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Abstract—Random accesses are generally harmful to perfor- provide extraordinarily fast performance for workloadghwi
mance in hard disk drives due to more dramatic mechanical intensive random accesses. Such workloads are notoriously
movement. This paper presents the design, implementatio@nd  p4ymfy| to performance for hard disks. This key advantage

evaluation of Hot Random Off-loading (HRO), a self-optimizng . o . . .
hybrid storage system that uses a fast and small SSD as a by_glves us an exciting opportunity to build a hybrid system

passable cache to hard disks, with a goal to serve a majority COMposed of one or more slow but large-capacity hard disk(s)
of random I/O accesses from the fast SSD. HRO dynamically and a small but fast SSD. The capacity of the SSD in such

estimates the performance benefits based on history accessa hybrid storage system can be as small as 1% of the disk
patterns, especially the randomness and the hotness, of iwitlual capacity. For example, it may consist of a SSD with a capacity

files, and then uses a 0-1 knapsack model to allocate or migeat . f . .
files between the hard disks and the SSD. HRO can effectively of only ten gigabytes and disks with multiple terabytes. The

identify files that are more frequently and randomly accesseé ~hybrid storage leverages the fast random access perfoenranc
and place these files on the SSD. We implement a prototype of SSDs to boost the overall I/O performance without genegatin
HRO in Linux and our implementation is transparent to the rest 3 large cost overhead.
of the storage stack, |nclud|ng.appllcat|ons.and file system We The key challenging research issue in such a hybrid storage
evaluate its performance by directly replaying three realworld . . .
traces on our prototype. Experiments demonstrate that HRO system is how to dY“am_'Ca"y allocate C?r migrate d"’_‘ta betwee
improves the overall 1/O throughput up to 39% and the latency the SSD and the disks in order to achieve the optimal perfor-
up to 23%. mance gain. In this paper, we propose a hybrid storage archi-
tecture that treats the SSD as a by-passable cache to hkesd dis
. INTRODUCTION and design an online algorithm that judiciously exchangda d
The increasingly widening speed gap between hard didkstween the SSD and the disks. Our basic principle is to place
and memory systems is a major performance bottleneck hint and randomly accessed data on the SSD, and other data,
computer systems. Under random accesses, disk heads faticularly cold and sequentially accessed data on hafddi
guently move to different noncontiguous physical locatiorOur hybrid storage system, called Hot Random Off-loading
and such slow mechanical movements introduce significdhtRO), is implemented as a simple and general user-level
delay. Many researchers have made great efforts to imprdager above conventional file systems in Linux and supports
the random access latency, such as group disk layout [1], [landard POSTIX interfaces, thus requiring no modification
prefetch [3], [4] and I/O scheduler [5], [6]. This paper eoi8 to underneath file systems or users applications. This fymdo
solid state devices (SSDs) to address the performance. isss&€omprehensively evaluated by using a commodity hard disk
Unlike magnetic hard disks, SSDs use non-volatile memoand SSD.
chips and contain no moving components. The read and writeHRO dynamically and transparently places data on either
performance of SSD is asymmetric but their response timeSSD or disks based on the history 1/0O activities, including
almost constant. While SSDs have the overhead of erasutee randomness and the hotness. The randomness measures
before-write, the write latency in SSD has recently bedrow far the target data of two consecutive requests typicall
dramatically improved. Currently, the random read andewritare isolated in disk physical or virtual layout, and the lestn
performance of SSD is one to two orders of magnitude bettestimates how often data are accessed. Since the SSD used in
than hard disks, as shown in Figure 2(c). our hybrid storage system is limited in capacity, we model th
Nowadays SSDs, especially high-end ones, are still mudhta allocation issue as a classic 0-1 knapsack problem. We
more expensive than hard disks in terms of gigabytes petploit a simple but fast approximate solution to dynantycal
dollar [7]. Combined with the concerns of reliability duemigrate data between SSD and hard drives. Data migration
to limited numbers of erasure cycles, the cost of SSDs hiasnot executed very frequently and is only triggered when
impeded their applications as the major storage media, esfie storage system is mostly idle, such as midnights, thus
cially in enterprise systems. Thus SSDs cannot replace hardurring little interference to foreground applicatioster
disks as the primary storage media in the industry in the nghe migration, future accesses to these data are autothatica
future. On the other hand, throughput-price ratio of SSD &nd transparently redirected to the corresponding devicea
approximately 2 orders of magnitude better than hard disksrésult of data migration and traffic redirection, HRO ackigv
one measures random 1/Os per second per dollar [8]. SSihe following I/O performance benefits:
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(a) Original disk layout. Accesses are made in the order from 1 to 8. Due tgb) Expected hybrid layout. By offloading random accesses to SSD, most hot
the long inter-file distance between file 1 and file 3, long sesdcur if accesses random accesses are served by SSD, and most sequentisdescees served
to these files are interleaved. by the hard disk. Long-distance seeks are eliminated inekésnple.

Fig. 1. A simple example motivating our research
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(a) I/0O access traces captured at the block level. (b) Average seek distance comparison. (c) Log scale I/O latency of hard disk and SSD.

Fig. 2. Plota gives a snapshot of the access sequence of disk sectorsechptua tool calledlktrace when replaying the mail server workload. It shows
that even after the 1/0 scheduler in the operating systeimslees and merges 1/O requests, there still exists a largetyaf random accesses to the hard
disk. The virtual time is defined as the number of referensssed so far and is incremented for each request. Inbplibtis observed that if we filter out
random accesses, the average disk seek distance is redge#idantly. Plotc clearly shows that random operation latency of the hard ®iskuch inferior
to SSD.

« Hot random accesses are off-loaded from slow hard disgection Ill. Experimental results are presented in Sedton
to fast SSD, i.e., a random access is served by the SSBction V summarizes related work. Conclusions are made in
with a very large likelihood. This is motivated fromSection VI.
the fact that random access in SSD are two orders of
magnitude faster than hard disks as shown in Figure 2(c). Il. RESEARCH MOTIVATIONS
« The access locality of data traffic to hard disks becom@s \etivations
stronger when most random accesses are filtered out and

redirected to the SSD. Accordingly, seek and rotational Hard drive disks often do not perform well in a multi-task
latencies in hard disks are significantly reduced. environment due to the loss of access locality caused by the

interleaving of multiple disk I/O streams. For example, on a

We evaluate our design and implementation by first recofypjcal server, such as a file server, a mail server, or a web
structing the file systems image and then replaying thesesraseryer, many processes run independently in a time-sharing
on the constructed image. We use three I/O intensive WoRshion. Even if data requested by each process is seqilientia
loads, including a mail server workload, a research workloastored on a disk, we find that multiplexing between requests
and an office workload. EXperimentaJ results show that HR@)m different processes degrades the 1/0 performance Sig_
improves the overall I/O throughput up to 39% and the latengficantly. Although disk scheduling algorithms, such a€CF
up to 23%. and anticipatory scheduling [6], has been used to reduce the

The key contributions of this paper are summarized asipact of multiplexing, the access locality is still difficdo
follow. (1) We design and implement a hybrid storage systepteserve due to the intrinsic nature of time-sharing aréasis
in Linux, called HRO, which is shown to significantly improveenforcement.
the storage system performance, under three representatiwie use a simple example to illustrate that disk performance
workloads tested in this paper. (2) We develop a 0-1 knapsasikifers when multiple 1/0O processes concurrently access th
optimization model that is based on the estimates of randoghared storage system, no matter whether these accesses are
ness and hotness to dynamically migrate files between disigjuential or random. In Figure 1(a), there are three hot
and the SSD, with a goal to redirect hot and random acces$igss, including file 1, 2 and 3, which are often accessed in
to SSD. that order. Each black circle in the figure is an 1/O access.

The rest of the paper is organized as follows. MotivaAssume that file 1 and file 2 are sequentially accessed, and
tion and characteristics of I/0O workloads are discussed fite 3 is randomly accessed. These files are assumed to be
Section II. Design and implementation details are given placed non-contiguously on disks, as shown in Figure 1(a).
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Fig. 3. Cumulative distribution function (CDF) of access frequendes, file sizes, randomnessn plot a, a very small percentage of files attract a majority
of I/O accesses. Pldi show that three workloads have totally different distribng of file sizes. Plot indicates that non-sequential accesses exist in three
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TABLE |
STATISTICS OF THREEWORKLOADS STUDIED

Long-distance seek operations occur between file 1 and file - - oOfﬁce 5 Mail . geseami
- . race perio ne wee ne wee ne wee
3. Accesses to file 1 becomes _pseudo-sequgntlally as they are —= ops || 211,308 494| 187,974 468| 20,550,778
interfered by the accesses of file 2 and 3. Disk heads have t0 [ Metadata ops 66% 14% 75%
move back and forth when serving requests to file 3. Read 24% 65% 10%
These observations motivate us to offload random accesses Write 10% 21% 15%
X h lity of disk Read (MB) 833,135 845,123 32,498
Fo SSD to improve the sequt_anta ity 0 accesses to disks. As e (MB) 242.376 313,987 61.488
illustrated in Figure 1(b), if file 1 and file 3 are placed on R/W Ratio 34 2.5 05

SSD, the disk accesses become completely sequential.lin rea

systems, disk access patterns are more complicated th&n Wirkloads exhibit large overlaps of hot files across sudeess
example. However, the simple example intuitively illus#® days during a weeklong period. This indicats that popujarit
how seek time and rotational delays can be significantly consistent across multi-day periods. In addition, weeoles
reduced via offloading hot and random accesses. that only a very small subset of files are hot. In Figure 3(a),
In real systems we often observe such similar harmful agre hot files are only less than 3 percent of the total filess Thi
cess patterns. Figure 2(a) presents the access sequerisk ofigl consistent with the conventional wisdom that a very small
sectors captured byiktrace [9] when replaying a mail server percentage of files attract most of the I/O accesses. Figbje 3
workload. In this workload, multiplexed 1/O requests fromshows the distributions of file sizes in the three workloads.
different users are often not arranged into a fully seqaéntin these three workloads, no very large files exist and most
I/0 request by the 1/O scheduler or disk firmware. We condufiles are in KBs or MBs. As a result, a SSD with a small
simple experiments to estimate how much improvement caapacity might be sufficient to cache hot files, thus reduee th
potentially be achieved if all random accesses are filtetgd oprice overhead of a hybrid storage system. In Figure 3(c),
We remove most of the random accesses when replaying the randomness of three workloads are compared. We can
mail server workload and compare the performance resulige that randomness exists in all cases, and especiallgin th
to that of the original workload. Figure 2(b) computes thgyp accessed files. Thus, HRO can migrate random access

moving average of hard disk head seek distance in the ofigigaminated data to mitigate the hard disk seek overhead.
workload and the filtered workload. The results show that in
I1l. DESIGN AND IMPLEMENTATION

the filtered workload the seek distances measured in sectors
are significantly reduced, and some of them are reduced tdn this section, we present more practical and realtistic
almost zero. details in our implementation of HRO. Figure 4 presents the
o . architecture of HRO and its relation to the rest of the sterag
B. Characteristics of Workloads in Real Systems stack. HRO is built above Fuse [11] in Linux at the user
In this section, we examine the basic characteristics gpace level, and is similar to the structure of Umbrella [12]
typical server 1/0 workloads and elaborate on those charate implement HRO with about 4000 lines of C++ code. It
teristics that directly motivate our work. We focus on threautomatically organizes files stored in different file sysie
modern server workloads [10], including a campus mail Servimto a single and shared virtual namespace. HRO supports
workload (Mail), a department research workload (Resgardhe standard POXIS interface for the unified namespace. It
and a department office workload (Office). Some statistics afitomatically de-multiplexes the namespace operatiomsigm
these three workloads are summarized in Table I. underneath native file systems. Users can mount the hybrid
We find that a hot file tends to remain as hot in thstorage systems without knowing details of the storagesstru
near future in real systems. We identify the top 10%, 20%jre and all the HRO background migration is transparent to
30%, and all most frequently accessed files of each day, ahe end user.
calculate the percentage of hot files in the following dayd th Positioning HRO above the file system layer and operating
are also hot files of the first day. The results show that a@t the granularity of files is important for two important



reasons. First, by operating above the file system layer, HRO | DeiceID | node | Count | Frequenc| Sise |Type | Time | Offet | End |
becomes independent of the file system, and can thereby work )
seamlessly with any native file systems. It can also support
multiple active file systems and mount-points simultangous
Second, working at the file level can simplify the manage- ‘HashEntryl‘HashEntryZ‘HashEmryS‘ ............ ‘HashEmN‘
ment complexity of the virtual hybrid layer, and reduce the
performance and memory overhead significantly. ,

HRO consists of five components: data collector, mappirﬁggs'hf’ém
table, randomness calculator, allocation module and ndgra
The following discusses each component in detail. TABLE I

DATA COLLECTOR captures all access requests on the EXPLANATION OF FIELDS IN A HASH ENTRY
system call 1/0O path and collects these information for the Field Explanation
randomness calculator. HRO intercepts every I/O requast an Device ID | File located device ID (8 bits)
identifies the corresponding physical file location from the Inode File inode number in the file system (48 bits)
mapping table, then sends the I/O request to the lower VFS Count File randomness count number (32 bits)

Mapping table structure. The mapping table is composed of
ry, each hash entry is a data structure explainedhile Tl.

8 - Size File size (64 bits)
and file system. At the same time, all requests are sent to the  Frequency| File access frequency (32 bits)
data collector and the randomness calculator. The altmcati Type File last access type (8 bits)
algorithm stU(_jies these requests information and idestifie gfr};it E::g :Zi Zgggzz g?sit(?éfgist)s)
data to be migrated. This execution is shown in Figure 4 as End File last access end (64 bits)
step 1 to 9.
A AP APP file access time, last access type, file size, file accessdnagu
are updated upon each file access. In order to recognize the
1 HRO file random/sequential access pattern, Algorithm 1 is chesig
bl ‘ to logically merge sequential I/O requests that arrive initn

short time window. The algorithm counts the total number of
merged requests. Similar to the block-level /O scheduler i

I
4 Data 5 Randomness }'
Collector Calculator /!
3 many operating systems, we merge small requests into a large
I
|
|
I
]
|

o[qe) Surddey

N
8 (Migmwr> 7{/&@ sequential segmer_n ar_1d keep independent rar_1dom requests as
777777777777777777777777777 they are. If the arrival interval of two requests is largeartta
predefined threshold 0.5 second, then we treat these request
SSD HDD as non-sequential. After merging the requests, the totabeu
of access segments remained for a given file is defined as the
Fig. 4. HRO architecture. HRO is built by using FUSE and it is composedandomness count of that file. For example, if the total numbe
of five components: data collector, mapping table, rand@sinealculator, T
migrator, and allocation module. of segments equals to the access frequency, then this file is
accessed fully randomly, because no requests are merged. If
The MAPPING TABLE is a hash table in memory tothe segment number equals to one, then all the requests are
identify in which storage device, SSD or disks, a specificifile merged into one because of the perfect sequentiality of the
stored. The structure of the mapping table is shown in Fi§urerequests.
Specifically, it translates the logical file location to theypical In Algorithm 1, for each new request, we first locate the
file location which is indicated by eviceI D andInode. The corresponding hash entry in the mapping table. From line
hash key is the logical file location and each hash entry is3ato line 5, the algorithm compares the sequentiality of
special data structure as explained in Table Il. To benefihfr the new request with previous I/Os. If the read/write type,
the allocation of data, we must be able to quickly find them aratcess interval as well as the access offset match, then we
send the actual I/O request to the corresponding storageadevjust update the last 1/O information and merge them as a
The mapping table is composed of the hash entries for all filsequential segment as shown in line 6 and 7. Otherwise, the
The lookup, delete and add operations on the hash table aesv request is treated as a random one, the algorithm iregeas
designed for high speed. In addition, the mapping table héme randomness couf; for file ; and uses the new 1/O request
a very small memory overhead. Only a total of 50 bytes a&s the last I/O request as shown in line 11 and 12.
needed for each file entry in the table. A mapping table of The MIGRATOR handles data movement between SSD
50MB can keep track of 1,000,000 frequently accessed filemd disks. It compares the new placement of data generated
As most of todays computer systems have multiple gigabytigem the file allocation algorithm to their old placementdan
of memory, it is usually not a problem to keep all hash entrigdentifies files that need to be migrated. It then schedulds an
in memory. For extremely large systems, the mapping talile captimizes the migration. Because migrations cause aadaikio
be flushed to hard disks and loaded into memory on demati@ traffic, thus care must be taken so that they do not affect
The RANDOMNESS CALCULATOR mainly evaluates the foreground I/O performance. In our design, HRO conducts
the randomness of each individual file. Information suckaas | migrations during system idle time such as midnight. For




simplicity, in our experiments, all the allocation algbrits are n different files. Each file has a benefit value af; and a size
executed only once each day and migrations are performedt;. The variabler; indicates the target device of each filg.
midnight. is either 0 or 1; 0 means placing the file on the hard disk, and
A|gor|thm 1:1/0 requests merge and count a|gorithm 1 means StOI‘Ing the f||e in SSDHRO Se|¢CtS a Compination Of
Input_: A new 1/O request info. files to maximize _the_ total b_eneflt vaIL_Je with the sub_jec_t ® th
Output: Updated hash entry information SSD capacity I|_m|tat|on. ThIS. model is capable of finding the
most valuable files from previous 1/0 workloads and choosing

foreach New 1/0 request do them as candidates for migration.
Find the corresponding hash entry;

1
2
3 if 1/0 type equals to the last access type then
4
5

if 1/O interval time smaller than 0.5s then M‘wmizez TV
if New I/O start address equals to last 1/0 =1

end address then "
Subject to : Zsixi < CAPACITY 44, x; € {0,1}

6 Last I/0O end«+ new /O end; _

7 Update last 1/0 access time; =t

8 end However, the 0-1-knapsack is a classic NP-complete
9 end problem and no efficient algorithms have been found.
10 | else In all three workloads studied in this paper, the real
11 Replace the last I/O info. with new I/O info.;  file system image contains millions of files, and thus
12 R, = R; + 1; the non-polynomial-time solution is unacceptable in
13 | end real systems. In HRO, we deployed a polynomial-time
12 end approximation algorithm to keep the problem simple

while achieving a reasonably good migration performance.
The ALLOCATION ALGORITHM s specially designed ~Algorithm 2: Data allocation algorithm

to maximize the utilization of SSD in our hybrid storage

systems. The capacity of SSD is small in our hybrid systems

since SSD are much more expensive than disks. Which data

and how much data should be placed on SSD is a key issuet MoveSet < empty;

for improving the overall performance. We find that there 2 TotalSize < 0;

is a similarity between HRO data placement issue and the3 forall Mapping table entry do

classic 0/1 knapsack problem. The placement problem can be | Sort all items in the decreasing order ofs;;

summarized as following: Given a set of files, each with a > end

size and a benefit value, determine the selection of files to6 for i <= 1to n and TotalSize<CAPACITYsq do

be included in a container so that the total size is less than &’ | if TotalSize + size; < CAPACITY,q then

Input : Mapping table, FileSetssq
Output: SETsq, SEThga

given limit and the total value is as large as possible. 8 TotalSize < TotalSize + size;
We create a 0/1 knapsack problem model for HRO to ® Zi <—_1;
optimize the data allocation efficiency. First, we need to10 Add i to MoveSet,;

determine what is the benefit value of storing a file on SSD.11 end

Because hard disks are slow for random accesses and SSP end _

is extraordinary fast for random accesses, we should take tht3 SETssq < MoveSet — (MoveSet ] FileSetssq);
randomness and hotness into considerations. Intuitithly, 14 SEThaa ¢+ FileSetssa — (MoveSet () FileSetssq);
benefit of storing a file on SSD increases if the file is more . . : . ,
randomly accessed and/or the file is more frequently acdesse In Algorithm 2, the input is the mapping table and the file

. N g . set IF'ileSetssq Which includes all the files currently stored
:;' %{éjvuslti’r:rlﬁis%g?grvalu@ of file i is empirically defined on SSD. The output is the file s&FET,.q( files need to

be migrated to SSD from HDD) and file s&ET),q4(files
v; = ﬂRz (1) need to move from SSD to HDD). It setd/oveSet to
8 empty, which is the moving set generated by HRO allocation
wheref; is the access frequency of files; is the file size, and algorithm without comparing with previous actual file ldoat
the R; is the file random access count calculated in AlgorithiotalSize is set to zero initially, which is the total size of
1. The benefit value; is defined as the multiplication of accesdiles that is scheduled to move. First it calculates and sorts
frequency per unit size with the randomness calintwhich the file value in decreasing order, as shown in line 4. Then
means that if a file has a high access frequency, a small files to be moved to SSD are selected according to its value
size, and a large the randomness coliptthen it is regarded in a greedy way. For all the remaining best value files, if
as a high benefit value file. the file size plus currerif'otalSize is smaller than the SSD
Mathematically the 0-1-knapsack data allocation problenapacity, therl'otalSize increases and the file is indicated to
can be formulated as the following equations. In HRO, we habe stored on SSD, as shown in line 6 to line 12. After the




TABLE Il

CONFIGURATION OF STORAGE SERVER our experiments. NFS traces, c_ollected in three _Iarge Berve
are replayed on our prototype implementation via a modifed
gomp?_”e”ts : 3@‘30':'0%084 N replay tool calleddbench [13]. The description of these traces
F”r;ersaylsr:gmsys em g W KEMET D, have been given in section II. At the same time, block-level
CPU AMD Opteron dual core 1000 Hz requests are captured Hpjktrace [9] and these requests are
g‘gmory (1)% DDEZ 667;2 sent to the monitor machine for block level analysis. We have
(IIDapacity eoééA ILITY developed a small toolkit to analyze the 1/O traces and then
Sequential Read/Writel 20us/70us reconstruct the original file system image. The toolkit also
Random Read/Write | 270us/375us translates the original NFS traces into the dbench [13] NFS
Hard Disk 3* WDC WD7500AAKS replav format
Capacity 750GB play - _
Rotational speed 7200RPM While the original I/O traces are collected over a period of
Read Seek 8.9ms several weeks, due to time limitation, we only replay a stibse
Track-to-track Seek | 2ms of traces for each workload, with each subset containing one
Full Stroke Read Seek 21ms ! 9

week of 1/0O activities. Migration is trigged during midnigh
loop, we compare the moving set with the file set currentlyhen the system is typically idle. We use an unlimited
on SSD, and add files that are in tiéoveSet but not on acceleration factor to reduce the experiment time and the
SSD into SET,.4. Similarily, files that need to be movednext workload request is issued as soon as the pervious one
to hard drives are added t8£7},44. The complexity of this completes. The trace replay acceleration factor is redt@ed
algorithm is only O (n - logn). This allocation algorithm is 1X when the migration is performed. While the capacity of
only an approximation solution to our problem. However, w8SD used in our experiment has 60GB, we artificially limit the
found that it is efficient and achieves very good performancgable space on SSD to 5% of the total file system images, i.e.,
in our experiments. 2.5GB for the mail workload, 12GB for the office workload
and 7GB for the research workload. The capacity of SSD is
IV. EXPERIMENTAL STUDY less than 1% of hard disk, which is cost efficient for the HRO
We use three representative workloads to evaluate dwbrid architecture.
design in this section. We compare HRO against two basic _
systems: a conventional storage system based on disks, afti &/stem Bandwidth
hybrid storage systems in which the SSD stores the most freHRO successfully outperforms the two baseline systems
quently accessed files. Note that the placement policy in HR{dd achieves much higher bandwidth in three workloads
considers both hotness and randomness. In our experimetasted in this paper, as shown in Figure 8. The baseline of
the usable storage capacity of SSD is set approximately S¥nventional disk based system is denoted as HDD, and the
of the size of file system images and less than 1% of the hdrgbrid storage system with frequency only based migration
disk capacity, in order to minimize the cost overhead. Tretrategy is denoted as HOT in the rest of this paper. For the
same type of disks is used in HRO and the baseline systemmail server workload, HRO outperforms HDD and HOT by
The SSD in HRO is used as a by-passable cache to disks. Mgeto 15% and 6%, respectively, in bandwidth. With a very
do not compare HRO with hybrid systems that simply organizeall size SSD, HRO improves the bandwidth significantly
SSDs and disks into storage RAIDs since such systems requioenpared with HDD, and the improvement is mainly made by
SSDs with a very large storage capacity. migration of hot random data to SSD. In the office workload,
In this section, we evaluate HRO and the baseline systethe read/write ratio is about 3.5, and it is the busiest vl
by using two performance metrics: the 1/0 bandwidth and thie our experiment. As a result, the performance improvement
I/O latency. In order to examine the impact of off-loading wis the most significant over the three workloads. For all seve
record all block-level requests issued by the disk schediile days, the HRO bandwidth is consistently better than that
runtime and calculate average seek distances. Since mosbfoHDD and HOT. In average, the bandwidth of HRO in
randomly accessed files are allocated to the SSD and mosth# office workload is 39% and 21% better than HDD and
sequentially accessed data are kept on disks, the average $#OT, respectively. The research workload is dominated by
distance on disks is expected to decrease significantly.  writes, and the read/write traffic ratio is about 0.5, whish i
not friendly for SSD because of heavy background garbage
collection on SSD. In addition, this workload contains ayéar
Our test bed is composed of two machines: the monitamount of metadata operations. Therefore, compared with
machine and the storage server. The storage server contfig other two workloads, the HRO improvement is relatively
uration is given in Table Ill. The memory size is set t@maller in the research workload.
1GB to minize the impact of the buffer cache and the buffer
cache is cleared during each experiments. In order to remdveSystém Latency
the interference of requests that are not issued by our tesFigure 6(a) compares the latencies of these three systems
benchmarks, the operating system is installed on a sepamateler the mail server workload. HRO improves the average
hard disk. Another two hard disks and a SSD are used latency of HDD and HOT by 12% and 8% respectively. Most

A. Experimental Setup
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importantly, HRO can reduce the read latency of HDD and
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HOT by 22% and 10%, and reduce the write latency of HDD o lHDD
by 13%. The significant read/write improvement indicates th 30l [ [ JHOT]|
HRO can successfully capture hot and random data and place [ IHRO

them on SSD. For metadata operations, these three schemes
almost have the same performance.

For the office workload, HRO reduces the average latency
of HDD and HOT by 23% and 17% respectively as shown
in Figure 6(b). The average read latency is reduced by 24%
and 16% while the average write latency is reduced by 29%
and 14%. Metadata operation performance is also improved
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correspondingly, because there exists a large amount @&-met Mail Office Research
data operations in this workload. Figure 6(c) shows theayer Fig. 8. Average bandwidth of three workloads.
system latency improvement. HRO reduces the average atenc 107

of HDD and HOT by 16% and 10%, the average read latency 10 ‘ ‘ " [---hARrO

by 21% and 15%, and the average write latency by 26% and
14%.

D. Reduce disk seek distances analysis

When replaying the file-level 1/0s specified in the traces
during the experiments, we also capture the actual blog-le
access sequences to the disks and the requests served by the

Disk average seek distance(sector)

buffer cache are not included in the sequence. Due to the T LSRN
space limitation, we only take the mail server workload as % 200 200 600 800 1000
an example to illustrate the experiment results. Workload execution time

Figure 7 plots the disk seek distances observed in three Fig. 9. Disk seek distance runtime average.

schemes. Apparently, HDD has the largest amount of long-

distance seek operations caused by the random accessesHidi@l with an average of 69% and 53%, respectively. The
long-distance seeks are reduced by HOT. Impressively, mostiuction in disk seek distances is then directly trandlatto

of large seeks occurred in the HDD system is now eliminatélde performance gain.

in HRO, as shown in Figure 7. Figure 9 compares the moving V. RELATED WORK

average of seek distances of these three schemes and the ] ]

moving window size is set as 5 requests. This figure cleady Adaptive Disk Layout

shows that HRO can successfully mitigate most of the randomMany researchers have made great efforts to reduce or hide
access and reduce the disk head seek distance of HDD #&omiy-seek operations in disks. FFS [14] and its succes&6is |
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