFInItIons

Bloom Filter: A Bloom filter is a space-efficient data structure that supports membership queries. 
It consists of a bit array and all bits are initially set to 0. It uses a fix number of predefined independent 
hash functions. For each element, all hashed bits are set to 1. To check whether an element belongs to 
the set represented by a Bloom filter, one simply checks all bits pointed by the hash functions are 1. If 
not, the element is not in the set. If yes, the element is consider as a member.

Bloom Filter Array: A Bloom filter array, consisted of multiple Bloom filters, represents multiple 
sets. It is a space-efficient data structure to evaluate whether an element is within these sets and which 
set this element belongs to if yes.
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Bloom Filter Replica: A Bloom filter replica is a replication of a Bloom filter. In a distributed 
environment, the original and replicated Bloom filters are typically stored on different servers for im-
proved performance and fault tolerance. A Bloom filter replica will generate both false positives and 
false negatives.

Bloom Filter Update Protocol: When the set that a Bloom filter represents is changed over time, 
the corresponding Bloom filter replica becomes out-dated. In order to reduce the probability that the 
Bloom filter replica reports the membership incorrectly, the replica needs to be updated frequently. The 
Bloom filter update protocol determines when a Bloom filter replica needs to be updated.

Distributed Membership Query: Membership query is one fundamental function that reports where 
the target data, resource, or service is located. The membership query can be performed by a centralized 
server or by a group of distributed server. The latter approach has a stronger scalability and is referred 
as distributed memory query.

False Negative: A false negative happens when an element is a member of the set that a Bloom 
filter represents but the Bloom filter mistakenly reports it is not. A standard Bloom filter has no false 
negatives. However, in a distributed system, a Bloom filter replica can generate false negatives when 
the replica is not timely updated.

False Positive: A false positive happens when an element is not a member of the set that a Bloom 
filter represents but the Bloom filter mistakenly reports it is. The probability of false positives can be 
very slow when the Bloom filter is appropriately designed.


